Fairchild FDP16AN08A0, FDB16AN08A0 service manual

查询FDB16AN08A0供应商查询FDB16AN08A0供应商
FDP16AN08A0 / FDB16AN08A0
N-Channel PowerTrench® MOSFET 75V, 58A, 16m
FDP16AN08A0 / FDB16AN08A0
July 2002
Features
•r
•Q
• Low Miller Charge
• Low Qrr Body Diode
• UIS Capability (Single Pulse and Repetitive Pulse)
• Qualified to AEC Q101
Formerly developmental type 82660
DRAIN
(FLANGE)
MOSFET Maximum Ratings T
= 13mΩ (Typ.), V
DS(ON)
(tot) = 28nC (Typ.), V
g
GS
GS
TO-220AB
FDP SERIES
= 10V, ID = 58A
= 10V
SOURCE
DRAIN
GATE
C
GA TE
SOURCE
= 25°C unless otherwise noted
Applications
• 42V Automotiv e Load Control
• Starter / Alternator Systems
• Electronic Power Steering Systems
• Electronic Valve Train Systems
• DC-DC converter s and Off-line UPS
• Distributed P ower Arc hitectures and VRMs
• Primary Switch for 24V and 48V systems
G
TO-263AB
FDB SERIES
DRAIN
(FLANGE)
D
S
Symbol Parameter Ratings Units
V
DSS
V
GS
Drain to Sou r c e Voltage 75 V Gate to Source Voltage ±20 V Drain Curr e nt Continuous (T
I
D
Continuous (T Continuous (T
= 25oC, VGS = 10V)
C
= 100oC, VGS = 10V) 44
C
= 25oC, VGS = 10V, with R
amb
= 43oC/W) 9 A
θJA
58 A
Pulsed Figure 4 A
E
AS
P
D
, T
T
J
STG
Single Pulse Avalanche Energy (Note 1) 117 mJ Power dissipation 135 W
o
Derate above 25
C0.9W/
Operating and Storage Temperature -55 to 175
o
C
o
C
Thermal Characteristics
R
θJC
R
θJA
R
θJA
This product has been designed to meet the extreme test conditions and environment demanded by the automotive
All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality
©2002 Fairchild Semiconductor Corporation
Thermal Resistance Junction to Case TO-220,TO-263 1.11 Thermal Resistance Junction to Ambient TO-220,TO-263 62 Thermal Resistance Junction to Ambient TO-263, 1in2 copper pad ar ea 43
industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/
Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html.
systems certification.
FDP16AN08A0 / FDB1 6AN08A0 Rev. A1
o
C/W
o
C/W
o
C/W
Package Marking and Ordering Information
Device Marking Device Package Reel Size Tape Width Quantity
FDB16AN08A0 FDB16AN08A0 TO-263AB 330mm 24mm 800 units FDP16AN08A0 FDP16AN08A0 TO-220AB Tube N/A 50 units
FDP16AN08A0 / FDB16AN08A0
Electrical Characteristics
TC = 25°C unless otherwise noted
Symbol Parameter Test Con ditions Min Typ Max Units
Off Characteristics
B I
DSS
I
GSS
VDSS
Drain to Sou r c e Br ea k down Voltag e ID = 250µA, VGS = 0V 75 - - V
V
= 60V - - 1
Zero Gate Voltage Drain Current
DS
= 0V TC = 150oC- -250
V
GS
Gate to Source Leakage Current VGS = ±20V - - ±100 nA
On Characteristics
V
GS(TH)
r
DS(ON)
Gate to Source Threshold Voltage VGS = VDS, ID = 250µA2-4V
I
= 58A, VGS = 10V - 0.013 0.016
D
I
= 29A, VGS = 6V - 0.019 0.029
Drain to S ou r c e On Re si st ance
D
= 58A, VGS = 10V,
I
D
T
= 175oC
J
- 0.032 0.037
Dynamic Characteristics
C C C Q Q Q Q Q
ISS OSS RSS
g(TOT) g(TH) gs gs2 gd
Input Capacitance Output Capacitance - 288 - pF Reverse Transfer Capacitance - 88 - pF
