ESAB PMC-91 Plasmarc System Instruction manual

PMC-91 PlasMarC systeM
Mechanized Plasma Cutting and Marking with PT-600, PT-19XLS or PT-36
Instruction Manual
0558008059 05 / 2008
BE SURE THIS INFORMATION REACHES THE OPERATOR.
YOU CAN GET EXTRA COPIES THROUGH YOUR SUPPLIER.
CAUTION
These INSTRUCTIONS are for experienced operators. If you are not fully familiar with the principles of operation and safe practices for arc welding and cutting equipment, we urge you to read our booklet, “Precautions and Safe Practices for Arc Welding, Cutting, and Gouging,” Form 52-529. Do NOT permit untrained persons to install, operate, or maintain this equipment. Do NOT attempt to install or operate this equipment until you have read and fully understand these instructions. If you do not fully understand these instructions, contact your supplier for further information. Be sure to read the Safety Precautions be­fore installing or operating this equipment.
USER RESPONSIBILITY
This equipment will perform in conformity with the description thereof contained in this manual and accompa­nying labels and/or inserts when installed, operated, maintained and repaired in accordance with the instruc­tions provided. This equipment must be checked periodically. Malfunctioning or poorly maintained equipment should not be used. Parts that are broken, missing, worn, distorted or contaminated should be replaced imme­diately. Should such repair or replacement become necessary, the manufacturer recommends that a telephone or written request for service advice be made to the Authorized Distributor from whom it was purchased.
This equipment or any of its parts should not be altered without the prior written approval of the manufacturer. The user of this equipment shall have the sole responsibility for any malfunction which results from improper use, faulty maintenance, damage, improper repair or alteration by anyone other than the manufacturer or a ser­vice facility designated by the manufacturer.
READ AND UNDERSTAND THE INSTRUCTION MANUAL BEFORE INSTALLING OR OPERATING.
PROTECT YOURSELF AND OTHERS!
TABLE OF CONTENTS
Section / Title Page
1.0 Safety Precautions ....................................................................................5
1.1 Safety - English .................................................................................5
1.2 Safety - Spanish.................................................................................9
1.3 Safety - French.................................................................................13
2.0 Introduction .........................................................................................17
2.1 General ........................................................................................17
2.2 Features .......................................................................................17
2.3 Component Description........................................................................18
3.0 Installation.......................................................................................... 25
3.1 System Component Locations.................................................................. 25
3.2 System Connections ........................................................................... 26
3.3 Torch Components ............................................................................ 34
3.4 Installing Air Curtain ........................................................................... 38
3.5 Water Muer Installation ...................................................................... 39
3.6 Air Curtain / Water Muer Control Box Installation.............................................. 40
4.0 Operation - Cutting ..................................................................................41
4.1 Controls and Indicators .........................................................................41
4.2 Pre-Operation Test / Checkout ................................................................. 46
4.3 Operating Techniques ......................................................................... 50
5.0 Operation - Marking..................................................................................55
5.1 Pre-Operation Test and Checkout ...............................................................55
5.2 Marking and Cutting Procedure ................................................................ 56
6.0 Troubleshooting .................................................................................... 57
6.1 Programmable Logic Controller (PLC)........................................................... 57
6.2 Sequence Description.......................................................................... 58
6.3 Operating Information .........................................................................60
6.4 Troubleshooting Guide .........................................................................61
WARNING
PLASMA CUTTING WITH GAS MIXTURES CONTAINING HYDROGEN (H) OR METHANE (CH4) CAN RESULT IN AN EXPLOSION.
FAILURE TO COMPLY WITH THE INFORMATION LISTED BELOW CAN RESULT IN DEATH, SEVERE PERSONAL INJURY OR SERIOUS EQUIPMENT DAMAGE.
HYDROGEN OR METHANE GAS MIXTURES SHOULD NEVER BE USED FOR PLASMA CUTTING UNDERWATER.
CUTTING WITH COMBUSTIBLE GAS MIXTURES OVER A WATER TABLE CAN RESULT IN THE AC­CUMULATION OF EXPLOSIVE GAS POCKETS BETWEEN THE CUTTING TABLE AND THE WORK PIECE. THESE POCKETS WILL EXPLODE WHEN IGNITED BY SPARKS FROM THE PLASMA ARC.
TO REDUCE, BUT NOT ELIMINATE, THE POSSIBILITY OF AN EXPLOSION THE FOLLOWING PRE­CAUTIONS SHOULD BE TAKEN:
LOWER WATER LEVEL IN THE WATER TABLE 4 TO 6 INCHES (100 TO 150MM) BELOW THE • WORK PIECE.
BEFORE CUTTING, BE AWARE OF POSSIBLE EXPLOSIVE GAS SOURCES IN THE WATER TA-• BLE SUCH AS MOLTEN METAL REACTION, SLOW CHEMICAL REACTION AND SOME PLAS­MA GASES.
CLEAN SLAG (ESPECIALLY FINE PARTICLES) FROM BOTTOM OF TABLE FREQUENTLY. RE-• FILL TABLE WITH CLEAN WATER.
DO NOT LEAVE WORK PIECE ON TABLE OVERNIGHT.•
IF WATER TABLE HAS NOT BEEN USED FOR SEVERAL HOURS, VIBRATE OR JOLT IT TO • BREAK UP GAS POCKETS BEFORE LAYING WORK PIECE ON THE TABLE.
IF POSSIBLE, CHANGE WATER LEVEL BETWEEN CUTS TO BREAK UP GAS POCKETS.•
MAINTAIN WATER PH LEVEL NEAR 7 (NEUTRAL).•
PROGRAMMED PART SPACING SHOULD BE A MINIMUM OF TWICE THE KERF WIDTH TO • ENSURE MATERIAL IS ALWAYS UNDER THE KERF.
FANS SHOULD BE USED TO CIRCULATE AIR BETWEEN WORK PIECE AND WATER SURFACE. • A TABLE WATER AERATION SYSTEM SHOULD ALSO BE USED.
4
SECTION 1 SAFETY PRECAUTIONS
1.0 Safety Precautions
WARNING: These Safety Precautions are
for your protection. They summarize pre­cautionary information from the references
listed in Additional Safety Information sec­tion. Before performing any installation or operating procedures, be sure to read and follow the safety precau­tions listed below as well as all other manuals, material safety data sheets, labels, etc. Failure to observe Safety Precautions can result in injury or death.
PROTECT YOURSELF AND OTHERS -­Some welding, cutting, and gouging processes are noisy and require ear protection. The arc, like the sun, emits
ultraviolet (UV) and other radiation and can injure skin and eyes. Hot metal can cause burns. Training in the proper use of the processes and equipment is essential to prevent accidents. Therefore:
1. Always wear safety glasses with side shields in any
work area, even if welding helmets, face shields, and goggles are also required.
2. Use a face shield tted with the correct lter and
cover plates to protect your eyes, face, neck, and ears from sparks and rays of the arc when operating or observing operations. Warn bystanders not to watch the arc and not to expose themselves to the rays of the electric-arc or hot metal.
3. Wear ameproof gauntlet type gloves, Thick long-
sleeve shirt, cuess trousers, high-topped shoes, and a welding helmet or cap for hair protection, to protect against arc rays and hot sparks or hot metal. A ameproof apron may also be desirable as protec­tion against radiated heat and sparks.
4. Hot sparks or metal can lodge in rolled up sleeves,
trouser cus, or pockets. Sleeves and collars should be kept buttoned, and open pockets eliminated from the front of clothing.
5. Protect other personnel from arc rays and hot
sparks with a suitable non-ammable partition or curtains.
6. Use goggles over safety glasses when chipping slag
or grinding. Chipped slag may be hot and can y far. Bystanders should also wear goggles over safety glasses.

1.1 Safety - English

FIRES AND EXPLOSIONS -- Heat from ames and arcs can start res. Hot slag or sparks can also cause res and explosions. Therefore:
1. Remove all combustible materials well away from the work area or cover the materials with a protec­tive non-ammable covering. Combustible materials include wood, cloth, sawdust, liquid and gas fuels, solvents, paints and coatings, paper, etc.
2. Hot sparks or hot metal can fall through cracks or crevices in oors or wall openings and cause a hid­den smoldering re or res on the oor below. Make certain that such openings are protected from hot sparks and metal.“
3. Do not weld, cut or perform other hot work until the workpiece has been completely cleaned so that there are no substances on the workpiece which might produce ammable or toxic vapors. Do not do hot work on closed containers. They may explode.
4. Have re extinguishing equipment handy for instant use, such as a garden hose, water pail, sand bucket, or portable re extinguisher. Be sure you are trained in its use.
5. Do not use equipment beyond its ratings. For ex­ample, overloaded welding cable can overheat and create a re hazard.
6. After completing operations, inspect the work area to make certain there are no hot sparks or hot metal which could cause a later re. Use re watchers when necessary.
7. For additional information, refer to NFPA Standard 51B, "Fire Prevention in Use of Cutting and Welding Processes", available from the National Fire Protec­tion Association, Batterymarch Park, Quincy, MA
02269.
ELECTRICAL SHOCK -- Contact with live electrical parts and ground can cause severe injury or death. DO NOT use AC welding current in damp areas, if movement is conned, or if there is danger of falling.
5
SECTION 1 SAFETY PRECAUTIONS
1. Be sure the power source frame (chassis) is con­nected to the ground system of the input power.
2. Connect the workpiece to a good electrical ground.
3. Connect the work cable to the workpiece. A poor or missing connection can expose you or others to a fatal shock.
4. Use well-maintained equipment. Replace worn or damaged cables.
5. Keep everything dry, including clothing, work area, cables, torch/electrode holder, and power source.
6. Make sure that all parts of your body are insulated from work and from ground.
7. Do not stand directly on metal or the earth while working in tight quarters or a damp area; stand on dry boards or an insulating platform and wear rubber-soled shoes.
8. Put on dry, hole-free gloves before turning on the power.
3. Welders should use the following procedures to minimize exposure to EMF:
A. Route the electrode and work cables together.
Secure them with tape when possible.
B. Never coil the torch or work cable around your
body.
C. Do not place your body between the torch and
work cables. Route cables on the same side of your body.
D. Connect the work cable to the workpiece as close
as possible to the area being welded.
E. Keep welding power source and cables as far
away from your body as possible.
FUMES AND GASES -- Fumes and gases, can cause discomfort or harm, particularly in conned spaces. Do not breathe fumes and gases. Shield­ing gases can cause asphyxiation.
Therefore:
9. Turn o the power before removing your gloves.
10. Refer to ANSI/ASC Standard Z49.1 (listed on next page) for specic grounding recommenda­tions. Do not mistake the work lead for a ground cable.
ELECTRIC AND MAGNETIC FIELDS — May be dangerous. Electric cur­rent owing through any conduc­tor causes localized Electric and
Magnetic Fields (EMF). Welding and cutting current creates EMF around welding cables and welding machines. Therefore:
1. Welders having pacemakers should consult their
physician before welding. EMF may interfere with some pacemakers.
2. Exposure to EMF may have other health eects which
are unknown.
1. Always provide adequate ventilation in the work area by natural or mechanical means. Do not weld, cut, or gouge on materials such as galvanized steel, stain­less steel, copper, zinc, lead, beryllium, or cadmium unless positive mechanical ventilation is provided. Do not breathe fumes from these materials.
2. Do not operate near degreasing and spraying opera­tions. The heat or arc rays can react with chlorinated hydrocarbon vapors to form phosgene, a highly toxic gas, and other irritant gases.
3. If you develop momentary eye, nose, or throat ir­ritation while operating, this is an indication that ventilation is not adequate. Stop work and take necessary steps to improve ventilation in the work area. Do not continue to operate if physical discom­fort persists.
4. Refer to ANSI/ASC Standard Z49.1 (see listing below) for specic ventilation recommendations.
6
SECTION 1 SAFETY PRECAUTIONS
5. WARNING: This product, when used for welding or cutting, produces fumes or gases which contain chemicals known to the State of California to cause birth defects and, in some cases, cancer. (California Health & Safety Code
§25249.5 et seq.)
CYLINDER HANDLING -- Cylinders, if mishandled, can rupture and vio­lently release gas. Sudden rupture of cylinder, valve, or relief device can injure or kill. Therefore:
1. Use the proper gas for the process and use the
proper pressure reducing regulator designed to operate from the compressed gas cylinder. Do not use adaptors. Maintain hoses and ttings in good condition. Follow manufacturer's operating instruc­tions for mounting regulator to a compressed gas cylinder.
1. Always have qualied personnel perform the instal­lation, troubleshooting, and maintenance work. Do not perform any electrical work unless you are qualied to perform such work.
2. Before performing any maintenance work inside a power source, disconnect the power source from the incoming electrical power.
3. Maintain cables, grounding wire, connections, power cord, and power supply in safe working order. Do not operate any equipment in faulty condition.
4. Do not abuse any equipment or accessories. Keep equipment away from heat sources such as furnaces, wet conditions such as water puddles, oil or grease, corrosive atmospheres and inclement weather.
5. Keep all safety devices and cabinet covers in position and in good repair.
6. Use equipment only for its intended purpose. Do not modify it in any manner.
2. Always secure cylinders in an upright position by chain or strap to suitable hand trucks, undercar­riages, benches, walls, post, or racks. Never secure cylinders to work tables or xtures where they may become part of an electrical circuit.
3. When not in use, keep cylinder valves closed. Have valve protection cap in place if regulator is not con­nected. Secure and move cylinders by using suitable hand trucks. Avoid rough handling of cylinders.
4. Locate cylinders away from heat, sparks, and ames. Never strike an arc on a cylinder.
5. For additional information, refer to CGA Standard P-1, "Precautions for Safe Handling of Compressed Gases in Cylinders", which is available from Compressed Gas Association, 1235 Jeerson Davis Highway, Arlington, VA 22202.
EQUIPMENT MAINTENANCE -- Faulty or improperly maintained equipment can cause injury or death. Therefore:
ADDITIONAL SAFETY INFORMATION -- For more information on safe practices for
electric arc welding and cutting equip­ment, ask your supplier for a copy of "Precautions and Safe Practices for Arc Welding, Cutting and Gouging", Form 52-529.
The following publications, which are available from the American Welding Society, 550 N.W. LeJuene Road, Miami, FL 33126, are recommended to you:
1. ANSI/ASC Z49.1 - "Safety in Welding and Cutting"
2. AWS C5.1 - "Recommended Practices for Plasma Arc Welding"
3. AWS C5.2 - "Recommended Practices for Plasma Arc Cutting"
4. AWS C5.3 - "Recommended Practices for Air Carbon Arc Gouging and Cutting"
7
SECTION 1 SAFETY PRECAUTIONS
5. AWS C5.5 - "Recommended Practices for Gas Tung­sten Arc Welding“
6. AWS C5.6 - "Recommended Practices for Gas Metal Arc Welding"“
7. AWS SP - "Safe Practices" - Reprint, Welding Hand­book.
8. ANSI/AWS F4.1, "Recommended Safe Practices for Welding and Cutting of Containers That Have Held Hazardous Substances."
MEANING OF SYMBOLS - As used throughout this manual: Means Atten­tion! Be Alert! Your safety is involved.
Means immediate hazards which, if not avoided, will result in im­mediate, serious personal injury or loss of life.
Means potential hazards which could result in personal injury or loss of life.
Means hazards which could result in minor personal injury.
