ESAB m3 plasma Integrated Gas Control (IGC) System Instruction manual

Integrated Gas Control (IGC) System
®
Instruction Manual
Date: Oct12 Part Number: 0558010296 Language: EN
Integrated Gas Control (IGC) System
Revision History:
•2011 - Original Release
The purchaser is responsible for the safe operation and use of all products purchased, including compliance with all applicable standards in the country of use. See standard ESAB terms and conditions of sale for a specic statement of ESAB’s responsibilities and limitations on liability.
This manual is ESAB part number 0558010296.
Information in this document is subject to change without notice. This manual is for the convenience and use of the cutting machine purchaser. It is not a contract or any obligation on the part of ESAB Global Cutting Technology.
ESAB Global Cutting Technology, 2011
Preface
This product was designed to provide years of dependable, accurate, repeatable part cutting, with a high degree of reliability and ease of operation. There are optional features and congurations available which may or may not be included in this manual. In addition, more capabilities and features may be added in the future, which are not covered in this manual. ESAB Global Cutting Technology reserves the right to change or add features and capabilities without notice. Before operating the machine, one should become familiar with this manual in its entirety, with special attention to the SAFETY section.
2
Integrated Gas Control (IGC) System
Table of Contents
SAFETY
1.0 Safety .......................................................................................................................................................... 11
Introduction ........................................................................................................................................................................................ 11
Safety - English ................................................................................................................................................................................... 12
Safety - Spanish ..................................................................................................................................................................................16
Safety - French ....................................................................................................................................................................................20
DESCRIPTION
2.0 System Diagrams ........................................................................................................................................27
Base System .........................................................................................................................................................................................28
Base System + AHC ........................................................................................................................................................................... 29
Base System + ACC ...........................................................................................................................................................................30
Base System + WIC ............................................................................................................................................................................31
Base System + AHC + WIC .............................................................................................................................................................. 32
Base System + AHC + ACC ..............................................................................................................................................................33
Base System + WIC + ACC ..............................................................................................................................................................34
Base System + AHC + WIC + ACC .................................................................................................................................................35
2.1 Power Supply ..............................................................................................................................................36
380/400V Power Supplies ............................................................................................................................................................... 36
460/575V Power Supplies ............................................................................................................................................................... 37
2.2 Coolant Circulator (CC-11) �������������������������������������������������������������������������������������������������������������������������38
Specications ...................................................................................................................................................................................... 38
2.3 Interface Control Hub (ICH) .......................................................................................................................39
Specications ...................................................................................................................................................................................... 39
ICH Mounting Dimensions .............................................................................................................................................................39
CNC Direct Board ..............................................................................................................................................................................40
3
Integrated Gas Control (IGC) System
2.4 Combined Gas Control (CGC) .....................................................................................................................41
Specications ...................................................................................................................................................................................... 41
CGC Flow Diagram ............................................................................................................................................................................ 42
CGC Mounting Dimensions ........................................................................................................................................................... 43
CGC Bottom View ..............................................................................................................................................................................43
2.5 Power Distribution Box (PDB) .................................................................................................................. 44
Specications ......................................................................................................................................................................................44
PDB Mounting Dimensions............................................................................................................................................................44
PDB Mounting Plate Dimensions .................................................................................................................................................45
PDB Schematic ................................................................................................................................................................................... 45
2.6 Remote Arc Starter (RAS) .......................................................................................................................... 46
Specications ......................................................................................................................................................................................46
Remote Arc Starter Connections .................................................................................................................................................46
RAS Box Mounting Dimensions ...................................................................................................................................................47
RAS Box Mounting Plate Dimensions ........................................................................................................................................ 47
2.7 PT-36 Plasma Torch ................................................................................................................................... 48
Specications ......................................................................................................................................................................................48
2.8 Air Curtain Control (ACC) ...........................................................................................................................49
Specications ...................................................................................................................................................................................... 49
ACC Mounting Dimensions ............................................................................................................................................................50
ACC Component Connections ......................................................................................................................................................50
2.9 Water Injection Control (WIC) ...................................................................................................................51
Specications ...................................................................................................................................................................................... 51
2.10 Automatic Height Control (AHC) .............................................................................................................52
Specications ...................................................................................................................................................................................... 52
B4 Mounting Dimensions ............................................................................................................................................................... 53
4
Integrated Gas Control (IGC) System
INSTALLATION
3.0 Grounding ...................................................................................................................................................57
Introduction ........................................................................................................................................................................................ 57
Grounding Overview ....................................................................................................................................................................... 58
Basic Layout ........................................................................................................................................................................................59
Elements of a Ground System .......................................................................................................................................................60
Plasma Current Return Path ..........................................................................................................................................................60
Plasma System Safety Ground ...................................................................................................................................................... 61
Rail System Safety Ground ............................................................................................................................................................. 64
Earth Ground Rod ............................................................................................................................................................................. 65
Ground Rod ......................................................................................................................................................................................... 65
Soil Resistivity ..................................................................................................................................................................................... 65
Utility Power Electrical Ground ....................................................................................................................................................66
Multiple Ground Rods .....................................................................................................................................................................67
Machine Grounding Schematic....................................................................................................................................................68
3.1 Placement of Power Supply .......................................................................................................................69
Input Power Connection ................................................................................................................................................................69
Input Conductors .............................................................................................................................................................................. 69
Input Connection Procedure ........................................................................................................................................................70
Output Connection Procedure .....................................................................................................................................................70
Interface Cables/Connections.......................................................................................................................................................71
3.2 Placement of CC-11 Coolant Circulator .....................................................................................................72
Input Power Connection ................................................................................................................................................................72
Coolant Connections and Optional Equipment ..................................................................................................................... 73
3.3 Placement of RAS Box ................................................................................................................................ 74
Connections on the RAS Box ........................................................................................................................................................74
3.4 Torch Connections ...................................................................................................................................... 76
3.5 Mounting Torch to Machine .....................................................................................................................77
3.6 Placement of ICH ........................................................................................................................................78
5
Integrated Gas Control (IGC) System
3.7 Placement of PDB .......................................................................................................................................78
3.8 Placement of CGC .......................................................................................................................................78
Individual Component Connections .......................................................................................................................................... 79
ACC Component Connections ......................................................................................................................................................80
Component Placement Example .................................................................................................................................................81
OPERATION
4.0 Interface Control Hub ................................................................................................................................85
4.1 Operation ....................................................................................................................................................87
ICH Connectors .................................................................................................................................................................................. 87
Display Screens .................................................................................................................................................................................. 88
Editing a Parameter on the Display ............................................................................................................................................88
Setup Descriptions............................................................................................................................................................................ 91
Communication Options ................................................................................................................................................................ 92
Station Options .................................................................................................................................................................................. 93
Digital I/O ............................................................................................................................................................................................. 95
Digital Inputs ...................................................................................................................................................................................... 95
Digital Outputs...................................................................................................................................................................................95
4.2 Modes of Operation: ................................................................................................................................. 96
Remote Interface without Serial Communication ................................................................................................................. 96
Operation sequence with ESAB supplied plasma lifter: ......................................................................................................98
Operation sequence with customer supplied plasma lifter: ............................................................................................100
Remote Interface with Serial Communication ...................................................................................................................... 101
Local Interface - Diagnostics Only ............................................................................................................................................. 102
Operation sequence: ......................................................................................................................................................................103
Interface Wiring Descriptions .....................................................................................................................................................105
Interface Wiring ...............................................................................................................................................................................105
4.3 Maintenance/Troubleshooting ...............................................................................................................109
Communication Problems ...........................................................................................................................................................109
Digital Input Problems ..................................................................................................................................................................109
Digital Output Problems ...............................................................................................................................................................109
6
Integrated Gas Control (IGC) System
Gas Problems ....................................................................................................................................................................................109
Power Supply Problems ................................................................................................................................................................ 109
Error Messages on the ICH Display ........................................................................................................................................... 110
Process Errors .....................................................................................................................................................................................111
Communication Errors .................................................................................................................................................................. 112
APPENDIX
ESAB Serial Communication Interface .......................................................................................................... 117
Introduction ...................................................................................................................................................................................... 117
System Requirements .................................................................................................................................................................... 117
Installation ......................................................................................................................................................................................... 118
Operation ........................................................................................................................................................................................... 121
ICH Serial Communication Protocol ..............................................................................................................132
Commands ........................................................................................................................................................................................132
ICH Communication Errors ..........................................................................................................................................................139
ICH Login Sequence .......................................................................................................................................................................139
ICH Communication Error Messages ........................................................................................................................................140
ICH Parameter Loading ................................................................................................................................................................. 143
PT-36 Mechanized Plasmarc Cutting Torch ..................................................................................................144
Package Options Available .........................................................................................................................................................14 4
Optional Accessories ...................................................................................................................................................................... 144
PT-36 Torch Consumable Kits ......................................................................................................................................................145
Recommended Regulators ..........................................................................................................................................................148
Connection of Torch to Plasma System ...................................................................................................................................149
Connection to the Remote Arc Starter Box ............................................................................................................................ 149
Mounting Torch to Machine ...................................................................................................................................................... 150
Preparing to Cut...............................................................................................................................................................................153
Torch Front End Disassembly ......................................................................................................................................................159
Assembly of Torch Front End ......................................................................................................................................................162
Assembly of Torch Front End using the Speedloader ........................................................................................................163
Torch Front End Disassembly (for Production Thick Plate) ...............................................................................................164
7
Integrated Gas Control (IGC) System
Assembly of Torch Front End (for Production Thick Plate) ...............................................................................................167
Torch Body Maintenance ...........................................................................................................................................................169
Removal and Replacement of the Torch Body ......................................................................................................................170
Reduced Consumable Life ........................................................................................................................................................ 172
Checking for Coolant Leaks ......................................................................................................................................................... 173
8