= 25V, VGS = 0V,
V
DS
f = 1MHz
Total Gate Charge at 10V VGS = 0V to 10V Threshold Gate Charge VGS = 0V to 2V - 3.5 5 nC Gate to Source Gate Charg e - 1 1 - nC Gate Charge Threshold to Plateau - 7.6 - nC
V
DD
I
= 58A
D
I
= 1.0m A
g
= 40V
Gate to Drain “Miller” Charge - 6.4 - nC
- 1857 - pF
28 42 nC
µA
Switching Characteristics
t
ON
t
d(ON)
t
r
t
d(OFF)
t
f
t
OFF
Turn-On Time Turn-On Delay Time - 8 - ns Rise Time - 82 - ns Turn-Off Delay Time - 28 - ns Fall Time - 30 - ns Turn-Off Time - - 86 ns
(VGS = 10V)
V
= 40V, ID = 58A
DD
V
= 10V, RGS = 10
GS
--135ns
Drain-Source Diode Characteristics
I
= 58A - - 1.2 5 V
V
SD
t
rr
Q
RR
Notes: 1: Starting T
©2002 Fairchild Semiconductor Corporation FDP16AN08A0 / FDB1 6AN08A0 Rev. A1
Source to Drain Diode Voltage Reverse Recovery Time ISD = 58A, dISD/dt = 100A/µs- -35ns
Reverse Recovered Charge ISD = 58A, dISD/dt = 100A/µs- -36nC
= 25°C, L = 260µH, IAS = 30A.
J
SD
I
= 29A - - 1.0 V
SD
FDP16AN08A0 / FDB16AN08A0
Typical Characteristics T
= 25°C unless otherwise noted
C
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0255075100 175
125
TC, CASE TEMPERATURE (oC)
Figure 1. Normalized Power Dissipation vs
Ambient Temperature
2
DUTY CYCLE - DESCENDING ORDER
0.5
1
0.2
0.1
0.05
0.02
0.01
0.1
, NORMALIZED
θJC
Z
THERMAL IMPEDANCE
0.01
-5
10
SINGLE PULSE
-4
10
10
60
40
20
, DRAIN CURRENT (A)
D
I
0
150
25 50 75 100 125 150 175
Figure 2. Maximum Continuous Drain Curr ent vs
-3
t, RECTANGULAR PULSE DURATION (s)
-2
10
TC, CASE TEMPERATURE (oC)
Case Temperature
P
DM
NOTES: DUTY FACTOR: D = t PEAK TJ = PDM x Z
-1
10
θJC
10
1/t2
0
x R
θJC
t
+ T
1
t
2
C
1
10
Figure 3. Normalized Maximum Transient Thermal Impedance
700
TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION
VGS = 10V
, PEAK CURRENT (A)
100
DM
I
50
-5
10
-4
10
-3
10
-2
10
-1
10
t, PULSE WIDTH (s)
TC = 25oC FOR TEMPERATURES
o
ABOVE 25
C DERATE PEAK
CURRENT AS FOLLOWS:
175 - T
I = I
25
10
C
150
0
1
10
Figure 4. Peak Current Capability
©2002 Fairchild Semiconductor Corporation FDP16AN08A0 / FDB1 6AN08A0 Rev. A1
FDP16AN08A0 / FDB16AN08A0
Typical Characteristics T
500
100
10
OPERATION IN THIS
AREA MAY BE
LIMITED BY r
, DRAIN CURRENT (A)
D
1
I
SINGLE PULSE TJ = MAX RATED
T
C
0.1 1 10 100
DS(ON)
= 25oC
VDS, DRAIN TO SOURCE VOLTAGE (V)
= 25°C unless otherwise noted
C
10µs
100µs
1ms
10ms
DC
Figure 5. Forward Bias Safe Operating Area
100
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX V
= 15V
DD
75
100
10
, AVALANCHE CURRENT (A)
AS
I
1
0.01 0.1 1 10 100
If R = 0 tAV = (L)(IAS)/(1.3*RATED BV
If R
0
= (L/R)ln[(IAS*R)/(1.3*RATED BV
t
AV
STARTING TJ = 150oC
tAV, TIME IN AVALANCHE (ms)
- VDD)
DSS
- VDD) +1]
DSS
STARTING TJ = 25oC
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515
Figure 6. Unclamped Inductive Switching
Capability
100
VGS = 20V
75
VGS = 10V
VGS = 7V
50
, DRAIN CURRENT (A)
D
I
TJ = 25oC
25
0
3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
TJ = 175oC
TJ = -55oC