8
SECCION 1 SEGURIDAD

1.2 Safety - Spanish

ADVERTENCIA: Estas Precauciones de Se-
guridad son para su protección. Ellas hacen
resumen de información proveniente de las referencias listadas en la sección "Información Adi­cional Sobre La Seguridad". Antes de hacer cualquier instalación o procedimiento de operación , asegúrese de leer y seguir las precauciones de seguridad listadas a continuación así como también todo manual, hoja de datos de seguridad del material, calcomanias, etc. El no observar las Precauciones de Seguridad puede resultar en daño a la persona o muerte.
PROTEJASE USTED Y A LOS DEMAS-­Algunos procesos de soldadura, corte y ranurado son ruidosos y requiren protección para los oídos. El arco,
como el sol , emite rayos ultravioleta (UV) y otras radiaciones que pueden dañar la piel y los ojos. El metal caliente causa quemaduras. EL entrenamiento en el uso propio de los equipos y sus procesos es esencial para prevenir accidentes. Por lo tanto:
1. Utilice gafas de seguridad con protección a los lados
siempre que esté en el área de trabajo, aún cuando esté usando careta de soldar, protector para su cara u otro tipo de protección.
2. Use una careta que tenga el ltro correcto y lente
para proteger sus ojos, cara, cuello, y oídos de las chispas y rayos del arco cuando se esté operando y observando las operaciones. Alerte a todas las per­sonas cercanas de no mirar el arco y no exponerse a los rayos del arco eléctrico o el metal fundido.
3. Use guantes de cuero a prueba de fuego, camisa
pesada de mangas largas, pantalón de ruedo liso, zapato alto al tobillo, y careta de soldar con capucha para el pelo, para proteger el cuerpo de los rayos y chispas calientes provenientes del metal fundido. En ocaciones un delantal a prueba de fuego es necesario para protegerse del calor radiado y las chispas.
4. Chispas y partículas de metal caliente puede alojarse
en las mangas enrolladas de la camisa , el ruedo del pantalón o los bolsillos. Mangas y cuellos deberán mantenerse abotonados, bolsillos al frente de la camisa deberán ser cerrados o eliminados.
5. Proteja a otras personas de los rayos del arco y chis-
pas calientes con una cortina adecuada no-amable como división.
6. Use careta protectora además de sus gafas de segu-
ridad cuando esté removiendo escoria o puliendo.
La escoria puede estar caliente y desprenderse con velocidad. Personas cercanas deberán usar gafas de seguridad y careta protectora.
FUEGO Y EXPLOSIONES -- El calor de las amas y el arco pueden ocacionar fuegos. Escoria caliente y las chispas pueden causar fuegos y explosiones. Por lo tanto:
1. Remueva todo material combustible lejos del área de trabajo o cubra los materiales con una cobija a prueba de fuego. Materiales combustibles incluyen madera, ropa, líquidos y gases amables, solventes, pinturas, papel, etc.
2. Chispas y partículas de metal pueden introducirse en las grietas y agujeros de pisos y paredes causando fuegos escondidos en otros niveles o espacios. Asegúrese de que toda grieta y agujero esté cubierto para proteger lugares adyacentes contra fuegos.
3. No corte, suelde o haga cualquier otro trabajo relacionado hasta que la pieza de trabajo esté to­talmente limpia y libre de substancias que puedan producir gases inamables o vapores tóxicos. No trabaje dentro o fuera de contenedores o tanques cerrados. Estos pueden explotar si contienen vapores inamables.
4. Tenga siempre a la mano equipo extintor de fu­ego para uso instantáneo, como por ejemplo una manguera con agua, cubeta con agua, cubeta con arena, o extintor portátil. Asegúrese que usted esta entrenado para su uso.
5. No use el equipo fuera de su rango de operación. Por ejemplo, el calor causado por cable sobrecarga en los cables de soldar pueden ocasionar un fuego.
6. Después de termirar la operación del equipo, inspec­cione el área de trabajo para cerciorarse de que las chispas o metal caliente ocasionen un fuego más tarde. Tenga personal asignado para vigilar si es necesario.
7. Para información adicional , haga referencia a la publicación NFPA Standard 51B, "Fire Prevention in Use of Cutting and Welding Processes", disponible a través de la National Fire Protection Association, Batterymarch Park, Quincy, MA 02269.
CHOQUE ELECTRICO -- El contacto con las partes eléctricas energizadas y tierra puede causar daño severo o muerte. NO use soldadura de corri-
ente alterna (AC) en áreas húmedas, de movimiento connado en lugares estrechos o si hay posibilidad de caer al suelo.
9
SECCION 1 SEGURIDAD
1. Asegúrese de que el chasis de la fuente de poder esté conectado a tierra através del sistema de electricidad primario.
2. Conecte la pieza de trabajo a un buen sistema de tierra física.
3. Conecte el cable de retorno a la pieza de trabajo. Cables y conductores expuestos o con malas conexiones pueden exponer al operador u otras personas a un choque eléctrico fatal.
4. Use el equipo solamente si está en buenas condi­ciones. Reemplaze cables rotos, dañados o con conductores expuestos.
5. Mantenga todo seco, incluyendo su ropa, el área de trabajo, los cables, antorchas, pinza del electrodo, y la fuente de poder.
6. Asegúrese que todas las partes de su cuerpo están insuladas de ambos, la pieza de trabajo y tierra.
7. No se pare directamente sobre metal o tierra mien­tras trabaja en lugares estrechos o áreas húmedas; trabaje sobre un pedazo de madera seco o una plataforma insulada y use zapatos con suela de goma.
8. Use guantes secos y sin agujeros antes de energizar el equipo.
9. Apage el equipo antes de quitarse sus guantes.
10. Use como referencia la publicación ANSI/ASC Standard Z49.1 (listado en la próxima página) para recomendaciones especícas de como conectar el equipo a tierra. No confunda el cable de soldar a la pieza de trabajo con el cable a tierra.
CAMPOS ELECTRICOS Y MAGNETI­COS - Son peligrosos. La corriente eléctrica uye através de cualquier conductor causando a nivel local
Campos Eléctricos y Magnéticos (EMF). Las corrientes en el área de corte y soldadura, crean EMF alrrededor de los cables de soldar y las maquinas. Por lo tanto:
1. Soldadores u Operadores que use marca-pasos para
el corazón deberán consultar a su médico antes de soldar. El Campo Electromagnético (EMF) puede interferir con algunos marca-pasos.
2. Exponerse a campos electromagnéticos (EMF) puede
causar otros efectos de salud aún desconocidos.
3. Los soldadores deberán usar los siguientes proced­imientos para minimizar exponerse al EMF:
A. Mantenga el electrodo y el cable a la pieza de
trabajo juntos, hasta llegar a la pieza que usted quiere soldar. Asegúrelos uno junto al otro con cinta adhesiva cuando sea posible.
B. Nunca envuelva los cables de soldar alrededor
de su cuerpo.
C. Nunca ubique su cuerpo entre la antorcha y el
cable, a la pieza de trabajo. Mantega los cables a un sólo lado de su cuerpo.
D. Conecte el cable de trabajo a la pieza de trabajo
lo más cercano posible al área de la soldadura.
E. Mantenga la fuente de poder y los cables de soldar
lo más lejos posible de su cuerpo.
HUMO Y GASES -- El humo y los gases, pueden causar malestar o daño, particularmente en espacios
sin ventilación. No inhale el humo
o gases. El gas de protección puede causar falta de oxígeno. Por lo tanto:
1. Siempre provea ventilación adecuada en el área
de trabajo por medio natural o mecánico. No solde, corte, o ranure materiales con hierro galvanizado, acero inoxidable, cobre, zinc, plomo, berílio, o cad­mio a menos que provea ventilación mecánica positiva . No respire los gases producidos por estos materiales.
2. No opere cerca de lugares donde se aplique sub-
stancias químicas en aerosol. El calor de los rayos del arco pueden reaccionar con los vapores de hidrocarburo clorinado para formar un fosfógeno, o gas tóxico, y otros irritant es.
3. Si momentáneamente desarrolla inrritación de
ojos, nariz o garganta mientras est á operando, es indicación de que la ventilación no es apropiada. Pare de trabajar y tome las medidas necesarias para mejorar la ventilación en el área de trabajo. No continúe operando si el malestar físico per­siste.
4. Haga referencia a la publicación ANSI/ASC Standard
Z49.1 (Vea la lista a continuación) para recomen­daciones especícas en la ventilación.
10
SECCION 1 SEGURIDAD
5. ADVERTENCIA-- Este producto cuando se uti­liza para soldaduras o cortes, produce humos o gases, los cuales contienen químicos conocidos por el Estado de Cali­fornia de causar defectos en el nacimiento, o en algunos casos, Cancer. (California Health & Safety Code §25249.5 et seq.)
MANEJO DE CILINDROS-- Los
cilindros, si no son manejados correctamente, pueden romp­erse y liberar violentamente gases. Rotura repentina del cilindro, válvula, o válvula de escape puede causar daño o muerte. Por lo tanto:
1. Utilize el gas apropiado para el proceso y utilize
un regulador diseñado para operar y reducir la presión del cilindro de gas . No utilice adapta­dores. Mantenga las mangueras y las conexiones en buenas condiciones. Observe las instrucciones de operación del manufacturero para montar el regulador en el cilindro de gas comprimido.
2. Asegure siempre los cilindros en posición vertical
y amárrelos con una correa o cadena adecuada para asegurar el cilindro al carro, transportes, tablil­leros, paredes, postes, o armazón. Nunca asegure los cilindros a la mesa de trabajo o las piezas que son parte del circuito de soldadura . Este puede ser parte del circuito elélectrico.
3. Cuando el cilindro no está en uso, mantenga la
válvula del cilindro cerrada. Ponga el capote de protección sobre la válvula si el regulador no está conectado. Asegure y mueva los cilindros utilizando un carro o transporte adecuado. Evite el manejo brusco de los
1. Siempre tenga personal cualicado para efec­tuar l a instalación, diagnóstico, y mantenimiento del equipo. No ejecute ningún trabajo eléctrico a menos que usted esté cualicado para hacer el trabajo.
2. Antes de dar mantenimiento en el interior de la fuente de poder, desconecte la fuente de poder del suministro de electricidad primaria.
3. Mantenga los cables, cable a tierra, conexciones, cable primario, y cualquier otra fuente de poder en buen estado operacional. No opere ningún equipo en malas condiciones.
4. No abuse del equipo y sus accesorios. Mantenga el equipo lejos de cosas que generen calor como hornos, también lugares húmedos como charcos de agua , aceite o grasa, atmósferas corrosivas y las inclemencias del tiempo.
5. Mantenga todos los artículos de seguridad y coverturas del equipo en su posición y en buenas condiciones.
6. Use el equipo sólo para el propósito que fue diseñado. No modique el equipo en ninguna manera.
INFORMACION ADICIONAL DE SEGURI­DAD -- Para más información sobre las prácticas de seguridad de los equipos de arco eléctrico para soldar y cortar, pregunte a su suplidor por una copia de "Precautions and Safe Practices for Arc Welding, Cutting and Gouging-Form 52-529.
Las siguientes publicaciones, disponibles através de la American Welding Society, 550 N.W. LeJuene Road, Miami, FL 33126, son recomendadas para usted:
1. ANSI/ASC Z49.1 - "Safety in Welding and Cutting"
2. AWS C5.1 - "Recommended Practices for Plasma Arc Welding"
MANTENIMIENTO DEL EQUIPO -- Equipo defectuoso o mal mantenido puede causar daño o muerte. Por lo tanto:
3. AWS C5.2 - "Recommended Practices for Plasma Arc Cutting"
4. AWS C5.3 - "Recommended Practices for Air Carbon Arc Gouging and Cutting"
11
SECCION 1 SEGURIDAD
SIGNIFICADO DE LOS SIMBOLOS
-- Según usted avanza en la lectura de este folleto: Los Símbolos Sig­nican ¡Atención! ¡Esté Alerta! Se trata de su seguridad.
Signica riesgo inmediato que, de no ser evadido, puede resultar inmediatamente en serio daño personal o la muerte.
Signica el riesgo de un peligro potencial que puede resultar en serio daño personal o la muerte.
Signica el posible riesgo que puede resultar en menores daños a la persona.
12
SECTION 1 SÉCURITÉ

1.3 Safety - French

AVERTISSEMENT : Ces règles de sécurité
ont pour but d'assurer votre protection. Ils récapitulent les informations de précaution
provenant des références dans la section des Informations de sécurité supplémentaires. Avant de procéder à l'installation ou d'utiliser l'unité, assurez­vous de lire et de suivre les précautions de sécurité ci­dessous, dans les manuels, les ches d'information sur la sécurité du matériel et sur les étiquettes, etc. Tout défaut d'observer ces précautions de sécurité peut entraîner des blessures graves ou mortelles.
PROTÉGEZ-VOUS -- Les processus de soudage, de coupage et de gougeage
produisent un niveau de bruit élevé et exige l'emploi d'une protection auditive. L'arc, tout comme le soleil, émet des rayons ultraviolets en plus d'autre rayons qui peuvent causer des blessures à la peau et les yeux. Le métal incandescent peut causer des brûlures. Une formation reliée à l'usage des processus et de l'équipement est essentielle pour prévenir les accidents. Par conséquent:
1. Portez des lunettes protectrices munies d'écrans la-
téraux lorsque vous êtes dans l'aire de travail, même si vous devez porter un casque de soudeur, un écran facial ou des lunettes étanches.
2. Portez un écran facial muni de verres ltrants et de
plaques protectrices appropriées an de protéger vos yeux, votre visage, votre cou et vos oreilles des étincelles et des rayons de l'arc lors d'une opération ou lorsque vous observez une opération. Avertissez les personnes se trouvant à proximité de ne pas re­garder l'arc et de ne pas s'exposer aux rayons de l'arc électrique ou le métal incandescent.
3. Portez des gants ignifugiés à crispin, une chemise
épaisse à manches longues, des pantalons sans rebord et des chaussures montantes an de vous protéger des rayons de l'arc, des étincelles et du métal incandescent, en plus d'un casque de soudeur ou casquette pour protéger vos cheveux. Il est également recommandé de porter un tablier ininammable an de vous proté­ger des étincelles et de la chaleur par rayonnement.
4. Les étincelles et les projections de métal incandescent
risquent de se loger dans les manches retroussées, les rebords de pantalons ou les poches. Il est recom­mandé de garder boutonnés le col et les manches et de porter des vêtements sans poches en avant.
5. Protégez toute personne se trouvant à proximité des
étincelles et des rayons de l'arc à l'aide d'un rideau ou d'une cloison ininammable.
6. Portez des lunettes étanches par dessus vos lunettes
de sécurité lors des opérations d'écaillage ou de meulage du laitier. Les écailles de laitier incandescent peuvent être projetées à des distances considérables. L es p er so n ne s se tr o uv an t à p r ox im it é do ive nt é ga l e­ment porter des lunettes étanches par dessus leur lunettes de sécurité.
INCENDIES ET EXPLOSIONS -- La chaleur provenant des ammes ou de l'arc peut provoquer un incendie. Le laitier incandescent ou les étincelles
peuvent également provoquer un
incendie ou une explosion. Par conséquent :
1. Éloignez susamment tous les matériaux combus­tibles de l'aire de travail et recouvrez les matériaux avec un revêtement protecteur ininammable. Les matériaux combustibles incluent le bois, les vête­ments, la sciure, le gaz et les liquides combustibles, les solvants, les peintures et les revêtements, le papier, etc.