SAFETY

SAFETY
DESCRIPTION INSTALLATION OPERATION APPENDIX
Be sure this information reaches the operator.
SAFETY
SAFETY
You can get extra copies through your supplier.
CAUTION
These INSTRUCTIONS are for experienced operators. If you are not fully familiar with the principles of operation and safe practices for arc welding and cutting equipment, we urge you to read our booklet, “Precautions and Safe Practices for Arc Welding, Cutting, and Gouging,” Form 52-529. Do NOT permit untrained persons to install, operate, or maintain this equipment. Do NOT attempt to install or operate this equipment until you have read and fully understand these instructions. If you do not fully understand these instructions, contact your supplier for further information. Be sure to read the Safety Precautions be­fore installing or operating this equipment.
USER RESPONSIBILITY
This equipment will perform in conformity with the description thereof contained in this manual and accompa­nying labels and/or inserts when installed, operated, maintained and repaired in accordance with the instruc­tions provided. This equipment must be checked periodically. Malfunctioning or poorly maintained equipment should not be used. Parts that are broken, missing, worn, distorted or contaminated should be replaced imme­diately. Should such repair or replacement become necessary, the manufacturer recommends that a telephone or written request for service advice be made to the Authorized Distributor from whom it was purchased.
This equipment or any of its parts should not be altered without the prior written approval of the manufacturer. The user of this equipment shall have the sole responsibility for any malfunction which results from improper use, faulty maintenance, damage, improper repair or alteration by anyone other than the manufacturer or a ser­vice facility designated by the manufacturer.
10
READ AND UNDERSTAND THE INSTRUCTION MANUAL BEFORE INSTALLING OR OPERATING.
PROTECT YOURSELF AND OTHERS!
SAFETY
SAFETY

1.0 Safety

Introduction

ESAB cutting machines are designed to operate both safely and eectively. Sensible attention to operating procedures, precautions, and safe practices is required to achieve a full measure of usefulness. Whether an individual is involved with operation, servicing, or as an observer, compliance with established precautions is mandatory. Failure to observe precautions could result in equipment damage, serious injury, or death. The following precautions are guidelines when working with cutting machines and associated equipment. More explicit precautions are found within the instruction literature. For specic safety information, obtain and read publications listed in Recommended References.
The following words and symbols are used throughout this manual to indicate dierent levels of required safety involvement:
DANGER
WARNING
CAUTION
Used to call attention to high risk hazards, which if not avoided, will result in death or serious injury.
Used to call attention to medium risk hazards, which if not avoided, could result in death or serious injury.
Used to call attention to low risk hazards, which if not avoided, could result in minor or moderate injury.
Used to call attention to important information not directly related to safety hazards or could potentially cause equipment damage.
11
SAFETY
SAFETY

Safety - English

WARNING: These Safety Precautions are for your protection. They summarize precautionary information from the
references listed in Additional Safety Information section. Before per forming any instal­lation or operating procedures, be sure to read and follow the safety precautions listed below as well as all other manuals, material safety data sheets, labels, etc. Failure to observe Safety Precautions can result in injury or death.
PROTECT YOURSELF AND OTHERS -­Some welding, cutting, and gouging processes are noisy and require ear
protection. The arc, like the sun, e mits ultraviolet (UV) and other radiation and can injure skin and eyes. Hot metal can cause burns. Training in the proper use of the processes and equipment is essential to prevent accidents. Therefore:
1. Always wear safety glasses with side shields in
any work area, even if welding helmets, face shields, and goggles are also required.
2. Use a face shield tted with the correct lter and
cover plates to protect your eyes, face, neck, and ears from sparks and rays of the arc when oper­ating or observing operations. Warn bystanders not to watch the arc and not to expose themselves to the rays of the electric-arc or hot metal.
3. Wear ameproof gauntlet type gloves, heavy
long-sleeve shirt, cuess trousers, high -topped shoes, and a welding helmet or cap for hair protection, to protect against arc rays and hot sparks or hot metal. A ameproo f apron may also be desirable as protection against radiated heat and sparks.
4. Hot sparks or me tal can lodge in rolled up sleeves,
trouser cus, or pockets. Sleeves and collars should be kept buttoned, and open pockets eliminated from the front of clothing.
5. Protect other personnel from arc rays and hot
sparks with a suitable non-ammable partition or curtains.
6. Use goggles over safety glasses when chipping
slag or grinding. Chipped slag may be hot and can y far. Bystanders should also wear goggles over safety glasses.
FIRES AND EXPLOSIONS -- Heat from ames and arcs can start res. Hot slag or sparks can also cause res and explosions. Therefore:
1. Remove all combustible materials well away from the work area or cover the materials with a pro­tective non-ammable covering. Combustible materials include wood, cloth, sawdust, liquid and gas fuels, solvents, paints and coatings, paper, etc.
2. Hot sparks or hot metal can fall through cracks or crevices in oors or wall openings and cause a hidden smoldering re or res on the oor below. Make certain that such openings are protected from hot sparks and metal.“
3. Do not weld, cut or perform other hot work until the work piece has been completely cleaned so that there are no substances on the work piece which might produce ammable or toxic vapors. Do not do hot work on closed containers. They may explode.
4. Have re extinguishing equipment handy for instant use, such as a garden hose, water pail, sand bucket, or portable re extinguisher. Be sure you are trained in its use.
5. Do not use equipment beyond its ratings. For example, overloaded welding cable can overheat and create a re hazard.
6. After completing operations, inspect the work area to make certain there are no hot sparks or hot metal which could cause a later re. Use re watchers when necessary.
7. For additional information, refer to NFPA Stan­dard 51B, "Fire Prevention in Use of Cutting and Welding Processes", available from the National Fire Protection Association, Batter y march Park, Quincy, MA 02269.
ELECTRICAL SHOCK -- Contact with live electrical parts and ground can cause severe injury or death. DO NOT use AC welding current in damp areas, if movement is conned, or if there is danger of falling.
12
SAFETY
SAFETY
1. Be sure the power source frame (chassis) is con­nected to the ground system of the input power.
2. Connect the work piece to a good electrical ground.
3. Connect the work cable to the work piece. A poor or missing connection can expose you or others to a fatal shock.
4. Use well-maintained equipment. Replace worn or damaged cables.
5. Keep everything dr y, including clothing, work area, cables, torch/electrode holder, and power source.
6. Make sure that all parts of your body are insulated from work and from ground.
7. Do not stand directly on metal or the earth while working in tight quarters or a damp area; stand on dry boards or an insulating platform and wear rubber-soled shoes.
8. Put on dry, hole-free gloves before turning on the power.
9. Turn o the power before removing your gloves.
3. Welders should use the following procedures to minimize exposure to EMF:
A. Route the electrode and work cables together.
Secure them with tape when possible.
B. Never coil the torch or work cable around your
body.
C. Do not place your body between the torch and
work cables. Route cables on the same side of your body.
D. Connect the work cable to the work piece as close
as possible to the area being welded.
E. Keep welding power source and cables as far
away from your body as possible.
FUMES AND GASES -- Fumes and gases, can cause discomfort or harm, particularly in conned spaces. Do not breathe fumes and gases. Shield­ing gases can cause asphyxiation.
Therefore:
10. Refer to ANSI/ASC Standard Z49.1 (listed on next page) for specic grounding recommenda­tions. Do not mistake the work lead for a ground cable.
ELECTRIC AND MAGNETIC FIELDS — May be dangerous. Electric current owing through any
conductor causes localized Electric
and Magnetic Fields (EMF). Weld­ing and cutting current creates EMF around welding cables and welding
machines. Therefore:
1. Welders having pacemakers should consult their
physician before welding. EMF may interfere with some pacemakers.
2. Exposure to EMF may have other health eects which
are unknown.
1. Always provide adequate ventilation in the work area by natural or mechanical means. Do not weld, cut, or gouge on materials such as galvanized steel, stain­less steel, copper, zinc, lead, beryllium, or cadmium unless positive mechanical ventilation is provided. Do not breathe fumes from these materials.
2. Do not operate near degreasing and spraying opera­tions. The heat or arc rays can react with chlorinated hydrocarbon vapors to form phosgene, a highly toxic gas, and other irritant gases.
3. If you develop momentary eye, nose, or throat ir­ritation while operating, this is an indication that ventilation is not adequate. Stop work and take necessary steps to improve ventilation in the work area. Do not continue to operate if physical discom­fort persists.
4. Refer to ANSI/ASC Standard Z49.1 (see listing below) for specic ventilation recommendations.
13
SAFETY
5. WARNING: This product, when used for welding
SAFETY
or cutting, produces fumes or gases which con­tain chemicals known to the State of California to cause birth defects and, in some cases, can­cer. (California Health & Safety Code §25249.5 et seq.)
CYLINDER HANDLING -- Cylinders, if mishandled, can rupture and vio­lently release gas. Sudden rupture of cylinder, valve, or relief device can injure or kill. Therefore:
1. Use the proper gas for the process and use the
proper pressure reducing regulator designed to operate from the compressed gas cylinder. Do not use adaptors. Maintain hoses and ttings in good condition. Follow manufacturer's operating instruc­tions for mounting regulator to a compressed gas cylinder.
2. Always secure cylinders in an upright position by chain or strap to suitable hand trucks, undercar­riages, benches, walls, post, or racks. Never secure cylinders to work tables or xtures where they may become part of an electrical circuit.
3. When not in use, keep cylinder valves closed. Have valve protection cap in place if regulator is not con­nected. Secure and move cylinders by using suitable hand trucks. Avoid rough handling of cylinders.
4. Locate cylinders away from heat, sparks, and ames. Never strike an arc on a cylinder.
5. For additional information, refer to CGA Standard P-1, "Precautions for Safe Handling of Compressed Gases in Cylinders", which is available from Compressed Gas Association, 1235 Jeerson Davis Highway, Arlington, VA 22202.
EQUIPMENT MAINTENANCE -- Faulty or im­properly maintained equipment can cause injury or death. Therefore:
1. Always have qualied personnel perform the instal­lation, troubleshooting, and maintenance work. Do not perform any electrical work unless you are qualied to perform such work.
2. Before performing any maintenance work inside a power source, disconnect the power source from the incoming electrical power.
3. Maintain cables, grounding wire, connections, power cord, and power supply in safe working order. Do not operate any equipment in faulty condition.
4. Do not abuse any equipment or accessories. Keep equipment away from heat sources such as furnaces, wet conditions such as water puddles, oil or grease, corrosive atmospheres and inclement weather.
5. Keep all safety devices and cabinet covers in position and in good repair.
6. Use equipment only for its intended purpose. Do not modify it in any manner.
ADDITIONAL SAFETY INFORMATION -- For more
information on safe practices for electric arc welding and cutting equipment, ask your supplier for a copy of "Precautions and Safe Practices for Arc Welding, Cut­ting and Gouging", Form 52-529.
The following publications, which are available from the American Welding Society, 550 N.W. LeJuene Road, Miami, FL 33126, are recommended to you:
1. ANSI/ASC Z49.1 - “Safety in Welding and Cutting”.
2. AWS C5.1 - “Recommended Practices for Plasma Arc Welding”.
3. AWS C5.2 - “Recommended Practices for Plasma Arc Cutting”.
4. AWS C5.3 - “Recommended Practices for Air Carbon Arc Gouging and Cutting”.
5. AWS C5.5 - “Recommended Practices for Gas Tung­sten Arc Welding“.
6. AWS C5.6 - “Recommended Practices for Gas Metal Arc Welding”.
7. AWS SP - “Safe Practices” - Reprint, Welding Hand­book.
8. ANSI/AWS F4.1, “Recommended Safe Practices for Welding and Cutting of Containers That Have Held Hazardous Substances.”
9. CSA Standard - W117.2 = Safety in Welding, Cutting and Allied Processes.
14
SAFETY
MEANING OF SYMBOLS - As used throughout this manual: Means Attention! Be Alert! Your safety is involved.
SAFETY
DANGER
CAUTION
WARNING
Enclosure Class
The IP code indicates the enclosure class, i.e. the degree of protection against penetration by solid objects or water. Protection is provided against touch with a nger, penetration of solid objects greater than 12mm and against spraying water up to 60 degrees from vertical. Equipment marked IP23S may be stored, but is not intended to be used outside during precipitation unless sheltered.
CAUTION
Means immediate hazards which, if not avoided, will result in immediate, serious personal injury or loss of life.
Means potential hazards which could result in personal injury or loss of life.
Means hazards which could result in minor personal injury.
This product is solely intended for plasma cutting. Any other use may result in personal injury and / or equipment damage.
CAUTION
CAUTION
If equipment is placed on a surface that slopes more than 15°, toppling over may occur. Personal injury and / or signicant damage to equipment is possible.
CAUTION
CAUTION
To avoid personal injury and/or equipment damage, lift using method and attachment points shown here.
Maximum
Tilt Allowed
15°
15
SAFETY
SAFETY