VGS, GATE TO SOURCE VOLTAGE (V)
Figure 7. Transfer Characteristics Figure 8. Saturation Characteristics
0.022
0.020
0.018
0.016
0.014
DRAIN TO SOURCE ON RESISTANCE(mΩ)
0.012 0 102030405060
VGS = 6V
VGS = 10V
I
, DRAIN CURRENT (A)
D
Figure 9. Drain to So urce On Resistanc e v s Drai n
Current
50
, DRAIN CURRENT (A)
D
I
25
0
01234
2.5
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
2.0
1.5
ON RESISTANCE
1.0
NORMALIZED DRAIN TO SOURCE
0.5
-80 -40 0 40 80 120 160 200
VGS = 6V
VGS = 5V
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
VDS, DRAIN TO SOURCE VOLTAGE (V)
VGS = 10V, ID =58A
TJ, JUNCTION TEMPERATURE (oC)
TC = 25oC
Figure 10. Normalized Drain to Source On
Resistance vs Junction Temperature
©2002 Fairchild Semiconductor Corporation FDP16AN08A0 / FDB1 6AN08A0 Rev. A1
FDP16AN08A0 / FDB16AN08A0
Typical Characteristics T
1.4
1.2
1.0
0.8
NORMALIZED GATE
THRESHOLD VOLTAGE
0.6
0.4
-80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC)
= 25°C unless otherwise noted
C
VGS = VDS, ID = 250µA
Figure 11. Normalized G ate Threshol d Voltage vs
Junction Temperatur e
3000
C
= CGS + C
1000
ISS
C
C
+ C
OSS
DS
GD
GD
1.2 ID = 250µA
1.1
1.0
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
0.9
-80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC)
Figure 12. Normalized Drain to Source
Breakdown Voltage vs Junction Temperature
10
VDD = 40V
8
6
C
= C
RSS
GD
C, CAPACITANCE (pF)
100
V
= 0V, f = 1MHz
GS
50
0.1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V)
Figure 13. Capacitance vs Drain to Sour ce
Voltage
4
WAVEFORMS IN
2
, GATE TO SOURCE VOLTAGE (V)
GS
V
75
0
0 5 10 15 20 25 30
Qg, GATE CHARGE (nC)
DESCENDING ORDER:
ID = 58A
= 28A
I
D
Figure 14. Gat e Charge Waveforms for Constant
Gate Current
©2002 Fairchild Semiconductor Corporation FDP16AN08A0 / FDB1 6AN08A0 Rev. A1
Test Circuits and Waveforms
V
DS
L
TO OBTAIN
VARY t
P
REQUIRED PEAK I
V
GS
R
AS
G
+
V
DD
-
I
AS
DUT
t
0V
P
I
AS
0.01
0
Figure 15. Unclamped Energy Test Circuit Figure 16. Unclamped Energy Wavef orm s
V
DS
V
DD
V
Q
I
g(REF)
L
V
GS
DUT
+
V
DD
-
V
GS
0
I
g(REF)
= 2V
Q
gs2
Q
g(TH)
Q
gs
0
Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms
BV
DSS
t
P
t
AV
Q
g(TOT)
DS
gd
V
V
GS
FDP16AN08A0 / FDB16AN08A0
DS
V
DD
V
= 10V
GS
V
DS
R
L
V
GS
R
GS
V
GS
DUT
+
V
DD
-
V
DS
0
V
GS
10%
0
t
d(ON)
90%
t
ON
t
r
t
d(OFF)
t
OFF
t
f
90%
10%
10%
90%
PULSE WIDTH
50%50%
Figure 19. Switching Time Test Circuit Figure 20. Switching Time Waveforms
©2002 Fairchild Semiconductor Corporation FDP16AN08A0 / FDB1 6AN08A0 Rev. A1
Thermal Resistance vs. Mounting Pad Area
80
The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maxi mum al lowab le de vice p ower di ssip ation, P application. Therefore the applications ambient temperature, T must be reviewed to ensure that T Equation 1 mathematically represents the relationship and
(oC), and th ermal res istance R
A
is never exceeded.
JM
serve s as the basis for establ ishing the rating of the part.