2. Les étincelles et les projections de métal incan­descent peuvent tomber dans les ssures dans les planchers ou dans les ouvertures des murs et déclencher un incendie couvant à l'étage inférieur Assurez-vous que ces ouvertures sont bien protégées des étincelles et du métal incandescent.
3. N'exécutez pas de soudure, de coupe ou autre tra­vail à chaud avant d'avoir complètement nettoyé la surface de la pièce à traiter de façon à ce qu'il n'ait aucune substance présente qui pourrait produire des vapeurs inammables ou toxiques. N'exécutez pas de travail à chaud sur des contenants fermés car ces derniers pourraient exploser.
4. Assurez-vous qu'un équipement d'extinction d'incendie est disponible et prêt à servir, tel qu'un tuyau d'arrosage, un seau d'eau, un seau de sable ou un extincteur portatif. Assurez-vous d'être bien instruit par rapport à l'usage de cet équipement.
5. Assurez-vous de ne pas excéder la capacité de l'équipement. Par exemple, un câble de soudage surchargé peut surchauer et provoquer un in­cendie.
6. Une fois les opérations terminées, inspectez l'aire de travail pour assurer qu'aucune étincelle ou projec­tion de métal incandescent ne risque de provoquer un incendie ultérieurement. Employez des guetteurs d'incendie au besoin.
7. Pour obtenir des informations supplémentaires, consultez le NFPA Standard 51B, "Fire Prevention in Use of Cutting and Welding Processes", disponible au National Fire Protection Association, Batterymarch Park, Quincy, MA 02269.
CHOC ÉLECTRIQUE -- Le contact avec des pièces électriques ou les pièces de mise à la terre sous tension peut causer des blessures graves ou mor-
telles. NE PAS utiliser un courant de soudage c.a. dans un endroit humide, en espace restreint ou si un danger de chute se pose.
13
SECTION 1 SÉCURITÉ
1. Assurez-vous que le châssis de la source d'alimentation est branché au système de mise à la terre de l'alimentation d'entrée.
2. Branchez la pièce à traiter à une bonne mise de terre électrique.
3. Branchez le câble de masse à la pièce à traiter et assurez une bonne connexion an d'éviter le risque de choc électrique mortel.
4. Utilisez toujours un équipement correctement entretenu. Remplacez les câbles usés ou endom­magés.
5. Veillez à garder votre environnement sec, incluant les vêtements, l'aire de travail, les câbles, le porte­électrode/torche et la source d'alimentation.
6. Assurez-vous que tout votre corps est bien isolé de la pièce à traiter et des pièces de la mise à la terre.
7. Si vous devez eectuer votre travail dans un espace restreint ou humide, ne tenez vous pas directe­ment sur le métal ou sur la terre; tenez-vous sur des planches sèches ou une plate-forme isolée et portez des chaussures à semelles de caoutchouc.
8. Avant de mettre l'équipement sous tension, isolez vos mains avec des gants secs et sans trous.
9. Mettez l'équipement hors tension avant d'enlever vos gants.
10. Consultez ANSI/ASC Standard Z49.1 (listé à la page suivante) pour des recommandations spéciques concernant les procédures de mise à la terre. Ne pas confondre le câble de masse avec le câble de mise à la terre.
CHAMPS ÉLECTRIQUES ET MAGNÉ­TIQUES — comportent un risque de danger. Le courant électrique qui passe dans n'importe quel conduc-
teur produit des champs électriques et magnétiques localisés. Le soudage et le cou­rant de coupage créent des champs électriques et magnétiques autour des câbles de soudage et l'équipement. Par conséquent :
1. Un soudeur ayant un stimulateur cardiaque doit
consulter son médecin avant d'entreprendre une opération de soudage. Les champs électriques et magnétiques peuvent causer des ennuis pour cer­tains stimulateurs cardiaques.
2. L'exposition à des champs électriques et magné-
tiques peut avoir des eets néfastes inconnus pour la santé.
3. Les soudeurs doivent suivre les procédures suivantes pour minimiser l'exposition aux champs électriques et magnétiques :
A. Acheminez l'électrode et les câbles de masse
ensemble. Fixez-les à l'aide d'une bande adhésive lorsque possible.
B. Ne jamais enrouler la torche ou le câble de masse
autour de votre corps.
C. Ne jamais vous placer entre la torche et les câbles
de masse. Acheminez tous les câbles sur le même côté de votre corps.
D. Branchez le câble de masse à la pièce à traiter le
plus près possible de la section à souder.
E. Veillez à garder la source d'alimentation pour le
soudage et les câbles à une distance appropriée de votre corps.
LES VAPEURS ET LES GAZ -- peuvent causer un malaise ou des dommages
corporels, plus particulièrement dans les espaces restreints. Ne re­spirez pas les vapeurs et les gaz. Le gaz de protection risque de causer l'asphyxie. Par conséquent :
1. Assurez en permanence une ventilation adéquate dans l'aire de travail en maintenant une ventila­tion naturelle ou à l'aide de moyens mécanique. N'effectuez jamais de travaux de soudage, de coupage ou de gougeage sur des matériaux tels que l'acier galvanisé, l'acier inoxydable, le cuivre, le zinc, le plomb, le berylliym ou le cadmium en l'absence de moyens mécaniques de ventilation ecaces. Ne respirez pas les vapeurs de ces matériaux.
2. N'eectuez jamais de travaux à proximité d'une opération de dégraissage ou de pulvérisation. Lor­sque la chaleur
ou le rayonnement de l'arc entre en contact avec les
vapeurs d'hydrocarbure chloré, ceci peut déclencher la formation de phosgène ou d'autres gaz irritants, tous extrêmement toxiques.
3. Une irritation momentanée des yeux, du nez ou de la gorge au cours d'une opération indique que la ven­tilation n'est pas adéquate. Cessez votre travail an de prendre les mesures nécessaires pour améliorer la ventilation dans l'aire de travail. Ne poursuivez pas l'opération si le malaise persiste.
4. Consultez ANSI/ASC Standard Z49.1 (à la page suivante) pour des recommandations spéciques concernant la ventilation.
14
SECTION 1 SÉCURITÉ
5. AVERTISSEMENT : Ce produit, lorsqu'il est utilisé dans une opération de soudage ou de coupage, dégage des vapeurs ou des gaz contenant des chimiques consid­éres par l'état de la Californie comme étant une cause des malformations congénitales et dans certains cas, du cancer. (California Health & Safety Code §25249.5 et seq.)
MANIPULATION DES CYLINDRES -­La manipulation d'un cylindre, sans observer les précautions nécessaires, peut produire des fissures et un
échappement dangereux des gaz. Une brisure soudaine du cylindre, de la soupape ou du dispositif de surpression peut causer des bles­sures graves ou mortelles. Par conséquent :
1. Utilisez toujours le gaz prévu pour une opération
et le détendeur approprié conçu pour utilisation sur les cylindres de gaz comprimé. N'utilisez jamais d'adaptateur. Maintenez en bon état les tuyaux et les raccords. Observez les instructions d'opération du fabricant pour assembler le détendeur sur un cylindre de gaz comprimé.
2. Fixez les cylindres dans une position verticale, à
l'aide d'une chaîne ou une sangle, sur un chariot manuel, un châssis de roulement, un banc, un mur, une colonne ou un support convenable. Ne xez jamais un cylindre à un poste de travail ou toute autre dispositif faisant partie d'un circuit électrique.
3. Lorsque les cylindres ne servent pas, gardez les
soupapes fermées. Si le détendeur n'est pas bran­ché, assurez-vous que le bouchon de protection de la soupape est bien en place. Fixez et déplacez les cylindres à l'aide d'un chariot manuel approprié. Toujours manipuler les cylindres avec soin.
4. Placez les cylindres à une distance appropriée
de toute source de chaleur, des étincelles et des ammes. Ne jamais amorcer l'arc sur un cylindre.
5. Pour de l'information supplémentaire, consultez
CGA Standard P-1, "Precautions for Safe Handling of Compressed Gases in Cylinders", mis à votre dis­position par le Compressed Gas Association, 1235 Jeerson Davis Highway, Arlington, VA 22202.
ENTRETIEN DE L'ÉQUIPEMENT -- Un équipe­ment entretenu de façon défectueuse ou inadéquate peut causer des blessures graves ou mortelles. Par conséquent :
1. Efforcez-vous de toujours confier les tâches d'installation, de dépannage et d'entretien à un personnel qualié. N'eectuez aucune réparation électrique à moins d'être qualié à cet eet.
2. Avant de procéder à une tâche d'entretien à l'intérieur de la source d'alimentation, débranchez l'alimentation électrique.
3. Maintenez les câbles, les ls de mise à la terre, les branchements, le cordon d'alimentation et la source d'alimentation en bon état. N'utilisez ja­mais un équipement s'il présente une défectuosité quelconque.
4. N'utilisez pas l'équipement de façon abusive. Gardez l'équipement à l'écart de toute source de chaleur, notamment des fours, de l'humidité, des aques d'eau, de l'huile ou de la graisse, des atmosphères corrosives et des intempéries.
5. Laissez en place tous les dispositifs de sécurité et tous les panneaux de la console et maintenez-les en bon état.
6. Utilisez l'équipement conformément à son usage prévu et n'eectuez aucune modication.
INFORMATIONS SUPPLÉMENTAIRES RELA­TIVES À LA SÉCURITÉ -- Pour obtenir de l'information supplémentaire sur les règles de sécurité à observer pour l'équipement de soudage à l'arc électrique et le coupage, demandez un exemplaire du livret "Precau­tions and Safe Practices for Arc Welding, Cutting and Gouging", Form 52-529.
Les publications suivantes sont également recomman­dées et mises à votre disposition par l'American Welding Society, 550 N.W. LeJuene Road, Miami, FL 33126 :
1. ANSI/ASC Z49.1 - "Safety in Welding and Cutting"
2. AWS C5.1 - "Recommended Practices for Plasma Arc Welding"
3. AWS C5.2 - "Recommended Practices for Plasma Arc Cutting"
4. AWS C5.3 - "Recommended Practices for Air Carbon Arc Gouging and Cutting"
15
SECTION 1 SÉCURITÉ
SIGNIFICATION DES SYMBOLES Ce symbole, utilisé partout dans ce manuel, signie "Attention" ! Soyez vigilant ! Votre sécurité est en jeu.
DANGER
Signie un danger immédiat. La situation peut entraîner des blessures graves ou mortelles.
AVERTISSEMENT
Signie un danger potentiel qui peut entraîner des blessures graves ou mortelles.
ATTENTION
Signie un danger qui peut entraîner des blessures corporelles mineures.
16
SECTION 2 INTRODUCTION
2.1 General
The PMC-91 Plasmarc System is a full capability plasmarc cutting and marking system that oers a wide variety of plasma cutting and marking processes and applications. The system is designed specically for computer controlled mechanized applications with expanded interfacing, exible conguration from a selection of packages and versatile ease of operation. By selecting the components that best suit your needs the PMC-91 Plasmarc System can fully automate your cutting process.
2.2 Features
The system is capable of water injection cutting and gas shielded underwater cutting can be accomplished at most • current levels with appropriate torch and accessories. The PMC-91 Plasmarc System can accommodate all major cutting gases including; oxygen, air, nitrogen, methane (CH• or argon/hydrogen mixture. The separate component design, ow control, plumbing box, power source provides maximum exibility for system • layout tailored to your needs. Selection from a variety of power sources and the paralleling capability allows a wide range of available cutting power • to meet virtually any cutting condition. Patented ESAB technology allows underwater cutting and beveling with excellent results.• The PMC-91 Plasmarc System uses simple switch settings to setup process parameters for ow control and cutting • power eliminating the diculty of adjustment associated with needle valves. The shielded construction of the plasma torches and versatility of component location minimizes electrical interference • with surrounding equipment. The PMC-91 Plasmarc System can have marking capabilities through the marking box.• Marking and cutting can be alternated in real-time by controlling the mark mode signal.• Dierent power supplies can be controlled through the marking box, such as current, range selection.• The PMC-91 system uses advanced technology for high quality cutting for a variety of common metals while keeping • the operating costs at a minimum.
Flow
Control
Plumbing
Box
4
)
Coolant
Circulator
Power Source
Torch (PT-600, PT-19XLS or PT-36)
Figure 2-1 Major Components
17
SECTION 2 INTRODUCTION
2.3 Component Description
The components that make up a PMC-91 Plasmarc System are designed specically for use in automated plasma cutting and marking applications.
Refer to the specic equipment manual for detailed information.
The EPP power sources are de­signed for marking and high speed plasma mechanized cutting ap­plications. They can be used with other ESAB products such as the PT-15, PT-19XLS, PT-600 and PT-36 torches along with the Smart Flow II, a computerized gas regulation and switching system.
EPP-201 Power Source
10 to 36 amperes for marking• 25 to 200 amperes cutting current range•
EPP-401/450 Power Source EPP-601 Power Source
10 to 100 amperes for marking in low current range• 50 to 450 amperes cutting in high current range• 35 to 100 amperes cutting in low current range•
Forced air cooled• Solid state DC power• Input voltage protection• Remote or local front panel control• Thermal switch protection for main transformer and power semiconductor com-• ponents Top lifting eyes or base forklift clearance for transport• Parallel supplemental power source capabilities to extend current output range.•
EPP-360 Power Source
10 to 36 amperes for marking• 30 to 360 amperes cutting current range•
10 to 100 amperes for marking in low current range• 50 to 600 amperes cutting in high current range• 35 to 100 amperes cutting in low current range•
Figure 2-2 EPP-201 Power Source Figure 2-3 EPP-360 Power Source
18
SECTION 2 INTRODUCTION
2.3 Component Description (con’t.)
Figure 2-4 EPP-401/450 Power Source
Flow Control
The Flow Control is a programmable Logic Control (PLC) based unit. This device provides all the necessary control functions for various uids and signals to and from other components of the system. Control Inputs/Outputs are connected to the power source, marking box, coolant circulator, air curtain and the cutting machine control.
Connections to the ow control are Oxygen In, Air In, Alternate Gas In, Nitrogen In, Start Gas Out, Cut Gas Out, Shield Gas Out.
Figure 2-5 EPP-601 Power Source
Figure 2-6 Flow Control and PMC-91 Plasma Marking Control
19
SECTION 2 INTRODUCTION
2.3 Component Description (con’t.)
Plumbing Box
The Plumbing Box is an interconnecting device between the torch and other system components. It also contains the arc starting high frequency generator. Connection of functions through the plumbing box include; cut gas, start gas, shield gas, marking gas (argon), torch coolant, pilot arc, cutting current and height control.
Figure 2-7 Plumbing Box Assembly
Coolant Circulator
The CC-11 coolant circulator is a radiator type cooler for circulating a coolant uid through the plasma torch providing heat exchanger action for the internal parts of the torch. Though the system refers to water, it is not recommended that water be used. For the protection of internal parts and lines a specially formulated coolant liquid is available that prevents production of corrosion and mineral buildup. Refer to the power source manual for installation instructions.
PT-19XLS Plasma Torch
The PT-19XLS Torch is designed with all the quality standards and feature characteristics of the PT-15XL. The dierences are primarily in applications and conditions for which the PT-19XLS is to be used. The PT-19XLS is a mechanized torch designed for high speed, high current cutting using gas shielding instead of water injection.
The PT-19XLS is intended for applications of dry cutting using air (clean & dry) for the cut gas at current levels up to 200 amps. Oxygen (to 360A) or H-35 (to 600A) can be used with the PT-19XLS, however these gases are not recommended for some materials. Use of an air curtain kit permits the PT-19XLS to be used for underwater cutting. Refer to the torch manual for further details.