Safety - Spanish

ADVERTENCIA: Estas Precauciones de Seguridad son para su protección. Ellas
hacen resumen de información prove­niente de las referencias listadas en la sección "Información Adicional Sobre La Seguridad". Antes de hacer cualquier instalación o procedimiento de operación , asegúrese de leer y seguir las precaucio ­nes de seguridad listadas a continuación así como también todo manual, hoja de datos de seguridad del material, calcomanias, etc. El no observar las Precauciones de Seguridad puede resultar en daño a la persona o muerte.
PROTEJASE USTED Y A LOS DEMAS-­Algunos procesos de soldadura, corte y ranurado son ruidosos y requiren
protección para los oídos. El arco, como el sol , emite rayos ultravioleta (UV) y otras radiaciones que pueden dañar la piel y los ojos. El metal caliente causa quemaduras. EL entrenamiento en el uso propio de los equipos y sus procesos es esencial para prevenir accidentes. Por lo tanto:
1. Utilice gafas de seguridad con protección a los lados
siempre que esté en el área de trabajo, aún cuando esté usando careta de soldar, protector para su cara u otro tipo de protección.
2. Use una careta que tenga el ltro correcto y lente para
proteger sus ojos, cara, cuello, y oídos de las chispas y rayos del arco cuando se esté operando y observando las operaciones. Alerte a todas las personas cercanas de no mirar el arco y no exponerse a los rayos del arco eléctrico o el metal fundido.
3. Use guantes de cuero a prueba de fuego, camisa pesada
de mangas largas, pantalón de ruedo liso, zapato alto al tobillo, y careta de soldar con capucha para el pelo, para proteger el cuerpo de los rayos y chispas calientes provenientes del metal fundido. En ocaciones un delantal a prueba de fuego es necesario para protegerse de l calor radiado y las chispas.
4. Chispas y partículas de metal caliente puede alojarse en
las mangas enrolladas de la camisa , el ruedo del pantalón o los bolsillos. Mangas y cuellos deberán mantenerse abotonados, bolsillos al frente de la camisa deberán ser cerrados o eliminados.
5. Proteja a otras personas de los rayos del arco y chispas
calientes con una cortina adecuada no-amable como división.
6. Use careta protectora además de sus gafas de seguridad
cuando esté removiendo escoria o puliendo.
La escoria puede estar caliente y desprenderse con velocidad. Personas cercanas deberán usar gafas de seguridad y careta protectora.
FUEGO Y EXPLOSIONES -- El calor de las amas y el arco pueden ocacionar fuegos. Escoria caliente y las chispas pueden causar fuegos y explosiones. Por lo tanto:
1. Remueva todo material combustible lejos del área de
trabajo o cubra los materiales con una cobija a prueba de fuego. Materiales combustibles incluyen madera, ropa, líquidos y gases amables, solventes, pinturas, papel, etc.
2. Chispas y partículas de metal pueden introducirse en las grietas y agujeros de pisos y paredes causando fuegos escondidos en otros niveles o espacios. Asegúrese de que toda grieta y agujero esté cubierto para proteger lugares adyacentes contra fuegos.
3. No corte, suelde o haga cualquier otro trabajo relacionado hasta que la pieza de trabajo esté totalmente limpia y libre de substancias que puedan producir gases inam­ables o vapores tóxicos. No trabaje dentro o fuera de contenedores o tanques cerrados. Estos pueden explotar si contienen vapores inamables.
4. Tenga siempre a la mano equipo extintor de fuego para uso instantáneo, como por ejemplo una manguera con agua, cubeta con agua, cubeta con arena, o extintor portátil. Asegúrese que usted esta entrenado para su uso.
5. No use el equipo fuera de su rango de operación. Por ejemplo, el calor causado por cable sobrecarga en los cables de soldar pueden ocasionar un fuego.
6. Después de termirar la operación del equipo, inspeccione el área de trabajo para cerciorarse de que las chispas o metal caliente ocasionen un fuego más tarde. Tenga personal asignado para vigilar si es necesario.
7. Para información adicional , haga referencia a la pub­licación NFPA Standard 51B, "Fire Prevention in Use of Cutting and Welding Processes", disponible a través de la National Fire Protection Association, Batterymarch Park, Quincy, MA 02269.
CHOQUE ELECTRICO -- El contacto con las partes eléc­tricas energizadas y tierra puede causar daño severo
o muerte. NO use so ldadura de corriente alterna (AC) en áreas húmedas, de mov­imiento connado en lugares estrechos o si hay posibilidad de caer al suelo.
16
SAFETY
SAFETY
1. Asegúrese de que el chasis de la fuente de poder esté conectado a tierra através del sistema de electricidad primario.
2. Conecte la pieza de trabajo a un buen sistema de tierra física.
3. Conecte el cable de retorno a la pieza de trabajo. Cables y conductores expuestos o con malas conexiones pueden exponer al operador u otras personas a un choque eléctrico fatal.
4. Use el equipo solamente si está en buenas condi­ciones. Reemplaze cables rotos, dañados o con conductores expuestos.
5. Mantenga todo seco, incluyendo su ropa, el área de trabajo, los cables, antorchas, pinza del electrodo, y la fuente de poder.
6. Asegúrese que todas las partes de su cuerpo están insuladas de ambos, la pieza de trabajo y tierra.
7. No se pare directamente sobre metal o tierra mien­tras trabaja en lugares estrechos o áreas húmedas; trabaje sobre un pedazo de madera seco o una plataforma insulada y use zapatos con suela de goma.
8. Use guantes secos y sin agujeros antes de energizar el equipo.
9. Apage el equipo antes de quitarse sus guantes.
10. Use como referencia la publicación ANSI/ASC Standard Z49.1 (listado en la próxima página) para recomendaciones especícas de como conectar el equipo a tierra. No confunda el cable de soldar a la pieza de trabajo con el cable a tierra.
CAMPOS ELECTRICOS Y MAGNETI­COS - Son peligrosos. La corriente eléctrica uye através de cualquier conductor causando a nivel local
Campos Eléctricos y Magnéticos (EMF). Las corrientes en el área de corte y soldadura, crean EMF alrrededor de los cables de soldar y las maquinas. Por lo tanto:
1. Soldadores u Operadores que use marca-pasos para
el corazón deberán consultar a su médico antes de soldar. El Campo Electromagnético (EMF) puede interferir con algunos marca-pasos.
2. Exponerse a campos electromagnéticos (EMF) puede
causar otros efectos de salud aún desconocidos.
3. Los soldadores deberán usar los siguientes proced­imientos para minimizar exponerse al EMF:
A. Mantenga el electrodo y el cable a la pieza de
trabajo juntos, hasta llegar a la pieza que usted quiere soldar. Asegúrelos uno junto al otro con cinta adhesiva cuando sea posible.
B. Nunca envuelva los cables de soldar alrededor
de su cuerpo.
C. Nunca ubique su cuerpo entre la antorcha y el
cable, a la pieza de trabajo. Mantega los cables a un sólo lado de su cuerpo.
D. Conecte el cable de trabajo a la pieza de trabajo
lo más cercano posible al área de la soldadura.
E. Mantenga la fuente de poder y los cables de soldar
lo más lejos posible de su cuerpo.
HUMO Y GASES -- El humo y los gases, pueden causar malestar o daño, particularmente en espacios sin ventilación. No inhale el humo
o gases. El gas de protección puede causar falta de oxígeno. Por lo tanto:
1. Siempre provea ventilación adecuada en el área
de trabajo por medio natural o mecánico. No solde, corte, o ranure materiales con hierro galvanizado, acero inoxidable, cobre, zinc, plomo, berílio, o cad­mio a menos que provea ventilación mecánica positiva . No respire los gases producidos por estos materiales.
2. No opere cerca de lugares donde se aplique sub-
stancias químicas en aerosol. El calor de los rayos del arco pueden reaccionar con los vapores de hidrocarburo clorinado para formar un fosfógeno, o gas tóxico, y otros irritant es.
3. Si momentáneamente desarrolla inrritación de
ojos, nariz o garganta mientras est á operando, es indicación de que la ventilación no es apropiada. Pare de trabajar y tome las medidas necesarias para mejorar la ventilación en el área de trabajo. No continúe operando si el malestar físico per­siste.
4. Haga referencia a la publicación ANSI/ASC Standard
Z49.1 (Vea la lista a continuación) para recomen­daciones especícas en la ventilación.
17
SAFETY
5. ADVERTENCIA-- Este producto cuando se utiliza
SAFETY
para soldaduras o cortes, produce humos o gases, los cuales contienen químicos cono­cidos por el Estado de California de causar defectos en el nacimiento, o en algunos ca­sos, Cancer. (California Health & Safety Code
§25249.5 et seq.)
MANEJO DE CILINDROS-- Los cilin­dros, si no son manejados correcta­mente, pueden romperse y liberar violentamente gases. Rotura repen­tina del cilindro, válvula, o válvula de escape puede causar daño o muerte.
Por lo tanto:
1. Utilize el gas apropiado para el proceso y utilize
un regulador diseñado para operar y reducir la presión del cilindro de gas . No utilice adapta­dores. Mantenga las mangueras y las conexiones en buenas condiciones. Observe las instrucciones de operación del manufacturero para montar el regulador en el cilindro de gas comprimido.
2. Asegure siempre los cilindros en posición vertical y amárrelos con una correa o cadena adecuada para asegurar el cilindro al carro, transportes, tab­lilleros, paredes, postes, o armazón. Nunca asegure los cilindros a la mesa de trabajo o las piezas que son parte del circuito de soldadura . Este puede ser parte del circuito elélectrico.
2. Antes de dar mantenimiento en el interior de la fuente de poder, desconecte la fuente de poder del suministro de electricidad primaria.
3. Mantenga los cables, cable a tierra, conexciones, cable primario, y cualquier otra fuente de poder en buen estado operacional. No opere ningún equipo en malas condiciones.
4. No abuse del equipo y sus accesorios. Mantenga el equipo lejos de cosas que generen calor como hornos, también lugares húmedos como charcos de agua , aceite o grasa, atmósferas corrosivas y las inclemencias del tiempo.
5. Mantenga todos los artículos de seguridad y coverturas del equipo en su posición y en buenas condiciones.
6. Use el equipo sólo para el propósito que fue diseñado. No modique el equipo en ninguna manera.
INFORMACION ADICIONAL DE SEGURIDAD -- Para
más información sobre las prácticas de segu­ridad de los equipos de arco eléctrico para soldar y cortar, pregunte a su suplidor por una copia de "Precautions and Safe Practices for Arc Welding, Cutting and Gouging-Form 52-529.
Las siguientes publicaciones, disponibles através de la American Welding Society, 550 N.W. LeJuene Road, Miami, FL 33126, son recomendadas para usted:
3. Cuando el cilindro no está en uso, mantenga la válvula del cilindro cerrada. Ponga el capote de protección sobre la válvula si el regulador no está conectado. Asegure y mueva los cilindros utilizando un carro o transporte adecuado. Evite el manejo brusco de los
MANTENIMIENTO DEL EQUIPO -- Equipo defectuoso o mal mantenido puede cau­sar daño o muerte. Por lo tanto:
1. Siempre tenga personal cualicado para efec­tuar l a instalación, diagnóstico, y mantenimiento del equipo. No ejecute ningún trabajo eléctrico a menos que usted esté cualicado para hacer el trabajo.
18
1. ANSI/ASC Z49.1 - “Safety in Welding and Cutting”.
2. AWS C5.1 - “Recommended Practices for Plasma Arc Welding”.
3. AWS C5.2 - “Recommended Practices for Plasma Arc Cutting”.
4. AWS C5.3 - “Recommended Practices for Air Carbon Arc Gouging and Cutting”.
5. AWS C5.5 - “Recommended Practices for Gas Tung­sten Arc Welding“.
6. AWS C5.6 - “Recommended Practices for Gas Metal Arc Welding”.
7. AWS SP - “Safe Practices” - Reprint, Welding Hand­book.
8. ANSI/AWS F4.1, “Recommended Safe Practices for Welding and Cutting of Containers That Have Held Hazardous Substances.”
9. CSA Standard - W117.2 = Safety in Welding, Cutting and Allied Processes.
SAFETY
SIGNIFICADO DE LOS SIMBOLOS -- Según usted avanza en la lectura de este folleto: Los Símbolos Signican ¡Atención! ¡Esté Alerta! Se trata de su seguridad.
Signica riesgo inmediato que, de no ser evadido, puede resultar inmediata-
PELIGRO
mente en serio daño personal o la muerte.
SAFETY
ADVERTENCIA
CUIDADO
Clase de envolvente
El código IP indica la clase de envolvente, es decir, el grado de protección contra la penetración de objetos sólidos o agua. Se provee protección contra el toque con un dedo, penetración de objetos sólidos de un tamaño superior a 12 mm y contra rocío de agua de hasta 60 grados de la vertical. El equipo marcado IP23S se puede almacenar, pero no se debe usar en el exterior durante periodos de precipitaciones a menos que esté protegido.
ADVERTENCIA
Signica el riesgo de un peligro potencial que puede resultar en serio daño personal o la muerte.
Signica el posible riesgo que puede resultar en menores daños a la persona.
Este producto sólo se debe usar para corte por plasma Cualquier otro uso puede causar lesiones físicas y/o daños en los equipos.
ADVERTENCIA
Si el equipo se coloca sobre una supercie con una inclinación superior a 15°, se puede producir un vol­camiento. Es posible que se produzcan lesiones físi­cas y/o daños importantes en los equipos.
ADVERTENCIA
Para evitar lesiones físicas y/o daños en los equipos, levante mediante el método y los puntos de sujeción que se indican en esta ilustración.
Inclinación
máxima permitida
15°
19
SAFETY