TJMTA–()
P
----------------- ------------=
DM
R
θJA
DM
(oC/W)
θJA
(EQ. 1)
, in an
60
C/W)
o
(
θJA
R
40
R
= 26.51+ 19.84/(0.262+Area) EQ.2
θJA
R
= 26.51+ 128/(1.69+Area) EQ.3
θJA
FDP16AN08A0 / FDB16AN08A0
In using surface mount devices such as the TO-263 package, the environment in which it is applied will have a significant influence on the parts current and maximum power d issipati on rating s. Precise d etermin ation of P comple x and influenced by many factors:
DM
is
1. Mou nting pad area ont o which the device is attached and whet her the re is copp er on one s ide or both side s of the board.
2. The number of copper layers and the thickness of the board.
3. The use of external heat sinks.
4. The use of thermal vias.
5. Air flow and board orientation.
6. For no n steady state applic ations, th e pulse widt h, the duty cycle and the transient thermal response of the part, the boa rd and the environment they are in.
Fairchild provides thermal information to assist the designers preliminary application evaluation. Figure 21 defines the R copper (component side) area. This is for a horizontally
for the device as a function of the top
θJA
positi on ed FR-4 board w ith 1oz co pp er af t er 1 0 0 0 se c onds of stea dy st ate pow er w ith n o air flow . Th is gr aph prov ides the necessary inf ormation for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice t hermal model or manu ally utilizing the no rmalized maximum transient thermal impedance curve.
20
1100.1
(0.645) (6.45) (64.5)
AREA, TOP COPPER AREA in2 (cm2)
Figure 21. Thermal Resistance vs Mounting
Pad Area
Therma l resi stances correspondi ng to other copper are as can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inch es squ are and equ ation 3 is for area in cent imeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads.
19.84
26.51
=
R
θJA
26.51
=
R
θJA
©2002 Fairchild Semiconductor Corporation FDP16AN08A0 / FDB1 6AN08A0 Rev. A1
-------------------------------------+
0.262 Area+()
Area in Iches Squared
128
----------------------------------+
1.69 Area+()
Area in Centimeters Squared
(EQ. 2)
(EQ. 3)
PSPICE Electrical Model
.SUBCKT FDB16AN08A0 2 1 3 ; rev March 2002 Ca 12 8 10e-10 Cb 15 14 8e-10 Cin 6 8 1.7e-9
Dbod y 7 5 DbodyMOD Dbreak 5 11 Db reakMOD Dplcap 10 5 DplcapMOD
Ebreak 11 7 17 18 85.40 Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg 6 10 6 8 1 Evthres 6 21 19 8 1 Evtemp 20 6 18 22 1
It 8 17 1 Lgat e 1 9 5.96e-9
Ldrain 2 5 1.0e -9 Lsource 3 7 5.75e-9
RLgate 1 9 59.6 RLdr ai n 2 5 10 RLsource 3 7 57.5
Mmed 16 6 8 8 M m edMOD Mstro 16 6 8 8 MstroMOD Mweak 16 21 8 8 MweakMOD
Rbreak 17 18 RbreakMOD 1 Rdrain 50 16 RdrainMOD 3.3e-3 Rgate 9 20 3.31 RSLC1 5 51 RSL CM OD 1e-6 RSLC2 5 50 1e3 Rsource 8 7 RsourceMOD 7e-3 Rvthres 22 8 RvthresMO D 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BM OD S2a 6 15 14 13 S2AM OD S2b 13 15 14 13 S2BM OD
Vbat 22 19 DC 1
GATE
1
LGATE
RLGATE
RGATE
9
CA
ESG
+
EVTEMP
+
-
18 22
20
S1A
12