20
SECTION 2 INTRODUCTION
November, 2005
Installation, Operation, and Maintenance for the
PT-600 Mechanized
Plasma Cutting Torch
2.3 Component Description (con’t.)
PT-600 Plasma Torch
The PT-600 torch is a PT-19XLS with reduced manufacturing tolerances. The result is improved torch component concen­tricity and cut accuracy.
PT-36 Plasma Torch
The PT-36 Mechanized Plasmarc Cutting Torch is a plasma arc torch factory assembled to provide torch compo­nent concentricity and consistent cutting accuracy. For this reason, the torch body can not be rebuilt in the eld. Only the torch front-end has replaceable parts.
Figure 2-8 PT-19XLS and PT-600 Torches Figure 2-9 PT-36 Torch
21
SECTION 2 INTRODUCTION
Figure 1-11. Bubble Muffler Assembly
PT-19XLS AIR CURTAIN
This device also allows above water cutting with re- duced fume, noise and UV radiation from the arc by the flow of water through the bubble muffler. A sepa- rate water pump recycles filtered water from the water cutting table through the bubble muffler.
PT-19XLS Water Muffler
The PT-19XLS water muffler works much as the bubble muffler described above.
2.3 Component Description (con’t.)
Air Curtain
The Air Curtain assembly provides improved cutting performance of the plasma torches when cutting underwater. A source of oil free air at 80 psig is required to the air curtain control box. A curtain (wall) of air is created around the plasma arc area allowing operation in a relatively dry zone, even with the end of the torch submerged 2 - 3 inches.
Underwater cut quality and speed are enhanced when using the air curtain for all plasma torch cutting applications.
Water Muer
The Water Muer system creates a bubble of air surrounded by water that allows the torch to be used underwater with oxygen cut gas and water injection cutting without signicant loss of cut quality.
This device also allows above water cutting with reduced fume, noise and UV radiation from the arc by the ow of water through the water muer. A separate water pump recycles ltered water from the water cutting table through the water muer.
Figure 2-10 Air Curtain Assembly Figure 2-11 Water Muer Assembly
22
SECTION 2 INTRODUCTION
2.3 Component Description (con’t.)
DESCRIPTION PART NUMBER
EPP-201
EPP-360
EPP-401/450
EPP-601
The basic torch body can be supplied in seven lead lengths between the plumbing box and torch.
The replaceable torch components are selected for the type of cut gas and current level used.
460 V, 3-Phase, 60 Hz 0558007801 575 V, 3-Phase, 60 Hz 0558007802 460 V, 3-Phase, 60 Hz 0558006832 575 V, 3-Phase, 60 Hz 0558006833
380/400V, 3-Phase, 50/60 Hz 0558007730
460 V, 3-Phase, 60 Hz 0558007731 575 V, 3-Phase, 60 Hz 0558007732
380/400V, 3-Phase, 50/60 Hz 0558007733
460 V, 3-Phase, 60 Hz 0558007734 575 V, 3-Phase, 60 Hz 0558007735
PT-19XLS - 4.5 ft. 37086
PT-19XLS - 6 ft. 37087 PT-19XLS - 12 ft. 37088 PT-19XLS - 15 ft. 37089 PT-19XLS - 17 ft. 37090 PT-19XLS - 20 ft. 37091 PT-19XLS - 25 ft. 37092
PT-600 - 4.5 ft. 0558001827
Plasma Torches:
Flow Control: Provides interface for gases and power 0558005760
PMC-91 Marking
Control:
Plumbing Box:
CC-11 Water
Recirculator:
Air Curtain:
Water Muer: PT-19XLS, PT-600 and PT-36 37439
Provides interface for gases and power
Provides interconnection between torch and
Circulates coolant for the torch 0558007515
PT-19XLS, PT-600 and PT-36 Beveling
PT-600 - 6 ft. 0558001828 PT-600 - 12 ft. 0558001829 PT-600 - 15 ft. 0558001830 PT-600 - 17 ft. 0558001831 PT-600 - 20 ft. 0558001832 PT-600 - 25 ft. 0558001833
PT-36 - 4.5 ft. 0558003849
PT-36 - 6 ft. 0558003850 PT-36 - 12 ft. 0558003852 PT-36 - 25 ft. 0558003856
Remote current control
Pilot arc Hi / Lo control
rest of system.
PT-19XLS, PT-600 and PT-36
0558007858
0558008045
37440 34752
23
SECTION 2 INTRODUCTION
24
SECTION 3 INSTALLATION
General
Proper installation substantially contributes to the satisfactory and trouble-free operation of the PMC-91 System compo­nents. Each step in this section should be studied carefully and followed as closely as possible. Immediately upon receipt of the components, each should be inspected closely for damage which may have occurred in transit. Notify the carrier of any damage or defects immediately. Instruction manuals for each component of the system are included in the package. It is recommended that these manuals be collected and compiled in a common location.
Note
If the components are not to be immediately installed, store them in a clean, dry and well ventilated area.
3.1 System Component Locations
Power Source
When lifting the Power Source using the lifting lugs, ensure the lifting
CAUTION
The location of the Power Source should be carefully selected to ensure satisfactory and dependable service. The Power Source components are maintained at the proper operating temperatures by forced air that is drawn through the cabinet by the fan units. For this reason, it is important that the Power Source be located in an indoor-open area where air can circulate freely at the front, bottom, and rear openings of the cabinet. If space is a premium, leave at least two feet of clearance at the rear of the cabinet.
The location should be such that a minimum of dirt, dust, or moisture will be drawn into the air stream. It is desirable to locate the unit so that the top and side panels can be removed for cleaning and troubleshooting. In relationship to a cutting machine, the power source can be positioned virtually anywhere that will not interfere with machine travel. Accessories on the cutting machine are available to carry hoses and cables without interference with machine travel.
Flow Control
The Flow Control can be placed on the Power Source or mounted onto the cutting machine. The Flow Control needs to be accessible for setting various cutting parameters. After setting the cutting conditions, access to the Flow Control is not required during the cutting operation.
means is securely connected to BOTH lifting lugs to prevent damage to the unit or injury to personnel. DO NOT USE ANY LEVER DEVICE WHICH COULD DAMAGE THE UNIT.
25
SECTION 3 INSTALLATION
3.1 System Component Locations (con’t.)
Marking Box
Marking Box provides marking capability for PMC-91 Plasmarc System. The marking box should be under the ow control box. Connections between the two boxes should be made with the cables provided. A hose assembly should also be used for shield gas connection. Access to marking box is not required during normal, standard operation after the current and gases are set up.
Plumbing Box
The Plumbing Box is normally located on the cutting machine in close proximity to the torch station. Since the torch can be equipped with various standard lengths of cable and hose, the exact location is determined by the conguration and station load capacity of the machine.
Access to the Plumbing Box is not required during the standard operating procedures, location near the operator is not required. Two important considerations pertain to the location of the plumbing box:
There should be space for the box door to be opened fully.1.
Sucient space should be provided on all sides to permit easy connection of gas/water hoses and electrical cables to the box.2.
3.2 System Connections
BEFORE MAKING ANY CONNECTIONS TO THE OUTPUT BUS BARS, MAKE SURE
WARNING
Input Power Connections
The power sources (EPP-201, EPP-360, EPP-401/450 or EPP-601) used with the system are 3-phase units and must be con­nected to a 3-phase power line. Although designed with line voltage compensation, it is suggested that the unit be operated on a separate line to ensure the performance of the power source is not impaired due to an overloaded circuit.
A line (wall) disconnect switch, with fuses or circuit breakers, shall be used at the main power panel. The primary power input must have four insulated power leads (three power leads and one ground wire). The wires may be a thick rubber covered cable or may run in a solid or exible conduit.
The ground wire must be approximately six inches longer than the power leads. This is a safety measure to
ensure that in the event the power lines are accidently pulled out the ground wire will remain connected.
Input conductors must be terminated with ring terminals sized for 1/2 inch hardware before being connected.
Refer to the specic equipment manual for detailed installation instructions.
THE POWER SOURCE IS DEENERGIZED BY OPENING THE LINE WALL DIS CONNECT SWITCH. TO BE DOUBLY SAFE, HAVE A QUALIFIED PERSON CHECK THE OUTPUT BUS BARS WITH A VOLTMETER TO BE SURE ALL POWER IS OFF.
Note
Note
Flow Control Connections
The Flow Control serves as a form of interface between the various process utilities to enable a central location for setup adjustments. Connections are made to receptacles on the rear panel and are grouped into two sections, the bottom row is for gas connections while the top row is for electrical connections. The gas connections should be made rst.
26
SECTION 3 INSTALLATION
3.2 System Connections (con’t.)
Fluid Hookups (See Table 3-1 for hose assemblies)
OXYGEN (O2) IN - This is a “B” size CGA oxygen tting. Connect the supply hose from the oxygen regulator to this 1. point. NITROGEN (N2) IN - This is a “B” size IAA tting. Connect the supply hose from the nitrogen regulator to this point.2. AIR IN - This is a “B” size air tting. Connect the supply hose from the air regulator to this point.3. ALTERNATE GAS IN - This is a “B” size CGA fuel gas tting. Connect the supply hose from the alternate gas regulator to 4. this point. START GAS OUT - This is a “B” size IAA tting. From this point connect the hose to Start Gas INPUT on the Plumbing 5. Box. CUT GAS OUT - This is a “B” size oxygen tting. The hose is connected from this point to the Cut Gas INPUT on the 6. Plumbing Box. SHIELD GAS OUT - This is a “B” size air / water tting. The hose is connected from this point to the shield gas input on 7. the Plumbing Box. If the Marking Box is used, a tee hose assembly (0558008044) should be connected to Shield Gas Out rst. The shield gas is then connected both to the Plumbing Box and the Marking Box.
Electrical Hookups (See Table 3-3 for cables)
POWER SOURCE - The power source plug should connect to Marking Box. Through Marking Box, Flow Control Box is 1. powered and commanded. PARALLELED POWER SOURCE - A cable from a second power source connects to this receptacle whenever two power 2. sources are used in parallel. It parallels all control connections between the power source and ow control. The parallel power supply is used only for cutting. AIR CURTAIN - This is used to connect the coil of a solenoid valve in the air curtain control (when used) or to control a 3. relay coil in the water muer pump unit. WATER COOLER - This point is used to connect to the relay coil in the water cooler.4. PLUMBING BOX - This cable connection goes to the Plumbing Box in the Marking Box, then through the Marking Box. 5. It is connected to Plumbing Box. CUTTING MACHINE NUMERICAL CONTROL (CNC) - This connection provides a current reference signal to the plasma 6. power source and provides control signals to and from the ow control circuits, Start Process Command, Arc On, Process Fault, and E-stop Interlock. This cable connection goes to the Marking Box CNC. 115 VAC AUXILIARY POWER - This optional connection allows the Flow Control to be energized without powering up 7. the system. Disconnect after test function is completed.
27
SECTION 3 INSTALLATION
3.2 System Connections (con’t.)
Argon
Gas Regulators
Air
Oxygen
Nitrogen
Alternate
Flow Control
Wall Box
Cooler and
Pump
Start Gas
Shield Gas
Power
Input
Cut Gas
Argon
Power Source
Coolant Return
Coolant to Torch
Plumbing Box
(+) Work
(-) Electrode
Pilot Arc
Shield Gas
Argon
Process OK
Interlocks
Current Ref.
Cutting Machine Control
Legend
Marking Box
E-Stop
Process O
Height
Reference
Electrical Connections Fluid Lines
Voltage
Feedback
Interlocks
High Freq. On-O
Cut Gas Solenoid
Start Gas Solenoid
Height
Control
Torch
PT-19XLS,
PT-600 or
PT-36
Coolant to
Torch
Coolant Return
Shield Gas
Plasma Gas
Pilot Arc High Freq.
(-) Electrode
Workpiece
Figure 3-1 Interface Block Diagram
28
SECTION 3 INSTALLATION
3.2 System Connections (con’t.)
To Parallel Power Source If Needed
115 VAC Auxiliary Power
For Testing Only
(Disconnect During
Normal Operation)
Power Source On Marking Box
Cut Gas Out To Plumbing
Box And Marking Box
Air In From Regulator
Start Gas Out To Plumbing Box
In From Regulator
N
2
O2 In From Regulator
Alternate In From Regulator
Figure 3-2a Flow Control Connections With Marking Box
To Air Curtain
To Water Cooler
To Plumbing Box On Marking Box
To Cutting Machine CNC On Marking Box
Tee
From Shield Gas On Marking Box
Shield Gas Out To
Plumbing Box
Power Supply On
CNC Control
Flow Control Box
CNC Control On Flow Control Box
Power Supply
Figure 3-2b Connections For Marking Box
Plumbing Box
Shield Gas In
Shield Gas Out
Argon In
Argon Out
Plumbing Box On Flow Control Box
29
SECTION 3 INSTALLATION
3.2 System Connections (con’t.)
Table 3-1 Hose Assemblies
Cable Length Shield Gas Hose Cooling Water Start Gas Hose Cut Gas Hose Argon Gas Hose
25 FT. 33127 21588 33122 33117 0558002978 50 FT. 33128 21574 33123 33118 0558002979
75 FT. 33129 21575 33124 33119 0558002980 100 FT. 33130 21576 33125 33120 0558002981 125 FT. 33131 21577 33126 33121 0558002982
Table 3-2 Cooling Water Hose Assemblies
Cable Length Hose Assembly
25 FT. 33132 50 FT. 33133
75 FT. 33134 100 FT. 33135 125 FT. 33136
Table 3-3 Interconnection Cables
Marking Box
or
Cable Length
25 FT. 33219 33224 33253 33303 33253 50 FT. 33220 33225 33254 33304 33254
75 FT. 33221 33226 33255 33305 33255 100 FT. 33222 33227 33256 33306 33256 125 FT. 33223 33228 33257 33307 33257
Flow Control ­Plumbing Box
(Cable, 18 AWG,
8 Conductor)
Flow Control Remote Location - Flow Control to Power Source Cable:
Flow Control
- CNC
(Cable, 18
AWG,
14 Conductor)
30 Ft. - 34378 60 Ft. - 34377
Flow Control -
Water Cooler
(Cable, 18
AWG,
3 Conductor)
Power Source
- Plumbing Box
(Cable, Pilot
Arc)
3 Conductor)
Air Curtain
(Cable, 18
AWG,
30
SECTION 3 INSTALLATION
GRN/YEL
3.2 System Connections (con’t.)
Table 3-4 Interconnection Cables
Marking Box - CNC
(Cable, 20 AWG, 24 Conductor)
Table 3-5 Recommended Regulators
Description Part Number
Station Regulator, O2, R-76-150-024* 19151
Station Regulator, N2, R-6703 22236 Two Stage Cylinder Regulator, O2, R-77-150-540** 998337 Two Stage Cylinder Regulator, N2, R-77-150-580** 998344 Two Stage Cylinder Regulator, H-35, R-77-150-350 998342
Liquid Cylinder Regulator, O2, R-76-150-540LC 19777 Liquid Cylinder Regulator, N2, R-76-150-580LC 19977
Station Regulator, Air 30338
* Station (line) regulators connect to station outlets of piping systems that transport gas to welding or cutting stations. These regulators are intended for inlet pressures of less than 200 psig. When used with plasma cutting systems, minimum inlet pressure should be 120 psig.
** Two stage cylinder regulators provide a more constant delivery pressure than single stage cylinder regulators. The delivery pressure of a single stage varies about 1 psig per 10 psi of change in the inlet pressure as the cylinder empties.