Safety - French

SAFETY
la section des Informations de sécurité supplémen­taires. Avant de procéder à l'installation ou d'utiliser l'unité, assurez-vous de lire et de suivre les précau­tions de sécurité ci-dessous, dans les manuels, les ches d'information sur la sécurité du matériel et sur les étiquettes, etc. Tout défaut d'observer ces précautions de sécurité peut entraîner des blessures graves ou mortelles.
L'arc, tout comme le soleil, émet des rayons ultraviolets en plus d'autre rayons qui peuvent causer des blessures à la peau et les yeux. Le métal incandescent peut causer des brûlures. Une formation reliée à l'usage des proces­sus et de l'équipement est essentielle pour prévenir les accidents. Par conséquent:
1. Portez des lunettes protectrices munies d'écrans latéraux lorsque vous êtes dans l'aire de travail, même si vous de­vez porter un casque de soudeur, un écran facial ou des lunettes étanches.
2. Portez un écran facial muni de verres ltrants et de plaques protectrices appropriées an de protéger vos yeux, votre visage, votre cou et vos oreilles des étincelles et des rayons de l'arc lors d'une opération ou lorsque vous observez une opération. Avertissez les personnes se trouvant à proximité de ne pas regarder l'arc et de ne pas s'exposer aux rayons de l'arc électrique ou le métal incandescent.
3. Portez des gants ignifugiés à crispin, une chemise épaisse à manches longues, des pantalons sans rebord et des chaussures montantes an de vous protéger des rayons de l'arc, des étincelles et du métal incandescent, en plus d'un casque de soudeur ou casquette pour protéger vos cheveux. Il est également recommandé de porter un tablier ininammable an de vous protéger des étincelles et de la chaleur par rayonnement.
4. Les étincelles et les projections de métal incandescent risquent de se loger dans les manches retroussées, les rebords de pantalons ou les poches. Il est recommandé de garder boutonnés le col et les manches et de porter des vêtements sans poches en avant.
5. Protégez toute personne se trouvant à proximité des étin­celles et des rayons de l'arc à l'aide d'un rideau ou d'une cloison ininammable.
6. Portez des lunettes étanches par dessus vos lunettes de sécurité lors des opérations d'écaillage ou de meulage du laitier. Les écailles de laitier incandescent peuvent être projetées à des distances considérables. Les personnes se trouvant à proximité doivent également porter des lunettes étanches par dessus leur lunettes de sécurité.
AVERTISSEMENT : Ces règles de sécurité ont pour but d'assurer votre protection. Ils récapitulent les informations de pré­caution provenant des références dans
PROTÉGEZ-VOUS -- Les processus de soudage, de coupage et de gougeage produisent un niveau de bruit élevé et exige l'emploi d'une protection auditive.
INCENDIES ET EXPLOSIONS -- La
chaleur provenant des ammes ou de l'arc peut provoquer un incendie. Le
laitier incandescent ou les étincelles peuvent également provoquer un
incendie ou une explosion. Par conséquent :
1. Éloignez susamment tous les matériaux combustibles de l'aire de travail et recouvrez les matériaux avec un revêtement protecteur ininammable. Les matériaux combustibles incluent le bois, les vêtements, la sciure, le gaz et les liquides combustibles, les solvants, les peintures et les revêtements, le papier, etc.
2. Les étincelles et les projections de métal incandescent peuvent tomber dans les ssures dans les planchers ou dans les ouvertures des murs et déclencher un incendie couvant à l'étage inférieur Assurez-vous que ces ouver­tures sont bien protégées des étincelles et du métal incandescent.
3. N'exécutez pas de soudure, de coupe ou autre travail à chaud avant d'avoir complètement nettoyé la surface de la pièce à traiter de façon à ce qu'il n'ait aucune substance présente qui pourrait produire des vapeurs inammables ou toxiques. N'exécutez pas de travail à chaud sur des contenants fermés car ces derniers pourraient exploser.
4. Assurez-vous qu'un équipement d'extinction d'incendie est disponible et prêt à servir, tel qu'un tuyau d'arrosage, un seau d'eau, un seau de sable ou un extincteur portatif. Assurez-vous d'être bien instruit par rapport à l'usage de cet équipement.
5. Assurez-vous de ne pas excéder la capacité de l'équipement. Par exemple, un câble de soudage sur­chargé peut surchauer et provoquer un incendie.
6. Une fois les opérations terminées, inspectez l'aire de travail pour assurer qu'aucune étincelle ou projection de métal incandescent ne risque de provoquer un incendie ultérieurement. Employez des guetteurs d'incendie au besoin.
7. Pour obtenir des informations supplémentaires, consultez le NFPA Standard 51B, "Fire Prevention in Use of Cutting and Welding Processes", disponible au National Fire Protection Association, Batterymarch Park, Quincy, MA
02269.
CHOC ÉLECTRIQUE -- Le contact avec des pièces élec-
triques ou les pièces de mise à la terre sous tension peut causer des blessures graves ou mortelles. NE PAS utiliser un courant de soudage c.a. dans un endroit humide, en espace restreint ou si un danger de chute se pose.
20
SAFETY
SAFETY
1. Assurez-vous que le châssis de la source d'alimentation est branché au système de mise à la terre de l'alimentation d'entrée.
2. Branchez la pièce à traiter à une bonne mise de terre électrique.
3. Branchez le câble de masse à la pièce à traiter et assurez une bonne connexion an d'éviter le risque de choc électrique mortel.
4. Utilisez toujours un équipement correctement entretenu. Remplacez les câbles usés ou endom­magés.
5. Veillez à garder votre environnement sec, incluant les vêtements, l'aire de travail, les câbles, le porte­électrode/torche et la source d'alimentation.
6. Assurez-vous que tout votre corps est bien isolé de la pièce à traiter et des pièces de la mise à la terre.
7. Si vous devez eectuer votre travail dans un espace restreint ou humide, ne tenez vous pas directe­ment sur le métal ou sur la terre; tenez-vous sur des planches sèches ou une plate-forme isolée et portez des chaussures à semelles de caoutchouc.
8. Avant de mettre l'équipement sous tension, isolez vos mains avec des gants secs et sans trous.
9. Mettez l'équipement hors tension avant d'enlever vos gants.
10. Consultez ANSI/ASC Standard Z49.1 (listé à la page suivante) pour des recommandations spéciques concernant les procédures de mise à la terre. Ne pas confondre le câble de masse avec le câble de mise à la terre.
CHAMPS ÉLECTRIQUES ET MAGNÉTIQUES — com-
portent un risque de danger. Le courant électrique qui passe dans n'importe quel conducteur produit des champs électriques et magné-
tiques localisés. Le soudage et le courant de coupage créent des champs électriques et magnétiques autour des câbles de soudage et l'équipement. Par conséquent :
1. Un soudeur ayant un stimulateur cardiaque doit
consulter son médecin avant d'entreprendre une opération de soudage. Les champs électriques et magnétiques peuvent causer des ennuis pour cer­tains stimulateurs cardiaques.
2. L'exposition à des champs électriques et magné-
tiques peut avoir des eets néfastes inconnus pour la santé.
3. Les soudeurs doivent suivre les procédures suivantes pour minimiser l'exposition aux champs électriques et magnétiques :
A. Acheminez l'électrode et les câbles de masse
ensemble. Fixez-les à l'aide d'une bande adhésive lorsque possible.
B. Ne jamais enrouler la torche ou le câble de masse
autour de votre corps.
C. Ne jamais vous placer entre la torche et les câbles
de masse. Acheminez tous les câbles sur le même côté de votre corps.
D. Branchez le câble de masse à la pièce à traiter le
plus près possible de la section à souder.
E. Veillez à garder la source d'alimentation pour le
soudage et les câbles à une distance appropriée de votre corps.
LES VAPEURS ET LES GAZ -- peuvent causer un malaise ou des dommages corporels, plus particulièrement dans les espaces restreints. Ne re­spirez pas les vapeurs et les gaz. Le gaz de protection risque de causer
l'asphyxie. Par conséquent :
1. Assurez en permanence une ventilation adéquate dans l'aire de travail en maintenant une ventila­tion naturelle ou à l'aide de moyens mécanique. N'eectuez jamais de travaux de soudage, de coup­age ou de gougeage sur des matériaux tels que l'acier galvanisé, l'acier inoxydable, le cuivre, le zinc, le plomb, le berylliym ou le cadmium en l'absence de moyens mécaniques de ventilation ecaces. Ne respirez pas les vapeurs de ces matériaux.
2. N'eectuez jamais de travaux à proximité d'une opération de dégraissage ou de pulvérisation. Lorsque la chaleur
ou le rayonnement de l'arc entre en contact avec les
vapeurs d'hydrocarbure chloré, ceci peut déclencher la formation de phosgène ou d'autres gaz irritants, tous extrêmement toxiques.
3. Une irritation momentanée des yeux, du nez ou de la gorge au cours d'une opération indique que la ven­tilation n'est pas adéquate. Cessez votre travail an de prendre les mesures nécessaires pour améliorer la ventilation dans l'aire de travail. Ne poursuivez pas l'opération si le malaise persiste.
4. Consultez ANSI/ASC Standard Z49.1 (à la page suivante) pour des recommandations spéciques concernant la ventilation.
21
SAFETY
5. AVERTISSEMENT : Ce produit, lorsqu'il est utilisé dans une opération de soudage ou de coupage, dégage des vapeurs ou des gaz contenant des chimiques considéres par l'état de la Californie comme étant une cause des malformations congénitales et dans certains cas, du cancer. (California Health & Safety Code §25249.5 et seq.)
MANIPULATION DES CYLINDRES -­La manipulation d'un cylindre, sans
observer les précautions nécessaires, peut produire des fissures et un échappement dangereux des gaz.
Une brisure soudaine du cylindre, de la soupape ou du dispositif de surpression peut causer des blessures graves ou mortelles. Par conséquent :
1. Utilisez toujours le gaz prévu pour une opération et le
détendeur approprié conçu pour utilisation sur les cyl­indres de gaz comprimé. N'utilisez jamais d'adaptateur. Maintenez en bon état les tuyaux et les raccords. Observez les instructions d'opération du fabricant pour assembler le détendeur sur un cylindre de gaz comprimé.
2. Fixez les cylindres dans une position verticale, à l'aide
d'une chaîne ou une sangle, sur un chariot manuel, un châssis de roulement, un banc, un mur, une colonne ou un support convenable. Ne xez jamais un cylindre à un poste de travail ou toute autre dispositif faisant partie d'un circuit électrique.
3. Lorsque les cylindres ne servent pas, gardez les soupapes
fermées. Si le détendeur n'est pas branché, assurez-vous que le bouchon de protection de la soupape est bien en place. Fixez et déplacez les cylindres à l'aide d'un chariot manuel approprié. Toujours manipuler les cylindres avec soin.
4. Placez les cylindres à une distance appropriée de toute
source de chaleur, des étincelles et des ammes. Ne jamais amorcer l'arc sur un cylindre.
5. Pour de l'information supplémentaire, consultez CGA
Standard P-1, "Precautions for Safe Handling of Com­pressed Gases in Cylinders", mis à votre disposition par le Compressed Gas Association, 1235 Jeerson Davis
Highway, Arlington, VA 22202.
ENTRETIEN DE L'ÉQUIPEMENT -- Un équipe­ment entretenu de façon défectueuse ou inadéquate peut causer des blessures graves ou mortelles. Par conséquent :
SAFETY
1. Eorcez-vous de toujours coner les tâches d'installation, de dépannage et d'entretien à un personnel qualié. N'eectuez aucune réparation électrique à moins d'être qualié à cet eet.
2. Avant de procéder à une tâche d'entretien à l'intérieur de la source d'alimentation, débranchez l'alimentation électrique.
3. Maintenez les câbles, les ls de mise à la terre, les branchements, le cordon d'alimentation et la source d'alimentation en bon état. N'utilisez jamais un équipe­ment s'il présente une défectuosité quelconque.
4. N'utilisez pas l'équipement de façon abusive. Gardez l'équipement à l'écart de toute source de chaleur, notamment des fours, de l'humidité, des aques d'eau, de l'huile ou de la graisse, des atmosphères corrosives et des intempéries.
5. Laissez en place tous les dispositifs de sécurité et tous les panneaux de la console et maintenez-les en bon état.
6. Utilisez l'équipement conformément à son usage prévu et n'eectuez aucune modication.
INFORMATIONS SUPPLÉMENTAIRES RELATIVES À LA
SÉCURITÉ -- Pour obtenir de l'information supplémentaire sur les règles de sécurité à
observer pour l'équipement de soudage à l'arc électrique et le coupage, demandez un exem­plaire du livret "Precautions and Safe Practices for Arc Welding, Cutting and Gouging", Form 52-529.
Les publications suivantes sont également recomman­dées et mises à votre disposition par l'American Weld­ing Society, 550 N.W. LeJuene Road, Miami, FL 33126 :
1. ANSI/ASC Z49.1 - “Safety in Welding and Cutting”.
2. AWS C5.1 - “Recommended Practices for Plasma Arc Welding”.
3. AWS C5.2 - “Recommended Practices for Plasma Arc Cutting”.
4. AWS C5.3 - “Recommended Practices for Air Carbon Arc Gouging and Cutting”.
5. AWS C5.5 - “Recommended Practices for Gas Tung­sten Arc Welding“.
6. AWS C5.6 - “Recommended Practices for Gas Metal Arc Welding”.
7. AWS SP - “Safe Practices” - Reprint, Welding Hand­book.
8. ANSI/AWS F4.1, “Recommended Safe Practices for Welding and Cutting of Containers That Have Held Hazardous Substances.”
9. CSA Standard - W117.2 = Safety in Welding, Cutting and Allied Processes.
22
SAFETY
SIGNIFICATION DES SYMBOLES Ce symbole, utilisé partout dans ce manuel, signie "Attention" ! Soyez vigilant ! Votre sécurité est en jeu.
SAFETY
DANGER
AVERTISSEMENT
ATTENTION
Classe de protection de l’enveloppe
L’indice de protection (codication IP) indique la classe de protection de l’enveloppe, c’est-à-dire, le degré de protection contre les corps solides étrangers ou l’eau. L’enveloppe protège contre le toucher, la pénétration d’objets solides dont le diamètre dépasse 12 mm et contre l’eau pulvérisée à un angle de jusqu’à 60 degrés de la verticale. Les équipements portant la marque IP23S peuvent être entreposés à l’extérieur, mais ne sont pas conçus pour être utilisés à l’extérieur pendant une précipitation à moins d’être à l’abri.
AVERTISSEMENT
Signie un danger immédiat. La situation peut entraîner des blessures graves ou mortelles.
Signie un danger potentiel qui peut entraîner des blessures graves ou mortelles.
Signie un danger qui peut entraîner des blessures corporelles mineures.
Ce produit a été conçu pour la découpe au plasma seulement. Toute autre utilisation pourrait causer des blessures et/ou endommager l’appareil.
AVERTISSEMENT
L’équipement pourrait basculer s’il est placé sur une surface dont la pente dépasse 15°. Vous pourriez vous blesser ou endommager l’équipement de façon importante.
AVERTISSEMENT
Soulevez à l’aide de la méthode et des points d’attache illustrés an d’éviter de vous blesser ou d’endommager l’équipement.
Angle
d’inclinaison
maximal
15°
23
SAFETY
SAFETY
24

DESCRIPTION

SAFETY
DESCRIPTION
INSTALLATION OPERATION APPENDIX
DESCRIPTION
Below are some abbreviations used throughout this manual.
ABBREVIATIONS: A/C - Air Curtain
ACC - AIR Curtain Control AHC - Automatic Height Control
DESCRIPTION
CGC - Combined Gas Control ICH - Interface Control Hub IGC - Integrated Gas Control PDB - Power Distribution Box RAS - Remote Arc Starter WIC - Water Injection Control
26