13
8
S1B
EGS EDS
­6
8
13
10
RSLC2
6
14 13
+
+
6 8
-
-
DPLCAP
EVTHRES
+
19
8
S2A
S2B
15
CIN
CB
-
+
-
5
51
5
51
21
MSTRO
14
5 8
RSLC1
+
ESLC
­50
RDRAIN
16
8
MMED
DBREAK
EBREAK
MWEAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
FDP16AN08A0 / FDB16AN08A0
LDRAIN
RLDRAIN
11
+
17
DBODY
18
-
LSOURCE
7
RLSOURCE
RVTEMP 19
­VBAT
+
22
DRAIN
2
SOURCE
3
ESLC 51 50 VALUE = {(V(5,51)/ ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*200), 3))} .MODEL DbodyMOD D (IS=2.4E-11 N=1.08 RS=3.3e-3 TRS1=2.2e-3 TRS2=2.5e-9
+ CJO=1.2e-9 M= 5.6e-1 TT=1.3 e-8 XTI=3.9) .MODEL DbreakMOD D (RS= 1.5e-1 TRS1=1e-3 TRS2=-8.9e-6) .MODEL DplcapMOD D (CJO=5e-10 IS=1e-30 N=10 M=0.52)
.MODEL MmedMOD NMOS (VTO=3.2 KP=4 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=3.31) .MODEL Mstro M OD NMOS (VTO=3.85 K P =70 IS=1e-30 N=10 TOX = 1 L=1u W=1u) .MODEL MweakMOD NMOS (VTO=2.7 KP=0.06 IS=1e-30 N=10 TOX =1 L=1u W=1u RG=3.31e+1 RS=0.1)
.MODEL Rb reakMOD RES (T C1=9e-4 TC2=-5e-7) .MODEL Rd rai nMOD RES (TC 1=1.9e-2 TC2=4e-5) .MODEL RSLCMOD RES (TC1=1.5e-3 TC2=3e-5) .MODEL RsourceMOD RES (TC 1=1e-3 TC2=1e-6) .MODEL RvthresMOD RES (T C1=-5.3e-3 TC 2=-1.3e-5) .MODEL RvtempMOD RES (T C1=-2.7e-3 TC 2=1e-6) MODEL S1AMOD VSWITCH (RON=1e- 5 ROFF= 0. 1 VON=- 4 VOFF =-1 .5 ) .MODEL S1BMOD VSWITC H (RON= 1e- 5 ROFF = 0.1 VON= - 1.5 VO FF=- 4) .MODEL S2AMOD VSWITC H (RON= 1e- 5 ROFF = 0.1 VON= - 1 VOFF =.5) .MODEL S2BMOD VSWITC H (RON =1e - 5 ROFF= 0. 1 VON=.5 VOFF= - 1)
.ENDS Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, wri tten by Willia m J. Hepp and C. Frank Wheatley.
©2002 Fairchild Semiconductor Corporation FDP16AN08A0 / FDB1 6AN08A0 Rev. A1
SABER Electrical Model
rev March 20 02 template FDB 16AN08A0 n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl=2.4e-11,nl=1.08,rs=3.3e-3,trs1=2.2e-3,trs2=2.5e-9,cjo=1.2e-9,m=5.6e-1,tt=1.3e-8,xti=3.9) dp..model dbreakmod = (rs=1.5e-1,trs1=1e-3,trs2=-8.9e-6) dp..m odel dpl capmod = (cjo=5e-10,isl=10e-30,nl=10,m=0. 5 2) m..model mmedmod = (type=_n,vto=3.2,kp=4,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=3.85,kp=70,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=2.7,kp=0.06,is=1e-30, tox=1,rs=0.1) sw_vcsp.. mo del s1amod = (ron=1e-5,roff=0.1, von=-4,voff=-1.5) sw_vcsp.. mo del s1bmod = (ron=1e-5,roff=0.1, von=-1.5,voff =-4) sw_vcsp.. mo del s2amod = (ron=1e-5,roff=0.1, von=-1,voff=. 5) sw_vcsp.. mo del s2bmod = (ron=1e-5,roff=0.1, von=.5,voff=- 1) c.ca n12 n8 = 10e-10 c.cb n15 n14 = 8e- 10 c.cin n6 n8 = 1.7e -9
dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplca pm od
spe.ebreak n11 n7 n17 n18 = 85.40 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1
GATE
1
LGATE
RLGATE
RGATE
9
EVTEMP +
20
spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1
i.it n8 n17 = 1 l.lgate n1 n9 = 5.96e-9
l.ldrain n2 n5 = 1.0e-9 l.lsource n3 n7 = 5.75e-9
res.rlgate n1 n9 = 59.6
CA
S1A
12
S1B
res.rldrai n n2 n5 = 10 res.rlsource n3 n7 = 57.5