31
SECTION 3 INSTALLATION
3.2 System Connections (con’t.)
MAKE SURE THAT ALL CONNECTIONS ARE PROPERLY MADE TO PREVENT
WARNING
To make the following connections, the door must be opened and the cover removed.
Plumbing Box Connections To Torch:
Connect the torch bundle to the plumbing box. Check that the box location permits torch movement as required.1.
Connect the cooling water (coolant) in and out (with the internal power cable) to the connectors on the main power A. junction bus bar inside the plumbing box. One connection has right-hand threads and the other has left-hand threads. Left-hand threads are indicated by a groove or notch on the hex of the tting. Connect the Pilot Arc cable from the torch bundle to the stud marked PILOT ARC TORCH (TB1) located inside the B. Plumbing Box. Connect the Shield Gas Hose to the SHIELD GAS TO TORCH connector on the top section of the Plumbing Box.C. Connect the Cut Gas hose to the GAS TO TORCH connector on top section of Plumbing Box.D.
ANY LEAKS. ANY LEAKAGE DURING ACTUAL OPERATION COULD LEAD TO A HAZARDOUS SITUATION BECAUSE OF THE HIGH VOLTAGES INVOLVED.
Note
Cut Gas to Torch
Shield Gas To Torch
Shield Gas Marking Gas Coolant In
Start Gas Coolant Out Cut Gas
Control Cable (from Flow Control)
Pilot Arc (from Power Source)
4/0 Power Cables (from Power Source)
To Height Control
Figure 3-3 Plumbing Box Connections
32
SECTION 3 INSTALLATION
3.2 System Connections (con’t.)
Plumbing Box Connections To Power Source
Connect the 4/0 power cable(s) to the studs on the main power bus bar TB3. The number of cables depends on the maxi-2. mum cutting thickness capacity for the installation. Two cables must be connected to carry the full 600 amperes.
Select plasma cutting output cables on the basis of one 4/0 AWG, 600 volt insulated copper cable for each 400 amperes of output current. Do not use ordinary 100 volt insulated welding cable.
Each 4/0 cable must be terminated with the correct lug prior to attempting connection to the bus bar. Each cable goes through one of two strain reliefs on the box. Ensure neither lugs nor bare wires touch the sheet metal of the
box.
Connect the Pilot Arc cable from the power source through its strain relief (PILOT CURRENT) to the stud (TB2) on the 3. side of the high frequency box inside the Plumbing Box. This cable runs uninterrupted from the power source to the termination in the plumbing box, so it is essential that it be the proper length. Use # 6 AWG 600 volt wire with ring terminals to t the 1/4-inch stud.
4. Connect coolant in / out to Plumbing Box. Connect Start Gas, Cut Gas / Shield Gas from Flow Control Box to Plumbing Box. If marking is needed, connect Argon gas from the Marking Box directly. Connect Shield Gas with provided Tee (0558008044) to Plumbing Box.
Torch Pilot Arc Cable Stud
Pilot Current Stud (from Power Source)
Coolant In and Out
Connectors
4/0 Power Cable Connecting Studs
Figure 3-4 Plumbing Box Internal Connections
33
SECTION 3 INSTALLATION
3.3 Torch Components
Refer to your torch manual for detailed installation instructions.
ELECTRIC SHOCK CAN KILL! BEFORE TOUCHING THE TORCH, BE SURE THE POWER SOURCE IS SHUT OFF BY TURNING OFF THE 3-PHASE POWER INPUT TO THE POWER SOURCE.
WARNING
The PT-19XLS, PT-600 and PT-36 are water-cooled plasma arc torches designed for mechanized cutting at currents up to 350 amps with oxygen and up to 600 amps with nitrogen or H-35.
The PT-36 torch can also be used for marking. For details please see the enclosed cutting data.
CAUTION
NEVER USE OIL OR GREASE ON THIS TORCH. HANDLE PARTS ONLY WITH CLEAN HANDS AND LAY PARTS ONLY ON A CLEAN SURFACE. OIL AND GREASE ARE EASILY IGNITED AND BURN VIOLENTLY IN THE PRESENCE OF OXYGEN UNDER PRESSURE. USE SILICONE LUBRICATE ONLY WHERE INDICATED.
Make sure that the heat shield, shield retainer, and other front end parts are cool before handling.
34
SECTION 3 INSTALLATION
3.3 Torch Components (con’t.)
Electrode Holder
Contact Ring Assy.
Gas Bae
Electrode
Rear Main Body Assy.
Sleeve
O-Ring
Insulator Assy.
Shield Retainer
Nozzle Base
Nozzle Tip
Nozzle Retaining Cup
Diuser
Shield
Figure 3-5 PT-19XLS Torch Components
35
SECTION 3 INSTALLATION
3.3 Torch Components (con’t.)
Torch Sleeve
Torch Body
Gas Bae
O-ring (supplied with electrode holder)
Electrode Holder
O-ring (supplied with electrode)
Electrode
O-ring (supplied with nozzle)
Nozzle Assembly
O-ring (supplied with nozzle)
Nozzle Retainer Cup
Diuser
Shield
Figure 3-6 PT-600 Torch Components
36
Shield Retainer
SECTION 3 INSTALLATION
3.3 Torch Components (con’t.)
Torch Sleeve
Torch Body 2 ea. O-Rings
Gas Bae
O-Ring Supplied with Electrode Holder
Electrode Holder with O-Ring
O-Ring Supplied with Electrode
Electrode
O-Ring Supplied with Nozzle
Nozzle
O-Ring Supplied with Nozzle
Nozzle, Retaining Cup
Gas Diuser
Shield
Shield Retainer
Figure 3-7 PT-36 Torch Components
37
SECTION 3 INSTALLATION
3.4 Installing Air Curtain
The Air Curtain is a device used to improve performance of the plasma torches when cutting underwater. Cut quality and cutting speed are enhanced when using the air curtain with plasma torches. The device mounts onto the torch and produces a curtain of air around the cutting area producing a relatively dry area.
Installation procedures of the air curtain for the plasma torches are very similar with slight dierences in the nozzle clear­ance positioning.
Remove the torch nozzle retaining cup.1. Slide the chrome plated Air Curtain Body.2.
Note
It will ease assembly if all o-rings in the air curtain body are lightly lubricated with silicone grease,
77500101 (5.3 oz.) or 17672 (1 oz.).
Replace the nozzle retaining cup and any front end parts that may have removed from the torch.3. Install the air curtain sleeve over the assembled torch and snap it into place.4. Secure the air curtain sleeve by installing the air curtain retainer. The Retainer rotates to lock in place with the locking 5. pins. Adjust the position of the air curtain on the torch until the nozzle extends 0.06 inch from the end of the air curtain 6. sleeve. Lock the air curtain into place by tightening the Allen screw on the air curtain body.7.
Note
The air curtain sleeve must remain completely bottomed in the air curtain body for the adjustment in
Step 6 to be correct.
After tightening the Allen screw, the gap between the sleeve and torch cup should be uniform all the way
around.
RetainerAir Inlet
Torch Body
Air Curtain Body
Figure 3-8 Air Curtain Installation
38
SECTION 3 INSTALLATION
3.5 Water Muer Installation
The water muer creates a bubble of air surrounded by water so that a plasma torch can be used underwater with oxygen/ water injection cutting without signicant sacrice of cut quality. This system also permits operation above water as the ow through the muer reduces fumes, noise and arc UV radiation.
Installation and Adjustment
Remove the brass nozzle retaining cup from the torch.1.
Note
Lubrication of o-rings in the water muer is recommended for ease of installation.
Slide the chrome plated water muer clamp onto the torch about 1/2 inch up the torch sleeve (body).2. Replace the nozzle retaining cup and any front end torch parts that may have removed from the torch.3. Install the water muer sleeve in the water muer main body. Maker sure it bottoms completely.4. Install the water muer main body (with sleeve) over the assembled torch and snap it into place on the water muer 5. clamp. Adjust the position of the water muer on the torch until a gap of .040 to .060 (use 1/16 inch Allen wrench for gapping) 6. is obtained between the inside wall of the muer sleeve and the torch retaining cup. Lock the water muer into position by tightening the Allen screw on the water muer clamp.7.
A helpful hint for adjusting the Air Curtain or Water Muer for proper location on the torch:
Mark the nozzle retaining cup and back it up 3/4 to 1 turn from fully tight.1. Install the Air Curtain or Water Muer sleeve and push the assembly up the torch until the sleeve bottoms out against 2. the nozzle retaining cup. Lock into position with the allen screw.3. Retighten the nozzle retaining cup.4.
The sleeve must remain completely bottomed in the Water Muer body for the adjustment in Step 6 to be correct.
After tightening the Allen screw, the gap between the sleeve and torch cup should be uniform all the way around.
Better centering of the water muer sleeve can be obtained by putting 3 evenly spaced (120° intervals) pads of tape of electrical tape on the nozzle retaining cup.
39
SECTION 3 INSTALLATION
Figure 2-10. Bubble Muffler Assembly
ALLEN SCREW
MAIN BODY
SLEEVE
CLAMP
TORCH RETAINING CUP
.040 - .060
NOZZLE RETAINING CUP
2-3 LAYERS ELECTRICAL TAPE AT 3 PLACES SPACED 120
o
CLAMP
TORCH
RETAINING
CUP
.040 - .060
NOZZLE
RETAINING
CUP
2-3 LAYERS ELECTRICAL
TAPE AT 3 PLACES
SPACED 120
o
3.6 Air Curtain / Water Muer Control Box Installation
Clamp
Allen Screw
Figure 3-9 Water Muer Assembly Figure 3-10 Centering Tape On Retaining Cup
Main Body
Mount the Control Box at a convenient location and use the hose supplied to connect the box with the unit mounted 1. on the torch. Connect the Control Box to a source of oil free shop air capable of delivering at least 20 scfm at 80 psig. The hose used 2. should be at least 3/8 inch inside diameter. Use SJO wire to connect the control to the cutting machine control. If the ESP system is used, the connection may be 3. made to the appropriate Amphenol connector on the back of the Flow Control. The connection of the control is made at terminals marked FC. An appropriate cable may be selected from the table of optional accessories. The user supplied 115 volt AC may be connected to the terminals so marked. This will allow manual operation of the 4. air curtain control. Connect a ground wire to the stud provided in the control box.5. Provide air to the control box. Energize solenoid in control box and adjust regulator screw from 15 - 30 psig delivery. 6. Adjust within range for best cut quality. Place switch in AUTO. The system should turn on when the preow begins. The pump will recirculate approximately 7. 20 gpm from the water table.
Torch
Retaining
Sleeve
Cup
0.04” - 0.06”
Nozzle
Retaining
Cup
2 -3 Layers Electrical
Tape At 3 Places
Spaced 120°
Further details and replacements parts for the air curtain and water muer are depicted in the corresponding instruction manuals.
40
SECTION 4 OPERATION  CUTTING
General
Operating with a plasma system such as the PMC-91 Plasmarc System contains a great number of variables to achieve quality cutting over a wide range of applications. The setup and operating characteristics for specic applications depend on type of material, thickness of material, type of cut gas, dry cutting, water injection cutting or underwater cutting.
ELECTRIC SHOCK CAN KILL! DO NOT OPERATE THIS EQUIPMENT WITH ANY COVERS REMOVED. TAKE ALL PRECAUTIONS TO REMOVE POWER BEFORE AT­TEMPTING ANY SERVICE OR MAINTENANCE INSIDE CABINETS OR TORCH.
NEVER OPERATE THE POWER SOURCE WITH THE COVER REMOVED. IN ADDITION TO THE SAFETY HAZARD, IMPROPER COOLING MAY CAUSE DAMAGE TO INTERNAL COMPONENTS. KEEP SIDE PANELS CLOSED WHEN UNIT IS ENERGIZED. ALSO,
WARNING
MAKE SURE YOU ARE ADEQUATELY PROTECTED BEFORE YOU START TO CUT.
ENSURE THAT THE POWER CABLE CONNECTIONS ARE PROPERLY MADE TO PRE­VENT WATER LEAKS. ANY LEAKAGE DURING OPERATION COULD BE HAZARDOUS BECAUSE OF HIGH VOLTAGE AND CURRENT.
ARC RAYS CAN BURN EYES AND SKIN, NOISE CAN DAMAGE HEARING! WEAR WELDING HELMET WITH APPROPRIATE FILTER. WEAR EAR AND BODY PROTEC­TION.
4.1 Controls and Indicators
Flow Control
All controls for cutting function are located on the front of the Flow Control. The control panel is laid out in four sections, Test / Run, Cut Gas, Primary Shield Gas . Shield Mix Gas plus, the Power Switch.
A. Test / Run
This area consists of a 5-position switch. The functions are:
CUT GAS position permits testing the cut gas ow or purging the system without actually cutting.1. START GAS permits testing the start gas ow or purging the system without cutting.2. RUN 1 position is used when cutting is to start with the start gas, and after arc transfer occurs to switch automatically to cut 3. gas. This is one of two positions for actual cutting to occur. Oxygen cutting is normally performed in this position. RUN 2 position is used when the start of the process is done with the same gas and ow as the cutting process. This 4. position is normally used when Nitrogen and Argon-Hydrogen cutting is performed. HF position permits testing of the high frequency without cutting.5.
Note
The test of the HF unit is made without activating the main contactor of the power source. Since shield gas is tested at the same time, some of the tests are combined to reduce the number of positions on the
switch.
41
SECTION 4 OPERATION  CUTTING
4.1 Controls and Indicators (con’t.)
Figure 4-1 Flow Control Front Panel
B. Cut Gas
This area includes the O2 / N2 switch, Flow Rate that is an 8-position switch, HI / LOW toggle switch, a pressure gauge and a bypass pressure regulator. Refer to Table 4-1 for approximate ow rate for specic settings.
The O1.
/ N2 switch selects the type of cut gas being used for cutting.
2
FLOW RATE switches. The 8-position rotary switch and two position toggle switch are used to set the cut gas ow rate. 2. The 8-position switch (0-7) is used for inputs within the ow control that determines the gas ow rates. The switch oper­ates a combination of three of four solenoid valves in parallel. The fourth valve is operated by the HIGH / LOW switch. The cut gas ows through measuring orices in each line of the four solenoid valves. The orices vary in size so that each is capable of doubling the ow, the largest orice delivers eight times the ow as the smallest.
In the 0 / LOW setting a bypass solenoid is energized activating the bypass pressure regulator. In this position gas is con­trolled by pressure setting of the regulator with the gauge displaying the downstream pressure supply of the torch.
Position 1 energizes the solenoid valve in the smallest orice line. Position 2 energizes the valve next in line of ow rate. Position 3 energizes both of these valves.
The progression continues to provide more ow at each higher numbered position in equal increments. In combination the four valves are capable of providing dierent ows but the switch limit is eight settings. The HIGH / LOW switch is used to energize the solenoid with the largest orice that allows using the remainder of the ows.
42
SECTION 4 OPERATION  CUTTING
4.1 Controls and Indicators (con’t.)
Table 4-1 Cut Gas Flow Rates
Switch Setting /
Flow Rate
0 / LOW 0 1 / LOW 20 2 / LOW 40 3 / LOW 60 4 / LOW 80 5 / LOW 100 6 / LOW 120
7 / LOW 140 0 / HIGH 160 1 / HIGH 180 2 / HIGH 200 3 / HIGH 220 4 / HIGH 240 5 / HIGH 260 6 / HIGH 280 7 / HIGH 300
Cut Gas (O2/N2)
SCFH
C. Primary Shield Gas
This area includes the N2 / Air switch, supply pressure gauge, ow adjustment valve and ow meter tube.