2.0 System Diagrams

DESCRIPTION
The following pages illustrate dierent system congurations available on the Integrated Gas Control (IGC) Sys­tem. With this system, ESAB oers 8 dierent congurations to meet customer’s requirements. Below are the descriptions of each conguration.
1. Base System
This system is the basic conguration for the IGC Plasma System. It contains the major components, such as the Power Supply (EPP201/360/450/601), Coolant Circulator, PT-36 Torch, Remote Arc Starter (RAS), Combined Gas Control (CGC), Power Distribution Box (PDB), and Interface Control Hub (ICH). This system will meet most customers’ needs in cutting carbon steel, stainless steel, and aluminum. It also has the functionality of marking on carbon steel and stainless steel with the same torch and the same consumables. By simply alternating cutting and marking mode on the y, this system is capable of cutting and marking in the same part program without changing the consumables. To use this system, customer CNC needs to send start signal and corner signal while in geometric corner; at the same time, customer CNC needs to monitor the fault signal and motion enable signal from ICH. This base system does not come with Automatic Height Control (AHC). Customer will have to provide AHC and control its sequence.
2. Base System + AHC
This system includes the Base System plus the ESAB AHC, called a “B4 lifter”. In this conguration, ICH will control plasma sequence, and also the AHC sequence. Customer CNC needs to provide the start signal and corner signal for normal cutting.
3. Base System + ACC
This system includes the above Base System and ESAB Air Curtain Control (ACC). Air Curtain is a device used to improve the performance of plasma arc when cutting underwater. ICH from the Base System will control the sequence and turn on/o the air.
4. Base System + WIC
This system is congured to introduce the Water Injection Control (WIC), a module used to regulate cut water ow to shield the cutting process. This conguration is to meet needs of a customer who wants to cut stainless steel without using H35. This system still uses the standard PT-36 torch, but a dierent set of consumables. Similar to the dry system, this WIC system can also do marking with water shield.
5. Base System + AHC + WIC
This system provides customer the Base System, AHC (Automatic Height Control), and WIC (Water Injection Control). With this system, customer needs only to provide start signal and corner signal for cutting stainless steel with water injection.
6. Base System + AHC + ACC
This system gives the customer the ability to cut under water with ESAB Automatic Height Control (AHC).
7. Base System + WIC + ACC
This system is the Base System adding Water Injection Control (WIC) and Air Curtain Control (ACC). Customer needs to provide their own Height Control and control its sequence.
8. Base System + AHC + WIC + ACC
This complete system gives the opportunity for customer to cut carbon steel, stainless steel, and aluminum with ESAB Auto Height Control (AHC). Customer has the capability to cut stainless steel with the Water Injection Control (WIC), and underwater with the help of Air Curtain Control (ACC).
DESCRIPTION
27
Base
System
R
0558010538-OR
PT-36 Torch
Shield Gas Hose
DESCRIPTION
CGC-SG
Plasma Gas Hose
CGC-PG
Phone 1-843-664-5550
Email: oemplasma@esab.com
AHC
(Automatic Height Control)
AHC-VDR
RAS-VDR
Power, Pilot Arc, Coolant
CGC-PWR
PDB-PWR1
CGC-Ar
CGC-N2/Air
CGC-O2/H35/F5
PDB
CGC-N2/Air
(Power
Distribution Box)
CGC
(Combined Gas Control)
CGC-CAN
RAS
Interconnect Diagram
Integrated Gas Control System
R
RAS-E(-)
RAS-PSC
RAS-PA
RAS-TC IN
RAS-TC OUT
(Remote Arc Starter)
RAS-CAN
RAS-ESTOP
PDB-AC IN
ICH-GAS-PWR
ICH-RAS-CAN
ICH-CGC-CAN
BOLD FONT = Cable Connection Label
ICH
(Interface Control Hub)
28