m.mmed n16 n6 n8 n8 = m odel=mmedm od, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=ms trongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mwea kmod, l=1u, w=1u
ESG
18 22
DPLCAP
10
RSLC2
­6
8
EVTHRES
+
+
19
8
6
-
S2A
13
14
8
13
S2B
13
+
+
6
EGS EDS
8
-
-
15
CIN
CB
-
+
-
5
MSTRO
14
5 8
RSLC1
51
ISCL
50 RDRAIN
16
21
8
MMED
8
DBREAK
11
MWEAK
EBREAK
+
-
RSOURCE
RBREAK
17 18
IT
RVTHRES
17 18
7
RVTEMP 19
-
+
22
RLDRAIN
DBODY
LSOURCE
RLSOURCE
VBAT
LDRAIN
DRAIN
2
SOURCE
3
FDP16AN08A0 / FDB16AN08A0
res.rbreak n17 n18 = 1, tc1=9e-4,tc 2=-5e-7 res.rdrain n50 n16 = 3.3e-3, tc1=1.9e-2,tc2= 4e-5 res.rgate n9 n20 = 3.31 res.rslc1 n5 n51 = 1e-6, tc1=1.5e-3,tc2=3e- 5 res.rslc2 n5 n50 = 1e3 res.rsour ce n8 n7 = 7e-3, tc1=1e- 3,tc2=1e-6 res.rvthres n22 n8 = 1, tc1=-5.3e-3,tc2=-1.3e-5 res.rvtemp n18 n19 = 1, tc1=-2.7e-3,tc2=1e-6 sw_vcsp.s1 a n6 n12 n13 n8 = model= s1amod sw_vcsp.s1 b n13 n12 n13 n8 = model =s1bmod sw_vcsp.s2 a n6 n15 n14 n13 = model =s2amod sw_vcsp.s2 b n13 n15 n14 n13 = model =s2bmod
v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n 51))))*((abs(v(n5,n51)* 1e6/200))** 3)) } }
©2002 Fairchild Semiconductor Corporation FDP16AN08A0 / FDB1 6AN08A0 Rev. A1
FDP16AN08A0 / FDB16AN08A0
PSPICE Thermal Model
REV 23 March 2002 FDB16AN08A0T CTHERM1 t h 6 0.002
CTHERM2 6 5 0. 004 CTHERM3 5 4 0. 006 CTHERM4 4 3 0. 01 CTHERM5 3 2 0. 03 CTHERM6 2 t l 0 .08
RTHERM1 t h 6 0.075 RTHERM2 6 5 0. 09 RTHERM3 5 4 0. 1 RTHERM4 4 3 0. 15 RTHERM5 3 2 0. 2 RTHERM6 2 t l 0 .25
SABER Thermal Model
SABER ther m al m odel F DD16AN08A0T template thermal_model th tl thermal_ c th , tl { ctherm.ctherm1 t h 6 = 0.002 ctherm.ctherm2 6 5 = 0.004 ctherm.ctherm3 5 4 = 0.006 ctherm.ctherm4 4 3 = 0.01 ctherm.ctherm5 3 2 = 0.03 ctherm.ctherm6 2 tl = 0.08
rtherm.rth erm1 th 6 = 0.075 rtherm.rt herm2 6 5 = 0.09 rtherm.rt herm3 5 4 = 0.1 rtherm.rt herm4 4 3 = 0.15 rtherm.rt herm5 3 2 = 0.2 rtherm.rt he rm6 2 tl = 0.25 }
RTHERM1
RTHERM2
RTHERM3
RTHERM4
RTHERM5
JUNCTION
th
CTHERM1
6
CTHERM2
5
CTHERM3
4
CTHERM4
3
CTHERM5
RTHERM6
2
CTHERM6
CASE
tl
©2002 Fairchild Semiconductor Corporation FDP16AN08A0 / FDB1 6AN08A0 Rev. A1
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DOME™ EcoSPARK™ E2CMOS EnSigna
TM
TM
FACT™ FACT Quiet Series™ FAST
FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ I2C™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™
OPTOLOGIC
OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerTrench
QFET™ QS™ QT Optoelectronics™ Quiet Series™ SILENT SWITCHER
SMART START™ SPM™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™
UltraFET
VCX™
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
PRODUCT STATUS DEFINITIONS Definition of Terms
Datasheet Identification Product Status Definition
Advance Information
Preliminary
No Identification Needed
Formative or In Design
First Production
Full Production
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or
effectiveness.
This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
Rev. H7
Loading...