The N1.
/ Air switch selects the type of Primary Shield Gas being used for cutting.
2
The supply pressure gauge indicates the source pressure of the selected gas supplied to the ow meter tube. Supply 2. pressure must be properly adjusted to insure accurate reading of ow meter tube. The ow adjustment valve allows shield gas ow rates to be varied for optimizing cutting results.3. The ow meter tube indicates the shield gas ow supplied to the torch.4.
D. Shield Mix Gas
This area includes the O2 / NONE / Alternate switch, supply pressure gauge, ow adjustment valve and ow meter tube.
The O1.
/ NONE / Alternate switch selects the type of shield mix gas being used for cutting. In the NONE position only
2
the Primary Shield Gas is used and no mix gas will be added to the shield gas. The supply pressure gauge indicates the source pressure of the selected mix gas supplied to the ow meter tube. Sup-2. ply pressure must be properly adjusted to insure accurate reading of ow meter tube. The ow adjustment valve allows shield mix gas ow rates to be varied for optimizing cutting results.3. The ow meter tube indicates the shield mix gas ow supplied to the torch.4.
43
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700
10.0
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
10.0
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
SCFH N
2
Figure 5. Flowmeter Calibration Curves
60 PSIG
80 PSIG
100 PSIG
SECTION 4 OPERATION  CUTTING
4.1 Controls and Indicators (con’t.)
100 psig
80 psig
60 psig
2
SCFH N
Pressures Shown Are Measured At Flowmeter Outlet
Figure 4-2a Primary Shield Gas Flowmeter Calibration Curves
Flowmeter Reading (Measured At Top Of Ball)
44
SECTION 4 OPERATION  CUTTING
4.1 Controls and Indicators (con’t.)
100 psi - Methane
Pressures Shown Are Measured At Flowmeter Outlet
SCFH
100 psi - O260 psi - Methane
Figure 4-2b Shield Mix Flowmeter Calibration Curves
45
Flowmeter Reading (Measured At Top Of Ball)
SECTION 4 OPERATION  CUTTING
4.1 Controls and Indicators (con’t.)
Power Source (EPP-601)
All control functions are provided through one receptacle located on the front panel of the power source. A receptacle allows plugging in the cable from the Marking Box. Adapter may be needed for this connection. All control signals are routed through this connection.
A. The current control mode for the power source is set using the PANEL/REMOTE switch.
With the switch in the PANEL position, output current is controlled by setting the power source current control 1. potentiometer (CCP). With the switch in the REMOTE position, output current is controlled from a remote device such as a cutting ma-2. chine CNC.
B. When using an EPP-601 power source, the LED indicator lights on the front panel are used to help check for proper op­eration of the unit.
OVER TEMP - illuminates should the power source become over heated.1. CONTACTOR ON - This light indicates that the main power contactor has been energized and voltage is being ap-2. plied to the cutting circuit. FAULT INDICATOR - illuminates should abnormalities occur in the cutting process or if the input line voltage falls 3. outside of the nominal value by +/- 10%. POWER RESET FAULT - illuminates when a serious fault is detected. Input power must be disconnected far at least 4. 5 seconds and then reapplied.
C. MAIN POWER indicator illuminates when input power is applied to the Power Source.
D. PILOT ARC HIGH/LOW switch allows selection of the pilot arc range HIGH or LOW.
E. VOLTMETER displays the arc voltage value when cutting or marking.
F. AMMETER displays the arc current level when cutting or marking.
For control descriptions pertaining to the EPP-401/450 and EPP-201/360 refer to the appropriate instruction manual.
4.2 Pre-Operation Test / Checkout
The pre-operation testing and checking oers the advantage of having the parameters set and established in proper order before starting to cut actual material.
A. Test Functions
The TEST / RUN portion of the Flow Control front panel allows the user to test parts of the system, purge gas, lines and to select between two dierent RUN modes.
46
SECTION 4 OPERATION  CUTTING
4.2 Pre-Operation Test / Checkout (con’t.)
B. Run Modes
The rst run mode (RUN 1) starts with start gas (at start gas ow) and switches over to cut gas when the arc transfers.
The start gas is taken from the N or the O2 input on the back of the ow control box. The selection of the cut gas is accomplished with the O2 / N2 selector switch on the front panel.
The second run mode (RUN 2) starts directly with cut gas ow. In this case the gas used for cutting must be connected to the N2 input on the back of the ow control.
Purging of gas leads should be possible even if insucient gas pressure exists on incoming gas pressure
gas input on the back of the ow control box. The cut gas is taken either from the N2
2
Note
switches.
Table 4-2 Test / Run Selection Description
Activated Function
Positions
Cut Gas No Yes Yes No
Start Gas Yes No Yes No
Cut Gases
Test
Start Gas Cut Gas Shield Gas HF
HF Yes No No Yes
A. Set the delivery pressure of the gas supply regulators according to the Table 4-3 (with gas owing). For example, the recommended delivery pressure for nitrogen cut gas and 50 feet of 1/4 inch ID hose is 104 psig. Delivery gauge mounted on regulator must not read greater than 200 psig. Refer to Table 3-4 for recommended gas regulators.
Note
Do not use hoses less than 1/4 inch ID in the system.
Table 4-3 Recommended Regulator Pressure Settings ( psiG)
CUT GAS
TYPE
O2 100 100 100 100 100 100 100 100 100 100 100 100 N2 100 103 104 105 100 100 100 102 100 100 100 100
H-35 138 139 141 144 135 135 137 138 135 135 135 135
Air 60 60 63 65 60 60 61 62 60 60 60 60
12.5 25 50 100 12.5 25 50 100 12.5 25 50 100
1/4-IN. ID HOSE
LENGTH IN FEET
5/16-IN. ID HOSE
LENGTH IN FEET
47
3/8-IN. ID HOSE
LENGTH IN FEET
SECTION 4 OPERATION  CUTTING
4.2 Pre-Operation Test / Checkout (con’t.)
Coolant
Cooling of the plasma torch is usually accomplished with a coolant circulator. This circulator should be lled with plasma torch coolant. Always use torch coolant, it lubricates the internal parts of the pump.
Settings over 150 psig will cause premature failure of the pump and/or motor-
CAUTION
to-pump coupling.
Check out the coolant ow with the power source ON, by observing the return water at the cooler. Coolant ow with N consumables should be 1.4 to 1.6 gpm. Coolant ow with O2 consumables should be 1.25 gpm. Coolant can be conveniently checked at the return line by using a suitable container.
Coolant Blowdown
If the equipment is to be exposed to freezing temperatures (while during non-operative time), coolant lines should be blown out to prevent freeze damage to torch and equipment.
Note
Blowdown of the coolant system is not required if plasma torch coolant is used.
To blowdown the cooling system, disconnect the hose from the cooler or pump and connect it to nitrogen or clean air at 20 psig. The return hose should be connected to drain. Blow gas through the system until coolant no longer comes out the drain line. Do Not operate the coolant circulator without using plasma coolant 156F05 . The coolant provides lubrication of the internal pump parts. Algae growth and damage to the pump may occur if plain water is substituted.
Power Source
NEVER OPERATE THE POWER SOURCE WITH THE COVER REMOVED, IN ADDITION TO THE SAFETY HAZARD, IMPROPER COOLING CAN CAUSE DAMAGE TO INTERNAL
WARNING
COMPONENTS. KEEP SIDE PANELS CLOSED WHEN UNIT IS ENERGIZED. ALSO, MAKE SURE YOU ARE ADEQUATELY PROTECTED BEFORE YOU START TO CUT.
2
The Power Source controls and their functions are described in the following sequence.
Check the secondary output connections to the positive and negative output bus bar terminals.A. Verify that the control connections have been properly made.B. Determine the current control mode the power source is to be operated in and set the Control Switch in the desired C. position. With this switch in the PANEL position, output current is controlled by setting the power source current potentiometer. When the power source output current is controlled by a cutting machine control system, place this switch in the REMOTE position. If the primary electrical input connections to the power source have been installed correctly, close the main line (wall) D. disconnect switch. Power will be applied and the Pilot Light on the front panel will be on. The cooling fans will come on when cutting starts.
48
SECTION 4 OPERATION  CUTTING
4.2 Pre-Operation Test / Checkout (con’t.)
Adjust the desired output current level at the power source or at the remote control location.E. Operate the starting switches on the cutting control to energize the power source main contactor. Power will appear F. at the power source output bus bar terminals. After cutting has started, observe the ammeter, voltmeter and/or the cutting operation. If necessary readjust the cur-G. rent control as required. The cutting arc will extinguish and the power source will shut o automatically when the torch travels beyond the edge H. of the work piece. The nozzle and electrode will experience excessive wear (especially with O2). Therefore, extinguishing the arc with an Arc Stop Signal before running o the work piece is recommended.
A properly installed and operating power source should function as follows:
After energizing the power source (at the disconnect switch), the Main Power light (on the front panel) will illuminate A. and the Fault Indicator light will ash and then go out. When the contactor signal is received ( the “Contactor On” indicator will light) and power is applied to the main trans-B. former, Open Circuit Voltage is available at the power source output terminals as indicated on the voltmeter. Upon transfer of the main arc to the work, a current detector circuit senses the current and sends an “ARC ON” signal C. to the Flow Control.
49
PLATE XR NOZZLE MAXIMUM
THICKNESS ASSEMBLY BEVEL ANGLE
(IN.) PART NO. (A)
1/4 2075691 (0.125) 35
o
3/4 2075611 (0.156) 40
o
1-1/2 2075612 (0.200) 45
o
2 2075613 (0.230) 40-45
o
PT-15XL Bevel Angles
The resulting bevel angle setting, particularly on thin materials, may be 5 degrees greater than the torch angle. The bevel retaining cup has smaller feet and steeper sloped sides required to angle the torch with- out hitting the work piece. The bevel retaining cup is also usable for straight cutting required with an air cur- tain or bubble muffler although there is less protection than with the standard cup. Normally used with oxy- gen.
Special nozzles for oxygen beveling are available. See Form F-15-031 Instructions or PT-15XL Plasmarc torch.
Piercing
Piercing can be accomplished on plates up to about 1- 1/2 inches thick by delaying carriage movement until the arc penetrates through the plate. The following are typical delay timer settings:
PLATE SET CARRIAGE THICKNESS DELAY TO
1/2 IN. 1/4 SEC. 1 IN. 3/4 SEC. 1-1/2 IN. 1-1/2 SEC.
When piercing plate 1-1/2 to 3 inches thick, allow the
A
ARC LENGTH
1/8"
SECTION 4 OPERATION  CUTTING
4.3 Operating Techniques
Mirror Image Cutting
If desiring to cut with two torches simultaneously, with one moving in the mirror image of the other, the standard gas bae can be replaced by their reverse swirl counterparts so that the right-edge remains square.
Bevel Cutting with Standard Parts
Bevel cutting requires the same setup considerations as standard straight cutting with a few exceptions. The thickness of the cut is longer than the material thickness therefore the nozzle assembly and cutting speed must be selected accordingly. Illustrated below are the maximum bevel angles that can provide good quality cuts with each nozzle based on 1/8 inch clearance (not stando) between torch and work piece. Large bevel angles can be made by reducing the clearance and increasing the arc length if cut quality can be sacriced.
1/8”
Arc Length
Torch Bevel Angles
Plate
Thickness
(IN.)
1/4 2075691 (0.125) 35º
XR Nozzle Assembly
Part No.
Maximum
Bevel Angle
(A)
3/4 2075611 (0.156) 40º
1-1/2 2075612 (0.200) 45º
2 2075613 (0.230) 40-45º
Figure 4-4 Bevel Cutting Characteristics
The resulting bevel angle setting, particularly on thin materials, may be 5 degrees greater than the torch angle. The bevel retaining cup has smaller feet and steeper sloped sides required to angle the torch without hitting the work piece. The bevel retaining cup is also usable for straight cutting required with an air curtain or bubble muer although there is less protection than with the standard cup. Normally used with oxygen.
Special nozzles for oxygen beveling are available. See instruction manual that came with torch.
50
SECTION 4 OPERATION  CUTTING
4.3 Operating Techniques (con’t.)
Piercing
Piercing can be accomplished on plates up to about 1-1/2 inches thick by delaying carriage movement until the arc pen­etrates through the plate. The following are typical delay timer settings:
Plate Set
Thickness
1/2 In. 1/4 Sec.
1 In. 3/4 Sec.
1-1/2 In. 1-1/2 Sec.
When piercing plate 1-1/2 to 3 inches thick, allow the carriage to move (no delay) at about 1/2 the normal cutting speed. Permit the arc to slice through the plate and produce a rooster-tail eect of molten spray. As soon as the arc penetrates through the plate, adjust the carriage travel to the normal cutting speed. Piercing requires practice and skill. Piercing is made at a higher stando than actual cutting. This helps prevent spatter from destroying the nozzle.
Noise, Fume and UV Radiation Considerations
The noise level of plasma cutting is greater than 110 db 6 ft. or 1.8 m from torch and depending on location of torch with respect to sound reecting surfaces and the power level used for cutting. OSHA allows exposure to 95 db on a 50% duty cycle (4 hours out of an 8 hour shift) and to 90 db on a 100% duty cycle.
There are currently several methods of attenuating noise, fumes and UV radiation of the plasma arc process; underwater cutting, underwater cutting with bubble muer, underwater cutting with air curtain or cutting with a water muer.
Underwater Cutting1.
Carriage Delay To
It has been found that an eective means of reducing the cutting noise level to 85 db or lower is by cutting under 2 to 3 inches of water. Fumes and UV radiation are substantially reduced. No plasma arc equipment change or accessory is required for underwater cutting. However, an automatic cutting system requires controlling the initial stando when starting the cut. In cutting materials up to 1-inch thick underwater, neither cutting speed nor cut surface appearance is appreciably aected. Cutting speed and cut surface quality diminishes when cutting plates between 1 and 3 inches thick. Underwater cutting of plates 3-inches or thicker is not recommended. Underwater cutting with oxygen requires the use of an air curtain or bubble muer.
Note
When cutting underwater, care must be taken when a rust inhibitor is used in the water. Some inhibitors contain enough conductive materials to prevent arc starting. CM-1000S (manufactured by Chemicals
Methods, Inc.) is one satisfactory inhibitor.
Air Curtain (Option)2.
The air curtain uses air to provide a “dry” area around the arc during underwater cutting. The air curtain is recommended for use with oxygen cutting as the most economical approach to fume and noise control.
51
SECTION 4 OPERATION  CUTTING
4.3 Operating Techniques (con’t.)
Water Muer (Option)3.
The water muer can be viewed as a combination air curtain and water muer. It is recommended for use with oxygen when both underwater and above water cutting are to be used.
HYDROGEN EXPLOSION HAZARD! READ THE FOLLOWING BEFORE
WARNING
A hazard exists whenever a water table is used for plasma arc cutting. Severe explosions have resulted from the accumulation of hydrogen beneath the plate being cut. Thousands of dollars in property damage has been caused by these explosions. Personal injury or death could result from such an explosion.
ATTEMPTING TO CUT WITH A WATER TABLE.
The best available information indicates that three possible sources of hydrogen exists in water tables:
Molten Metal Reaction1.
Most of the hydrogen is liberated by a fast reaction of molten metal from the kerf in the water to form metallic oxides. This reaction explains why reactive metals with greater anity for oxygen, such as aluminum and magnesium, release greater volumes of hydrogen during the cut than does iron or steel. Most of this hydrogen will come to the surface immediately, but some will cling to small metallic particles. These particles will settle to the bottom of the water table and the hydrogen will gradually bubble to the surface.