Base System

Power Cable
Pilot Arc Cable
Work Table
PS & CC Control Cable
PS-PSC
PS(-)
PS-PA
PS-W
PS
R
(Power Supply)
{
THREE
PHASE
POWER
Coolant Return Hose
Coolant Supply Hose
PS-IC
CC-IC
CC-TC OUT
CC-TC IN
CC
(Coolant Circulator)
{
PHASE
SINGLE
CNC-ESTOP
POWER
ICH-CNC
CNC-IO
CNC
ICH-PWR IN
CNC-PWR
Customer Supplied
LIQUID
GAS
POWER
DATA
AHC
R
0558010536-OR
PT-36 Torch
DESCRIPTION
Interconnect Diagram
Integrated Gas Control System
R
AHC-VDR
RAS-VDR
RAS-E(-)
RAS-PSC
AHC
(Automatic
Height Control)
AHC-AC IN
RAS-PA
AHC-CAN
RAS-TC IN
RAS-TC OUT
Power, Pilot Arc, Coolant
RAS
AHC Input Power
(Remote Arc Starter)
RAS-CAN
RAS-ESTOP
CAN BUS
CGC-PWR
PDB-PWR1
PDB-
PDB-AC IN
CGC-Ar
CGC-N2/Air
CGC-O2/H35/F5
PDB
A/C
CTRL
ICH-AUX
ICH-GAS-PWR
ICH-AHC-CAN
ICH-AHC-PWR
ICH-RAS-CAN
Shield Gas Hose
CGC-SG
CGC-N2/Air
(Power
Distribution Box)
Plasma Gas Hose
CGC-PG
CGC
(Combined Gas Control)
CGC-CAN
ICH-CGC-CAN
ICH
(Interface Control Hub)
Phone 1-843-664-5550
Email: oemplasma@esab.com
BOLD FONT = Cable Connection Label
Base System + AHC
Power Cable
Pilot Arc Cable
Work Table
PS & CC Control Cable
PS-PSC
PS(-)
PS-PA
PS-W
PS
R
(Power Supply)
{
THREE
PHASE
POWER
Coolant Return Hose
Coolant Supply Hose
PS-IC
CC-IC
CC-TC OUT
CC-TC IN
CC
(Coolant Circulator)
{
PHASE
SINGLE
CNC-ESTOP
POWER
ICH-CNC
CNC-IO
CNC
ICH-PWR IN
CNC-PWR
Customer Supplied
LIQUID
GAS
POWER
DATA
29
R
0558010537-OR
ACC
-PWR
-PWR1
Air Curtain Hose
CGC-A/C OUT
CGC-Ar
CGC-N2/Air
CGC-O2/H35/F5
Shield Gas Hose
CGC-SG
CGC-N2/Air
ACC
CGC
-A/C
DESCRIPTION
AHC
(Automatic Height Control)
Power, Pilot Arc, Coolant
AHC-VDR
CGC
PDB
RAS-VDR
Air Curtain
PT-36 Torch
CGC-PG
CGC
(Combined Gas Control)
-A/C IN
OUT
Phone 1-843-664-5550
Email: oemplasma@esab.com
Plasma Gas Hose
CGC-CAN
Interconnect Diagram
Integrated Gas Control System
R
R
RAS-E(-)
RAS-PSC
Power Cable
PS & CC Control Cable
PS-PSC
PS(-)
PS
(Power Supply)
RAS-PA
Pilot Arc Cable
PS-PA
Work Table
PS-W
RAS
(Remote Arc Starter)
RAS-TC IN
Coolant Supply Hose
RAS-CAN
RAS-ESTOP
RAS-TC OUT
Coolant Return Hose
PS-IC
CC-IC
CC-TC OUT
CC-TC IN
CC
(Coolant Circulator)
PDB-AC IN
(Power
PDB
Distribution Box)
PDB-
A/C
CTRL
PDB-A/C1
ICH-AUX
ICH-GAS-PWR
ICH-RAS-CAN
CNC-ESTOP
ACC-IN
ACC
ACC-AIR
ICH-CNC
CNC-IO
CNC
(Air Curtain Control)
ICH-CGC-CAN
BOLD FONT = Cable Connection Label
ICH
(Interface Control Hub)
Customer Supplied
ICH-PWR IN
LIQUID
CNC-PWR
POWER
GAS
DATA
30
Base System + ACC
THREE
PHASE
{
POWER
{
PHASE
SINGLE
POWER
R
0558010535-OR
WIC
AHC
(Automatic
AHC-VDR
RAS-VDR
Height Control)
BPR
BPR-H2O
(Back
Pressure
BPR-SG
BPR-SG/H2O
Regulator)
OUT
WIC-H2O
CGC-SG
Shield Gas Hose
CGC-PWR
CGC-N2/Air
PDB-PWR1
CGC-Ar
CGC-N2/Air
CGC-O2/H35/F5
PT-36 Torch
Plasma Gas Hose
CGC-PG
CGC
(Combined Gas Control)
CGC-CAN
DESCRIPTION
Phone 1-843-664-5550
Email: oemplasma@esab.com
Interconnect Diagram
Integrated Gas Control System
R
R
RAS-E(-)
RAS-PSC
Power Cable
PS & CC Control Cable
PS-PSC
PS(-)
PS
(Power Supply)
RAS-PA
Pilot Arc Cable
PS-PA
Work Table
PS-W
RAS
(Remote Arc Starter)
RAS-TC IN
Coolant Supply Hose
RAS-CAN
RAS-ESTOP
RAS-TC OUT
Coolant Return Hose
PS-IC
CC-IC
WIC-AC-IN
CC-TC OUT
CC-TC IN
CC
(Coolant Circulator)
WIC
(Water Injection Control)
WIC-CAN
WIC-AIR IN
WIC-H2O IN
PDB-AC IN
(Power
PDB
ICH-GAS-PWR
ICH-GAS-PWR
ICH-WIC-CAN
ICH-RAS-CAN
CNC-ESTOP
Distribution Box)
ICH-CGC-CAN
ICH-CNC
CNC-IO
CNC-WIC PWR
CNC
BOLD FONT = Cable Connection Label
ICH
(Interface Control Hub)
Customer Supplied
ICH-PWR IN
LIQUID
CNC-PWR
POWER
GAS
DATA
Base System + WIC
THREE
PHASE
{
POWER
PHASE
SINGLE
POWER
31
R
0558010532-OR
WIC
AHC
BPR
BPR-H2O
(Back
DESCRIPTION
AHC
(Automatic
Height Control)
AHC-VDR
AHC-AC IN
RAS-VDR
AHC-CAN
Power, Pilot Arc, Coolant
Pressure
Regulator)
BPR-SG
OUT
WIC-H2O
BPR-SG/H2O
CGC-SG
Shield Gas Hose
CGC
-PWR
PDB
-PWR1
CGC-Ar
CGC-N2/Air
CGC-O2/H35/F5
PT-36 Torch
CGC-PG
CGC
(Combined Gas Control)
CGC-CAN
CGC-N2/Air
Plasma Gas Hose
Phone 1-843-664-5550
Email: oemplasma@esab.com
Interconnect Diagram
Integrated Gas Control System
R
R
RAS-E(-)
RAS-PSC
Power Cable
PS & CC Control Cable
PS-PSC
PS(-)
PS
(Power Supply)
RAS-PA
Pilot Arc Cable
PS-PA
Work Table
PS-W
RAS
(Remote Arc Starter)
RAS-TC IN
Coolant Supply Hose
RAS-CAN
RAS-ESTOP
RAS-TC OUT
Coolant Return Hose
AHC Input Power
PS-IC
CC-IC
CAN BUS
CC-TC OUT
CC-TC IN
WIC
(Water Injection Control)
WIC-CAN
WIC-AC-IN
WIC-AIR IN
WIC-H2O IN
CC
(Coolant Circulator)
PDB
-AC IN
(Power
PDB
Distribution Box)
ICH-GAS-PWR
ICH-WIC-CAN
ICH-AHC-CAN
ICH-AHC-PWR
ICH-RAS-CAN
CNC-ESTOP
ICH-CGC-CAN