Slow Chemical Reaction2.
Hydrogen may also result from the slower chemical reactions of cold metal particles with the water, dissimilar metals, or chemicals in the water. The hydrogen gradually bubbles to the surface.
Plasma Gas3.
Hydrogen may come from the plasma gas. At currents over 750 amps, H-35 is used as cut gas. This gas is 35% hydrogen by volume and a total of about 125 cfh of hydrogen will be released.
Regardless of the source, the hydrogen gas can collect in pockets formed by the plate being cut and slats on the table, or pockets from warped plate. There can also be accumulation of hydro gen under the slag tray or even in the air reservoir, if these are part of the table design. The hydrogen, in the presence of oxygen or air, can then be ignited by the plasma arc or a spark from any source.
52
SECTION 4 OPERATION  CUTTING
4.3 Operating Techniques (con’t.)
Follow these practices to reduce hydrogen generation and accumulation:4.
Clean the slag (especially ne particles) from the bottom of the table frequently. Rell the table with clean water.A. Do not leave plates on the table overnight or a weekend.B. If a water table has been unused for several hours, vibrate it in some way before the rst plate is laid in position. C. This will allow accumulated hydrogen in the refuse to break loose and dissipate before it is conned by a plate on the table. This might be accomplished by laying the rst plate onto the table with a slight jolt, then raising the plate to permit hydrogen to escape before it is nally set down for cutting. If cutting above water, install fans to circulate air between the plate and the water surface.D. If cutting underwater, agitate the water under the plate to prevent accumulation of hydrogen. This can be done E. by aerating the water using compressed air. If possible, change the level of the water between cuts to dissipate accumulated hydrogen.F. Maintain pH level of the water near 7 (neutral). This reduces the rate of chemical reaction between water and G. metals. Programmed part spacing should be a minimum of twice the kerf width to ensure material is aluminum under the H. arc.
POSSIBLE EXPLOSION HAZARD FROM PLASMA CUTTING ALUMINUM-
WARNING
Aluminum-Lithium (Al-Li) alloys are used in the aerospace industry because of 10% weight savings over conventional alu­minum alloys. It has been reported that molten Al-Li alloys can cause explosions when they come into contact with water. Therefore, plasma cutting of these alloys should not be attempted in the presence of water. These alloys should only be dry cut on a dry table. Alcoa has determined that “dry” cutting on a dry table is safe and gives good cutting results. DO NOT dry cut over water. DO NOT water injection cut.
The following are some of the Al-Li alloys currently available:
For additional details and information on the safe use from the hazards associated with these alloys, contact your aluminum supplier.
LITHIUM ALLOYS!
Alithlite (Alcoa) X8192 (Alcoa) Alithally (Alcoa) Navalite (U. S. Navy) 2090 Alloy (Alcoa) Lockalite (Lockhead) X8090A (Alcoa) Kalite (Kaiser) X8092 (Alcoa) 8091 (Alcan)
53
SECTION 4 OPERATION  CUTTING
54
SECTION 5 OPERATION  MARKING
5.0 Operation – Marking
PMC-91 Plasmarc system can have marking capability if the marking box (0558005878) is used. The marking box also provides functions such as, remote control for dierent current scaling, control of pilot arc Hi/Low, mark mode selection, welding current feedback.
The marking box has three cables connected to the ow control box.
5.1 Pre-Operation Test and Checkout
Mode Selection
Marking box has eight dierent working modes, depending on the power supply used. EPP-401/450 low current, EPP-401/450 high current. EPP-601 low current, EPP-601 high current, EPP-201/360 high current, EPP-201/360 low current, CNC control and marking gas test.
Marking Gas Test
In marking gas test mode, the operator can set up and test pressure of marking gas (argon) and shield gas from the front panel of marking box.
Marking Current and Cutting Current Pre-Set Up
If not CNC controlled, through marking box, the operator can pre-set the marking current and also the cutting current. This will remotely control the marking current and cutting current. Note: Make sure cutting mode is selected before presetting both marking and cutting currents.
To set up the currents, hold down the display switch on the front panel of the power supply. In that way the pre-set current will be displayed. First, set cutting current to zero. Adjust marking current to the desired value. Then adjust the cutting current to the desired value.
Main Power Light and Fault Light
After the marking box is energized, the main power light on the front panel will illuminate and the fault indicator light will be on for 2 seconds. After 2 seconds, if the fault light is still on, a fault must exist. This fault could be a system fault, ow switch fault or interlock switch fault. If the CNC sends plasma start command before the marking box is energized, the fault light will also be on.
55
SECTION 5 OPERATION  MARKING
5.2 Marking and Cutting Procedure
Connect the electrical cables described in Section 3.2.1. Connect the gas and water hoses described in Section 3.2.2. Switch on the power supply and marking box. Choose “remote” control.3. Switch to gas test mode from marking box. Adjust the pressure and ow rate for shield gas and marking gas according 4. to the cutting data. Select the proper power supplies from EPP-201, 360, 450 or 601. 5. Turn cutting current pot to zero. Hold the spring return switch on the power supply and at the same time adjust the 6. marking current pot until a desired marking current is preset and displayed on the power supply. If cutting operation is needed, hold the spring return switch again on the power supply. Adjust the cutting current to 7. the desired value by adjusting the cutting current pot. Follow the procedure to set up gas and ow control in the ow control box (PCC-91).8. Provide plasma start signal and mark mode signal from the remote control device (CNC). By switching on and o the 9. marking mode signal, marking and cutting operation can be alternated. Before switching, the plasma arc must be o, then start the arc again after the marking mode signal is switched.
56
SECTION 6 TROUBLESHOOTING
TABLE 4-1 PLC INPUT/OUTPUT LEDs
INPUT OUTPUT
LED FUNCTION LED FUNCTION
0 Start/Stop 0 Process Running 1 Current Detector 1 Fault Signal 2 Nitrogen Pressure 2 Power Source On/Off 3 Oxygen Pressure 3 Cut Water On/Off 4 Interlock Plumb.Box 4 5 Cooling Water Flow 5 6 Cut Water Flow 6 Air Curtain 7 Cut Gas Pressure 7 Cut Gas Metering 8 Run 1 8 Cut Gas On/Off 9 O2/N2 Select 9 Start Gas On/Off 10 Emergency Stop 10 HF On/Off 11 Cut Water On/Off 11 12 Test Cut Gas 13 Test Start Gas 14 Run 2 15 Test HF
4.2 Sequence Description
The program controlling the plasma system sequence is made with the help of a group of conditional states. Inputs from sensors, and the cutting machine are continuously evaluated by the PLC to determine whether the program stays in its present state or makes a transition to another state.
The different states are shown as rectangles in figure 4-
2. The function of the seven states are described in the following paragraphs.
0 - Ready state
The "Ready" state is the normal state for the system to be in when not executing the cutting process. In this state, the system awaits the start signal from the cutting ma- chine and monitors the selection keys and safety switches. While in this state it is possible to activate the gas flows and cut water flow for testing and purging the system.
1 - Preflow state
The "Preflow" state is a fixed duration and is reached only from state "0". Nitrogen is always the preflow gas in RUN 1 position. Selected cut gas type and flow is the preflow gas in RUN 2 position. Cut water flow during preflow whenever a water injection torch is used and cut water is switched on at the front panel. The air curtain output is energized at this time also.
2 - Open Circuit Voltage State
6.1 Programmable Logic Controller (PLC)
The PLC is located in the top section of the Flow Control and is a device capable of providing predened outputs depending on the state of the inputs. The precise conditions are programmed and permanently stored in the PLC. Because it is a solid state device the PLC is inherently very reliable. It is also relatively compact.
The PLC will provide predened outputs in response to inputs from external devices. This exchange of signals can be con­rmed by observing the LEDs on the top of the PLC while troubleshooting. These indications are useful in isolating a system failure to the most likely device. They can be seen through window in the Flow Control top cover.
The LEDs are divided into two groups; Input (0-15) and Output (0-11). Input LEDs light when the corresponding signal is detected by the PLC. Output LEDs light when the PLC issues a signal to an external device. The fault LED (output 1) indicates the PLC has detected an error within the ESP and has caused the system to enter the not ready (fault) state.
LEDs are highly reliable indicators. It is not likely that one will burn out. However, if the technician is not condent that the LEDs are working the presence of a signal can be conrmed by using a meter to measure the appropriate pin. Refer to the schematic and wiring diagrams.
The signal exchange between the PLC and external devices are both time dependent and condition dependent. If a required signal is not received in the proper sequence, the PLC will discontinue the process and generate a fault signal to the CNC.
Figure 6-1 PLC LED Panel (Partial View)
Table 6-1 PLC Input / Output LEDs
Input Output
LED Function LED Function
0 Start / Stop 0 Process Running 1 Current Detector 1 Fault Signal 2 Nitrogen Pressure 2 Power Source On/O 3 Oxygen Pressure 3 Shield Gas On / O 4 Interlock Plumb. Box 4 5 Cooling Water Flow 5 6 Shield Gas Flow 6 Air Curtain 7 Cut Gas Pressure 7 Cut Gas Metering 8 Run 1 8 Cut Gas On / O 9 O2 / N2 Select 9 Start Gas On / O
10 Emergency Stop 10 HF On/O
Shield Gas -
11
Enabled / Disabled 12 Test Cut Gas 13 Test Start Gas 14 Run 2 15 Test HF
57
11
SECTION 6 TROUBLESHOOTING
6.2 Sequence Description
The program controlling the plasma system sequence is made with the help of a group of conditional states. Inputs from sensors, and the cutting machine are continuously evaluated by the PLC to determine whether the program stays in its present state or makes a transition to another state.
The dierent states are shown as rectangles in Figure 6-2. The function of the seven states are described in the following paragraphs.
0 - Ready State
The “Ready” state is the normal state for the system to be in when not executing the cutting process. In this state, the system awaits the start signal from the cutting machine and monitors the selection keys and safety switches. While in this state it is possible to activate the gas ows for testing and purging the system.
1 - Preow State
The “Preow” state is a xed duration and is reached only from state “0”. Nitrogen is always the preow gas in RUN 1 posi­tion. Selected cut gas type and ow is the preow gas in RUN 2 position. Shield Gas also ows during preow and the air curtain output is energized at this time.
2 - Open Circuit Voltage State
The main contactor of the power source is activated after the preow, and a short time is allowed for the open circuit volt­age to be reached.
3 - Pilot Arc State
The Pilot Arc State is started by activating the high frequency unit. The time allowed between this and the requirement of a current ow signal from the power source is a xed time. If the signal from the power source is not received during this time, the state is transferred to the Not Ready State 7.
4 - Cutting State
In the Cutting State, the cut gas is turned on and the start gas o if using RUN 1. A signal is sent to the cutting machine control indicating that the process is running. This is the Normal State to be in during cutting.
5 - Priority Postow State
The Priority Postow State provides the minimum postow of nitrogen gas and shield gas ow necessary before a restart is possible. The time is dierent depending upon whether cutting with nitrogen or oxygen. This state is reached when the START / STOP goes low or current ow through the arc is lost.
6 - Final Postow State
The Final Postow State provides the time during which nitrogen gas and shield gas ow cools the torch. This state imme­diately follows the Priority Postow State, a restart is possible during postow.
When the time for postow has elapsed, the program transfers to the 0 Ready State. If a new start signal has been given from the cutting machine control after it stopped the process, a fast restart will be executed directly from the Postow State to State 2 that turns on the main contactor in the power source.
58
SECTION 6 TROUBLESHOOTING
6.2 Sequence Description (con’t.)
7 - Not Ready State
During the Not Ready State (fault state) the Programmable Logic Controller (PLC) is sending a fault signal to the cutting machine.
It is possible to test gas ows in this state. The HF unit can be run for test purposes in this state.
3 Start Pilot Arc
Cut Current
Flows
4 Cutting
Time delay to HF done
Start reset
Time out HF
Arc
Start signal o
or arc out
2 Turn power
source on
Start reset
1 Preow
Start reset
0 Ready
All OK
7 Not ready (fault state)
Faults
detected
Startup
5 Priority
postow
Preow done
Start signal on
Postow done
Arc-out
no
Startup
reset
Priority postow
done
Restart
requested
6 Final
postow
Figure 6-2 Plasma Sequence Flow Diagram
59
SECTION 6 TROUBLESHOOTING
CLEANING OXYGEN NOZZLES
As the electrode wears considerable deposits of hafnium oxide and silver can build up in the nozzle. Calcium carbonate can also build up at he nozzle exit if the cut water is not adequately treated. These de- posits can sometimes cause substantial reductions in cut quality, speed and consumable life.
Nozzle performance can be restored by removing these deposits from the inside of the nozzle and the nozzle exit. A twisted piece of very fine sandpaper or crocus cloth usually cleans the nozzle well enough. Care must be taken not to damage the thin copper edge at the nozzle exit. The 340 amp nozzles have a heavier less easily damaged exit as compared to the 260 and 300 amp nozzles.
Nozzle performance is also degraded by nicks and elon- gation of the orifice due to double arcs or mechanical damage. Cleaning will not restore a damaged nozzle.
Whenever a nozzle is removed for cleaning the elec- trode should be inspected. If the wear is greater than
0.090 inch or very irregular, the electrode should be replaced.
CUT QUALITY
Maximum attainable cut quality is highly dependent on the material being cut. With the wide variety of com-
ELECTRODE LIFE LINE
DURATION OF CUT
# OF STARTS
6.3 Operating Information
Maximizing Consumable Life
Plasma torch electrode and nozzle life is a function of many factors, some of which are under control of the operator. When using oxygen as the plasma gas in a properly operating system, electrode wear and life is a function of the number of arc starts, the total duration of the cutting time and the current level. The longer the cut time for a part being cut, the fewer the number of arc starts on an oxygen electrode before it must be replaced. The graph below shows the relationship between the two.
Electrode Life Line
Number Of Starts
Duration Of Cut
Figure 6-3 Oxygen Electrode Life Graph
Oxygen electrode and nozzle life are also aected by the current setting. If parts are operated above their recommended current level, life deteriorates quickly. Improper cutting and parts programming can adversely eect oxygen consumable life, so it is important that proper techniques be used. Oxygen plasma nozzles and electrodes are less forgiving of improper operation than nitrogen nozzles and electrodes. When using nitrogen or argon/hydrogen as a plasma gas, nozzle and elec­trode life are primarily a function of current level. The higher the current the shorter the life.
Cleaning Oxygen Nozzles
As the electrode wears considerable deposits of hafnium oxide and silver can build up in the nozzle. Calcium carbonate can also build up at the nozzle exit if the cut water is not adequately treated. These deposits can sometimes cause substantial reductions in cut quality, speed and consumable life.
Nozzle performance can be restored by removing these deposits from the inside of the nozzle and the nozzle exit. A twisted piece of very ne sandpaper or crocus cloth usually cleans the nozzle well enough. Care must be taken not to damage the thin copper edge at the nozzle exit. The 340 amp nozzles have a heavier less easily damaged exit as compared to the 260 and 300 amp nozzles.
Nozzle performance is also degraded by nicks and elongation of the orice due to double arcs or mechanical damage. Cleaning will not restore a damaged nozzle.
Whenever a nozzle is removed for cleaning the electrode should be inspected. If the wear is greater than 0.090 inch or very irregular, the electrode should be replaced.