ICH-CNC
CNC-IO
CNC-WIC PWR
CNC
BOLD FONT = Cable Connection Label
ICH
(Interface Control Hub)
ICH-PWR IN
CNC-PWR
Customer Supplied
LIQUID
POWER
GAS
DATA
32
Base System + AHC + WIC
THREE
PHASE
{
POWER
{
PHASE
POWER
SINGLE
R
0558010533-OR
ACC
AHC
AHC
(Automatic
AHC-VDR
AHC-AC IN
RAS-VDR
Height Control)
AHC-CAN
Power, Pilot Arc, Coolant
CGC
PDB
-PWR
-PWR1
Air Curtain Hose
CGC-A/C OUT
CGC-Ar
CGC-N2/Air
CGC-O2/H35/F5
Shield Gas Hose
CGC-SG
CGC-N2/Air
ACC
CGC
(Combined Gas Control)
CGC
-A/C IN
-A/C
OUT
Air Curtain
PT-36 Torch
Plasma Gas Hose
CGC-PG
CGC-CAN
DESCRIPTION
Phone 1-843-664-5550
Email: oemplasma@esab.com
Interconnect Diagram
Integrated Gas Control System
R
R
RAS-E(-)
RAS-PSC
Power Cable
PS & CC Control Cable
PS-PSC
PS(-)
PS
(Power Supply)
RAS-PA
Pilot Arc Cable
PS-PA
Work Table
PS-W
RAS
(Remote Arc Starter)
RAS-TC IN
Coolant Supply Hose
RAS-CAN
RAS-ESTOP
RAS-TC OUT
Coolant Return Hose
AHC Input Power
PS-IC
CC-IC
Can Bus
CC-TC OUT
CC-TC IN
CC
PDB-AC IN
(Coolant Circulator)
(Power
PDB
Distribution Box)
PDB-
A/C
CTRL
PDB-A/C1
ACC-IN
ICH-AUX
ICH-GAS-PWR
ICH-AHC-CAN
ICH-AHC-PWR
ICH-RAS-CAN
CNC-ESTOP
ACC
ACC-AIR
ICH-CNC
CNC-IO
CNC
(Air Curtain Control)
ICH-CGC-CAN
BOLD FONT = Cable Connection Label
ICH
(Interface Control Hub)
Customer Supplied
ICH-PWR IN
LIQUID
CNC-PWR
POWER
GAS
DATA
Base System + AHC + ACC
THREE
PHASE
{
POWER
{
PHASE
POWER
SINGLE
33
R
0558010534-OR
WIC
ACC
BPR-A/C
(Back
BPR
Pressure
Regulator)
BPR
DESCRIPTION
BPR-A/C
BPR-H2O
BPR-SG
-SG/H2O
Air Curtain Hose
Shield Gas Hose
Air Curtain
PT-36 Torch
Phone 1-843-664-5550
Email: oemplasma@esab.com
Interconnect Diagram
Integrated Gas Control System
R
AHC
(Automatic Height Control)
AHC-VDR
RAS-VDR
RAS-PA
RAS-E(-)
RAS-PSC
Power, Pilot Arc, Coolant
RAS
(Remote Arc Starter)
RAS-TC IN
RAS-ESTOP
RAS-TC OUT
OUT
WIC-H2O
RAS-CAN
WIC-AC-IN
WIC-CAN
WIC-H2O IN
CGC-SG
CGC-A/C OUT
CGC
-PWR
WIC
(Water Injection Control)
PDB
-PWR1
WIC-AIR IN
PDB-AC IN
CGC-N2/Air
CGC-O2/H35/F5
(Power
PDB
Distribution Box)
PDB-
A/C
CTRL
CGC-Ar
CGC-N2/Air
PDB-A/C1
ICH-AUX
ICH-GAS-PWR
ICH-WIC-CAN
ICH-RAS-CAN
CGC
(Combined Gas Control)
CGC
-A/C IN
ACC
(Air Curtain Control)
ACC-IN
ACC-AIR
Plasma
Gas Hose
CGC
-PG
CGC-CAN
ICH-CGC-CAN
ICH
(Interface Control Hub)
BOLD FONT = Cable Connection Label
34
Base System + WIC + ACC
Power Cable
Pilot Arc Cable
Work Table
PS & CC Control Cable
PS-PSC
PS(-)
PS-PA
PS-W
PS
R
(Power Supply)
{
THREE
PHASE
POWER
Coolant Return Hose
Coolant Supply Hose
PS-IC
CC-IC
CC-TC OUT
CC-TC IN
CC
(Coolant Circulator)
{
PHASE
POWER
SINGLE
CNC-ESTOP
ICH-CNC
CNC-IO
CNC-WIC PWR
CNC
ICH-PWR IN
CNC-PWR
Customer Supplied
LIQUID
GAS
POWER
DATA
WIC
AHC
ACC
R
AHC
(Automatic
Height Control)
BPR-A/C
BPR
BPR-A/C
BPR-H2O
(Back
Pressure
BPR-SG
Regulator)
BPR-SG/H2O
Air Curtain Hose
Shield Gas Hose
Air Curtain
PT-36 Torch
CGC
-PG
0558010531-OR
Phone 1-843-664-5550
Email: oemplasma@esab.com
Plasma
Gas Hose
DESCRIPTION
Interconnect Diagram
Integrated Gas Control System
R
AHC-VDR
RAS-VDR
RAS-E(-)
RAS-PSC
Power Cable
PS & CC Control Cable
AHC-CAN
AHC-AC IN
RAS-PA
Pilot Arc Cable
RAS-TC IN
RAS-TC OUT
Work Table
Coolant Return Hose
Coolant Supply Hose
Power, Pilot Arc, Coolant
RAS
AHC Input Power
(Remote Arc Starter)
RAS-CAN
RAS-ESTOP
WIC-H2O
CAN BUS
OUT
WIC-CAN
WIC-AC-IN
CGC-SG
CGC-A/C OUT
CGC-PWR
PDB-PWR1
WIC
(Water Injection Control)
WIC-AIR IN
WIC-H2O IN
PDB-
PDB-AC IN
CGC-Ar
CGC-N2/Air
CGC-O2/H35/F5
(Power
PDB
Distribution Box)
A/C
CTRL
ICH-AUX
ICH-GAS-PWR
ICH-WIC-CAN
ICH-AHC-CAN
ICH-AHC-PWR
ICH-RAS-CAN
CGC-N2/Air
PDB-A/C1
CGC
(Combined Gas Control)
IN
CGC
-A/C
ACC
-A/C
OUT
ACC
(Air Curtain Control)
ACC-IN
ACC-AIR
ICH-CNC
CGC-CAN
ICH-CGC-CAN
BOLD FONT = Cable Connection Label
ICH
(Interface Control Hub)
Customer Supplied
ICH-PWR IN
Base System + AHC + WIC + ACC
CC-TC OUT
PS-PSC
PS(-)
PS-PA
PS-W
PS
R
(Power Supply)
PS-IC
{
THREE
PHASE
POWER
CC-TC IN
CC-IC
CC
(Coolant Circulator)
{
PHASE
SINGLE
POWER
CNC-WIC PWR
CNC-ESTOP
CNC-IO
CNC
CNC-PWR
LIQUID
GAS
POWER
DATA
35
DESCRIPTION
400V
m3 601
50/60HZ
380V
m3 601
50/60HZ
DESCRIPTION
40 0V TAPS
380V
m3 601
50/60HZ
380V TAPS
400V
m3 450
50/60HZ
380V
m3 450
50/60HZ
40 0V TAPS
380V
m3 450
50/60HZ
380V TAPS
m3 Plasma Power Supply Input/Output Information
m3 360,
50 / 60Hz
380 / 400V,
m3 201,
50 / 60Hz
380 / 400V,
2/0 AWG 2/0 AWG 2/0 AWG 2/0 AWG 2/0 AWG 4/0 AWG 4/0 AWG 4/0 AWG
360 VDC 360 VDC 430VDC 406VDC 427VDC 430VDC 406VDC 427VDC
10A to 36A 10A to 36A 10A to 100A 10A to 100A
30A to 200A 30A to 360A 35A to 450A 35A to 600A
36