60
SECTION 6 TROUBLESHOOTING
6.3 Operating Information (con’t.)
Cut Quality
Maximum attainable cut quality is highly dependent on the material being cut. With the wide variety of commercial metals and alloys being cut with plasma, optimum cut quality can vary widely from situation to situation. Suggested cut param­eters given in this manual are starting points only for general cases. Fine tuning of the various parameters may be required to get the best possible cut of a specic material. Some materials, including certain steels, are dicult, if not impossible to cut dross free. Likewise, in carbon steels, variations in plate composition, treatment while rolling, contaminants and other factors can cause the dross generated to vary from heat to heat, plate to plate and area to area on a plate. As a general rule, using oxygen as a plasma gas produces less dross variation on carbon steel as a result of these factors, but is not a guarantee that “dross free” cuts will be produced.
6.4 Troubleshooting Guide
The following troubleshooting guide is primarily an operationally oriented guide. If a problem exists in one of the system components, the guide will direct you to that manual. When directed to another manual, be sure a qualied maintenance technician is contacted.
61
SECTION 6 TROUBLESHOOTING
6.4 Troubleshooting Guide (con’t.)
Problem
1. Reduced consumable (electrode) life (O2 and N2 cutting)
Probable Cause
Excessive current.
Gas settings - inlet pressure.
Gas or water leak.
Inadequate cooling.
Single phasing of power source.
Wrong gas bae (O2).
Moisture in system.
Process factors:
Running o work.
Remedy
Check power source ammeter (Refer to power source manual).
Check that settings are in accordance with charts. Use gas ow check kit.
Check for leaks.
Check water cooler for proper operation.
Refer to power source manual.
Install correct gas bae (O2).
Purge system of moisture for a minimum of 30 seconds after long idle time.
Extinguish arc with Arc Stop signal prior to running o work or use a waste plate to run o on. This is most important with O2 cutting.
Flipping or twisted parts hitting torch.
Skeleton cutting.
Change program or x table.
Cutting skeletons to facilitate their removal from the table can adversely aect electrode life by:
A. Causing the torch to run o the work. (see above)
B. Causing multi-pop edge starts.
62
SECTION 6 TROUBLESHOOTING
6.4 Troubleshooting Guide (con’t.)
Problem Probable Cause
1. Reduced consumable (electrode) life (O cutting) - (cont)
and N2
2
Remedy
C. Greatly increasing the frequency of starts. This is mainly a problem for O2 cutting and can be alleviated by choosing a path with a minimum number of starts or by bridging gaps in the skeleton with water plates.
D. Increased likelihood that the plate will spring up against the nozzle causing a double arc. This can be mitigated by careful operator attention and by increas­ing stando and reducing cutting speeds.
Since many of these problems are most severe with O2 cutting consumables, consider when it may be practi­cal to cut skeletons with N2 consumables:
A. When you will be changing to N2 consumables for the next plate anyway.
B. When one plasma station on the machine is not being used for part cutting and could be used for cut­ting skeletons with N2.
On machine with Oxweld or Purox torch, it may be practical to use the gas torch for skeleton cutting.
Height control problems.
Piercing stando too low.
Starting on edges with multi-pop starts.
Drawn arc from falling part.
Purity and dryness of gas.
Gas switching is not activat­ing.
See crashing / diving.
Increase piercing stando.
Position torch more carefully or use a waster plate to start on. This is most important for O2 cutting.
Change program.
Verify purity to be 99.55% O2 . Verify dew point. Verify purity of N2 to be 99.995%.
This pertains to O2 cutting only. Check to make sure that switch is in Run 1 mode so that the arc begins in N2 and switches to O2. This may be checked by install­ing the gas test owmeter rst on the N2 line into the ow control to see that N2 is owing during preow and postow only. Then install it on the O2 line into the ow control to check that O2 is owing only during the cut. O2 should never ow when cutting with N2.
63
SECTION 6 TROUBLESHOOTING
6.4 Troubleshooting Guide (con’t.)
Probable CauseProblem Remedy
1. Reduced consumable (electrode) life (O cutting) - (cont)
2. Reduced nozzle life (N2, O2 and ArH2)
and N2
2
O2 present at start.
Using non-genuine consum­ables.
Improper pierce height.
Contacting work:
When O2 cutting, check above for gas switching.
When N2 cutting, any presence of O2 will result in rapid electrode wear. Make sure system has been purged in cut gas test.
Check for gas or water leaks in torch or hoses. Check gas quality. Ensure that O2 OSV in ow con­trol is not leaking by disconnecting O2 from the ow control purging system.
N2 cutting is done with a tungsten electrode. Tungsten will turn blue or yellow in the presence of oxygen from any source.
Replace with genuine consumables.
Refer to appropriate application table for correct setting.
Diving
Work ipping
Diving is usually caused by a change in arc voltage when an automatic height control is in use. Diving can result in loss of cut damage to the nozzle. Usu­ally the voltage change is as the result of a change of direction or speed to negotiate a corner or as a result of plate falling away from the arc. These problems can be dealt with by disabling the height control in such situations and by extinguishing the arc earlier when nishing the cut on falling plate.
Diving may also be caused by a problem with the height control or the signals fed to it.
The nozzle may sometimes be damaged if the torch hits a ipped up part. This is dicult to avoid entirely but careful part programming can minimize the problem.
64
SECTION 6 TROUBLESHOOTING
6.4 Troubleshooting Guide (con’t.)
Probable CauseProblem Remedy
2. Reduced nozzle life (N2, O2 and ArH2) - (cont)
Catching on piece
Air curtain / water muer alignment
Excessive speed
Excessive pilot arc on time.
Process factors:
Inadequate initial delay. Pierce not complete before starting.
Excessive initial delay.
Improper torch assembly.
This refers to crashes or nozzle damaged caused by the front end of the torch catching on top spat­ter after a pierce. Hold the torch at a high stando for a longer lead-in to avoid this problem.
Refer to Subsection 3.6 to make necessary adjust­ments.
Reduce speed to prevent rooster tailing during cut. Reduce speed corners if rooster tailing occurs only coming out of corners.
Same as for electrode above.
Increase delay time.
Decrease initial delay.
Reassemble torch properly. Check for gas and water leaks.
Improper piercing technique.
Running pilot arc without transfer.
Using non-genuine consumables.
Improper connection or inadvertent grounding of pilot arc cable running from power source to plumbing box.
Worn feet on retaining
65
Refer to Subsections 4.3 and 4.5.
Running pilot arcs without transfer is very damag­ing to nozzles. Check stando and work connec­tions.
Replace with genuine consumables.
Connect wire properly in the power source. Make sure there are no breaks in the insulation.
Replace retaining cup.
SECTION 6 TROUBLESHOOTING
6.4 Troubleshooting Guide (con’t.)
Problem Probable Cause Remedy
3. Poor cut quality. Dross and cut surface:
Varying characteristics of material being cut.
Incorrect speed
Incorrect stando
Incorrect cut gas or shield gas ow.
Incorrect alignment or improper operation of air curtain or bubble muer.
Damaged or worn consumables.
Using non-genuine consumable part.
Gas selection.
No remedy.
Adjust to correct speed.
Refer to Subsections 4.3 and 4.5 for applicable cutting techniques.
Refer to Subsections 4.1 and 4.2.
Refer to Subsections 3.4, 3.5 and 3.6.
Replace.
Replace with genuine consumable part.
N2 produces smoother surfaces on Al and SS than O2. O2 sometimes produces less dross on C.S. than N2.
Torch alignment to work.
Incorrect current.
Cutting over slats.
Cutting machine or torch vibrates.
Mixing standard and reverse swirl parts.
Bevel angle:
Verify and correct torch alignment.
Verify correct current. Refer to appropriate cut­ting tables after Subsection 4.4.
Cutting over slats will cause some bottom dross. If the cut runs along the slat, it can produce other cut quality problems. The only solution is to try to avoid running along the slats.
Make sure brackets and height control are rigid and properly adjusted.
Check to be sure swirl is in the same direction. Remove swirl parts that are marked with an "R".
Same as dross and cut surface above except varying characteristics of material being cut and cutting machine or torch vibrations. Stando and speed have considerable eect on bevel angle.
66
SECTION 6 TROUBLESHOOTING
6.4 Troubleshooting Guide (con’t.)
RemedyProbable CauseProblem
3. Poor cut quality - (cont)
4. No pilot arc.
Damaged nozzle
Wrong travel direction (good angle on scrap side)
Plate shifting while being cut.
Slag buildup on cut table.
Contaminated electrode.
Insucient spark gap setting (in plumbing box).
Pilot Arc Contactor (PAC) malfunctioning.
Blown fuse in pilot arc or starting circuit.
Plate not level - ensure work is level. Torch not per­pendicular to work - ensure torch is plumb (perpen­dicular) to work.
With standard swirl parts the most square side of the cut is on the right side of the direction of travel.
Small, thin, or light weight plates can shift while cut­ting. Clamp them down.
Clean slag from cut table.
Clean or replace electrode.
Set spark gap to 0.040” (+.004").
Refer to power source manual.
Refer to power source manual.
Improperly assembled torch or broken torch pilot arc cable.
Broken or improperly connected pilot arc cable between plumbing box and power source.
Insucient Open Circuit Voltage (OCV).
Gas ow improperly set.
Improper clamping of stain­less steel torch body.
Conductive water muer hoses.
Water leak in torch.
67
Reassemble torch properly or replace torch pilot arc cable.
Replace or verify connections between plumbing box and power source.
Refer to power source manual.
Refer to Subsections 4.1 and 4.2.
Clamp onto non-conductive sleeve above indicated mark.
Replace with non-conductive hoses.
Determine cause of leak.
SECTION 6 TROUBLESHOOTING
6.4 Troubleshooting Guide (con’t.)
Problem Probable Cause Remedy
4. No pilot arc - (cont)
5. No arc transfer.
Shield gas ow switch not activated.
Blown fuse in pilot arc or starting circuits.
Insucient Open Circuit Voltage (OCV).
Gas ow improperly set.
Stando too high or torch centered o edge of work.
Poor connection to work­piece.
Thick mill scale or non-con­ductive surface on work.
Power source current set­ting too low.
Defective power source.
Check for adequate shield gas ow. Check shield gas ow switch.
Refer to power source manual.
Refer to power source manual.
Refer to Subsections 4.1 and 4.2.
Check cutting technique or position torch to be over work.
Check connection.
Clean mill scale or ensure conductive surface on work.
Refer to power source manual.
See power source manual.
6. No preow.
No start signal.
Emergency stop signal open.
Door opened on plumbing box allowing interlock to open.
Shorted, closed or jumpered out shield gas ow switch.
No cooling water.
N2 pressure switch not activated.
O2 pressure switch not activated when N2/O2 switch is set to O2.
68
Check input 0 on PLC in ow control. Should be lit when receiving start signal. Ensure qualied technician performs this check.
Check input 10 on PLC in ow control. Should be lit to enable operation. Ensure qualied technician performs this check.
Close door.
Check input 6 on PLC. Should be o before start signal applied. Should be on when in test. Ensure qualied technician performs this check.
Check ow switch.
100 psig N2 (gas owing) should be supplied to the ow control.
100 psig O2 (gas owing) should be supplied to the ow control.
SECTION 6 TROUBLESHOOTING
6.4 Troubleshooting Guide (con’t.)
Problem Probable Cause Remedy
7. Arc extinguishes during a cut or shuts down immedi­ately after transfer.
8. Water muer air supply does not come on.
9. Water muer under pump does not come on.
Loss of start signal.
Interlock not satised - loss of gas pressure or gas ow.
Running across very large kerf or o plate.
Speed too low.
Switch on air curtain control box in the OFF position.
Air curtain control box is not receiving signal from ow control.
Starting relay on water muf­er is not receiving signal from ow control.
Pump is not connected to main power.
Check signal from cutting machine.
Check PLC inputs.
Check part program.
Increase speed as necessary.
Switch to AUTO.
Check for presence of 115 V ac signal at Amphenol connector labeled AIR CURTAIN on back of ow control. Check wiring.
Check for presence of 115 V ac signal at Amphenol connector labeled AIR CURTAIN on back of ow control. Check wiring.
Check wiring and fuses.
Pump is running backwards.
Check wiring.
69
SECTION 6 TROUBLESHOOTING
6.4 Troubleshooting Guide (con’t.)
Problem Probable Cause Remedy
10. Poor cut quality with water muer or air curtain in­stalled. (Cuts are good above water with water muer or air curtain turned o. Cuts are bad under-water with device operating.)
11. Shield gas ow inad­equate. Cannot reach proper ow setting.
Sleeve not bottomed out on the main body.
O-rings missing or broken.
Air pressure set too high, or air shut o.
Sleeve spacing between air curtain or water muer and torch retaining cup incor­rect.
Sleeve not centered in refer­ence to the torch retaining cup.
Dirt in sleeve holes.
Holes in sleeve align with air input port.
Internal gas supply lter (in ow control) is clogged.
Reseat Sleeve.
Replace o-rings in main body.
Set air pressure between 15-30 psi. Some trails should be made on scrap plate to nd the optimum pressure for your conditions.
Adjust spacing. See Subsections 3.4, 3.5 and 3.6.
Center sleeve. Clamp may be cocked on torch handle or o-rings may be damaged.
Remove sleeve and clean.
Rotate sleeve 5°.
Clean or replace internal lter of ow control.
70
05 / 2008 - Original release.
REVISION HISTORY
71
ESAB Welding & Cutting Products, Florence, SC Welding Equipment
COMMUNICATION GUIDE - CUSTOMER SERVICES
A. CUSTOMER SERVICE QUESTIONS: Telephone: (800)362-7080 / Fax: (800) 634-7548 Hours: 8:00 AM to 7:00 PM EST Order Entry Product Availability Pricing Order Information Returns
B. ENGINEERING SERVICE: Telephone: (843) 664-4416 / Fax : (800) 446-5693 Hours: 7:30 AM to 5:00 PM EST Warranty Returns Authorized Repair Stations Welding Equipment Troubleshooting
C. TECHNICAL SERVICE: Telephone: (800) ESAB-123/ Fax: (843) 664-4452 Hours: 8:00 AM to 5:00 PM EST Part Numbers Technical Applications Specications Equipment Recommendations
D. LITERATURE REQUESTS: Telephone: (843) 664-5562 / Fax: (843) 664-5548 Hours: 7:30 AM to 4:00 PM EST
E. WELDING EQUIPMENT REPAIRS: Telephone: (843) 664-4487 / Fax: (843) 664-5557 Hours: 7:30 AM to 3:30 PM EST Repair Estimates Repair Status
F. WELDING EQUIPMENT TRAINING Telephone: (843)664-4428 / Fax: (843) 679-5864 Hours: 7:30 AM to 4:00 PM EST Training School Information and Registrations
G. WELDING PROCESS ASSISTANCE: Telephone: (800) ESAB-123 Hours: 7:30 AM to 4:00 PM EST
H. TECHNICAL ASST. CONSUMABLES: Telephone : (800) 933-7070 Hours: 7:30 AM to 5:00 PM EST
IF YOU DO NOT KNOW WHOM TO CALL
Telephone: (800) ESAB-123
Fax: (843) 664-4462
Hours: 7:30 AM to 5:00 PM EST
or
visit us on the web at http://www.esabna.com
The ESAB web site oers
Comprehensive Product Information
Material Safety Data Sheets
Warranty Registration
Instruction Literature Download Library
Distributor Locator
Global Company Information
Press Releases
Customer Feedback & Support
0558008059 05 / 2008
Loading...