2.1 Power Supply

380/400V Power Supplies

The IGC system can use dierent plasma power supplies. ESAB provides the EPP-201/360/450/601, with various input voltages and current output
for your requirements. For details about our power supplies, please refer to the power supply’s specic manual.
Input Voltage (3-Phase) 380 / 400V 380 / 400V 380VAC 380VAC 400VAC 380VAC 380VAC 400VAC
Input Current (3-Phase) 60 / 57A RMS 140 / 132A RMS 167A R MS 167A R MS 159A RMS 217A RMS 217A RMS 206A RMS
Input Frequency 50 / 60 HZ 50 / 60 HZ 50/60 HZ 50/60 HZ 50/60 HZ 50/60 HZ 50/60 HZ 50/60 HZ
Input KVA 39.5 KVA 91.6 KVA 109.9 K VA 109.9 KVA 11 0. 2 K VA 142.8 KVA 142.8 KVA 142.7 KVA
Input Power 35.5 K W 82.5 KW 98.9 KW 98.9 KW 99.1 KW 128 .5 KW 128 .5 KW 128. 4 KW
Input Power Factor 90.0 % 90.0 % 90% 90% 90% 90% 90% 90%
Recommended Input
Power Cable
Input Fuse (Recommended) 100A 200A 200A 200A 200A 250A 250A 250A
Output Open Circuit Voltage
(OCV) (High Range Cutting)
Output Cutting Range
(100% Duty)
Output Marking Range
(100% Duty)
Output Power (100% Duty) 32 KW 72 KW 90 KW 120 KW
Protection Class IP 21 IP 21 IP 21 IP 21
Dimensions 585 x 1040 x 1195 mm 585 x 1040 x 1195 mm 950 x 1050 x 1150 mm 950 x 1050 x 1150 mm
Input
Output
Weight 493 kg 493 kg 850 kg 850 kg
DESCRIPTION
m3 601
575V, 60HZ
m3 601
460V, 60HZ
m3 450
575V, 60HZ
m3 450
460V, 60HZ
DESCRIPTION
m3 360
575V, 60Hz
m3 Plasma Power Supply Input/Output Information
m3 360
460V, 60Hz
m3 201
575V, 60Hz
360 VDC 360 VDC 431VDC 431VDC
m3 201
460V, 60Hz
2/0 AWG 2/0 AWG 2/0 AWG 2/0 AWG 1/0 AWG 2/0 AWG 1/0 AWG 1/0 AWG
10A to 36A 10A to 36A 10A to 100A 10A to 100A
30A to 200A 30A to 360A 35A to 450A 35A to 600A
460/575V Power Supplies
Input Voltage (3-Phase) 460V 575V 460V 575V 460VAC 575VAC 460VAC 575VAC
Input Current (3-Phase) 51A RMS 41A RMS 115 A RMS 92A RMS 138A RMS 110 A RMS 179A R MS 143A R MS
Input Frequency 60 HZ 60 HZ 60 HZ 60 HZ 60 HZ 60 HZ 60 HZ 60 HZ
Input KVA 40.6 KVA 40.6 KVA 91.6 KVA 91.6 KVA 110.0 KVA 109.6 KVA 142.6 KVA 142.4 K VA
Input Power 35.5 K W 35.5 K W 82.5 KW 82.5 KW 99.0 KW 98.6 KW 128 .4 K W 128.2 K W
Input Power Factor 90.0 % 90.0 % 90.0 % 90.0 % 90% 90% 90% 90%
Recommended Input
Power Cable
Input Fuse (Recommended) 100A 60A 150A 125A 200A 150A 250A 200A
Output Open Circuit Voltage
(OCV) (High Range Cutting)
Output Cutting Range
(100% Duty)
Output Marking Range
(100% Duty)
Output Power (100% Duty) 32 KW 72 KW 90 KW 120 KW
Protection Class IP 21 IP 21 IP 21 IP 21
Dimensions 585 x 1040 x 1195 mm 585 x 1040 x 1195 mm 950 x 1050 x 1150 mm 950 x 1050 x 1150 mm
Input
Output
Weight 493 kg 493 kg 850 kg 850 kg
37

2.2 Coolant Circulator (CC-11)

p/n 0558007515
The Coolant Circulator (CC-11) recirculates coolant to cool the torch, electrode and nozzle. For more specif­ic details, please refer to the CC-11 Instruction manual.
DESCRIPTION
DESCRIPTION
Specications
Dimensions: 34.00" (864 mm) high x 21.75" (552 mm) wide x 28.00 (711 mm) deep Weight: 215 lb. dry (97.5 kg) / 249 lb. wet (113 kg) Pump Type:
Positive displacement, rotary vane type with adjustable by-pass valve (200 psi / 13.8 bars max.), CW rotation as viewed from nameplate.
Radiator Type: Copper tubing, aluminum nned air-to-water type with galvanized steel frame.
AC Input Voltages
AC Input Amperage 9 / 8 / 5 / 4 / 3 Amperes
Pump Capacity
Cooling Capacity @ 1.60 gpm (6.0 l/min)
at 45° F (25° C) temperature dierence between high coolant temperature and ambient air tem­perature using ESAB coolant p/n 0558004297 (25% propylene glycol / 75% distilled water).
Max. Delivery Pressure 175 psig (12 bars) Reservoir Capacity 4 gallons (15.2 liters)
50Hz, 1 Phase Input Power 60Hz, 1 Phase Input Power
200 / 230 / 400 / 460 / 575 V, + / - 10%
1.60 gpm at 175 psi (6.0 l/min at 12 bars)
16,830 BTU / hr. (4900 watts) 20,200 BTU / hr. (5900 watts)
1.60 gpm at 175 psi (6.0 l/min at 12 bars)
38
DESCRIPTION

2.3 Interface Control Hub (ICH)

p/n 0558009607
The Interface Control Hub (ICH) provides the plasma process control including current, gas and torch height (if applicable). It also serves as the interface between the customer CNC and the ESAB IGC plasma system. At the same time, it functions as a hub for CAN communication.
DESCRIPTION
Specications
Dimensions: 7.50” (190.5 mm) high x 10.125” (257.2 mm) wide x 6.50” (165.1 mm) deep Weight: 8.5 lbs. (3.9 kg)
Operating Temperature 5-40°C (41-104°F) Max Humidity 95% non-condensing Enclosure Degree of Protection IP54
Input Power Reduction
ICH Mounting Dimensions
 0.28”
(7.1 mm)
3.00”
(76.2 mm)
230 VAC, 5 Amps 120 VAC, 3 Amps
11. 50 ”
(292.1 mm)
39
DESCRIPTION
CNC Direct Board
p/n 0558009991
The CNC Direct board is the control and interface board inside the ICH. It provides the process control, interface to customer CNC, system setup, panel interface, etc. Below is a skeleton of this CNC board. It shows the major components and the major connectors on the board. The table below gives the functions of these connections.
DESCRIPTION
40
Port Function Port Function
X1 CNC Control, DB37 X2 RS232 X3 CAN1 and 24VDC input XP1 Programming port 1
X4 CAN2 XP2 Programming port 2
X6 Spare I/O S2, S3 ID switches, by default S2=1, S3=4 X7 Reserved V12 IC, Main processor
X8 Aux Control, DB25 V13
X9 ASIOB1 Communication V41 IC for ASIOB1
XS1 Switches: Plasma Start, Gas Test J1
XS2
Switches: Local/Remote, Station Select and Screen Select
EEPROM, Save data for system conguration, error history, etc.
DIP switches: 1- 120R for CAN1, 2- 120R for CAN2, 3- VCC to ASIOB1, 4- GND to ASIOB1 Default: 1 - ON, 2 - ON, 3 - OFF, 4 - OFF
DESCRIPTION

2.4 Combined Gas Control (CGC)

p/n 0558010241
The Combined Gas Control (CGC) regulates the output of the plasma gas (PG) selected from the three plasma gas inlets (N2/ Air, O2/H35/F5 and Argon) and controls the ow of shield gas (SG). It is powered by 24 Volts (AC and DC) from the Power Distri­bution Box and receives commands via the CAN-bus.
There are four gas inputs (three plasma gases, one shield gas), two gas outputs (SG, PG), and one outboard connection (air curtain). The four inputs are tted with porous bronze lters and "G-1/4" (BSPP) female right hand thread. Either of two adaptor tting kits are available to adapt standard metric or CGA hose connections. The gas ttings and adaptors are listed in the following tables.
Specications
Dimensions: 8.5” (215.9 mm) long x 6.0” (152.4 mm) wide x 4.5” (114. 3 mm) high Weight: 8.65 lbs. (3.9 kg) Power Input: 24 VAC/DC
DESCRIPTION
Metric
Input
Adaptors
CGA
Input
Adaptors
Gas Fitting
Argon G-1/4” right hand male x G-1/4” right hand male 0558010163
Plasma
Shield N2/Air G-1/4” right hand male x G-1/4” right hand male 0558010163
Air Curtain Air G-1/4” right hand male x “B” Air/Water right hand male 0558010165
Plasma
Shield N2/Air G-1/4” right hand male x “B” Air/Water right hand male 0558010165
Air Curtain Air G-1/4” right hand male x “B” Air/Water right hand male 0558010165
Outputs
N2/Air G-1/4” right hand male x G-1/4” right hand male 0558 010163
O2/H35/F5* G-1/4” right hand male x G-1/4” right hand male 0558010163
* Another adapator is required when connecting H35/F5.
Part Number - 0558010246 (G-1/4” right hand female x G-1/4” left hand male)
Argon G-1/4” right hand male x “B” Inert Gas right hand female 0558010166
N2/Air G-1/4” right hand male x “B” Inert Gas right hand female 0558010166
O2/H35/F5* G-1/4” right hand male x “B” Oxygen right hand male 0558010167
* Another adapator is required when connecting H35/F5.
Part Number - 0558010245 (“B” Oxygen right hand female x “B” Fuel Gas left hand male)
SG 1/4” NPT x 5/8"-18 LH male 10Z30
PG 1/4” NPT x “B” Inert Gas right hand female 2064113
Air Curtain 1/8” NPT x “B” Inert Gas left hand female 08030280
ESAB
P/N
ESAB Kit p/n
0558000254
ESAB Kit p/n
0558000253
41
DESCRIPTION
When connecting fuel gas lines to the oxygen plasma gas input, or re-
CAUTION
NOTE
DESCRIPTION
Each gas has a requirement for maximum ow and pressure as shown in chart below:
Gas Pressure
Argon 125 psi (8.6 bar), 200 SCFH (5.7 SCMH)
Plasma
Shield N2/Air 125 psi (8.6 bar), 353 SCFH (10.0 SCMH)
Air Curtain Air 80 psi (5.5 bar), 1200 SCFH (34.0 SCMH)
O2/H35/F5 125 psi (8.6 bar) for O2, 75 psi (5.2 bar) for H35/F5, 255 SCFH (7.2 SCMH)
N2/Air 125 psi (8.6 bar), 255 SCFH (7.2 SCMH)
connecting oxygen after fuel gas use, extra care must be taken to as­sure that all lines from input through the torch are completely purged. It is recommended to purge the system and torch lines with nitrogen for 60 seconds prior to reconnection, then purge the nitrogen for 60 seconds with the new supply gas before cutting.
CGC Flow Diagram
42
CGC Mounting Dimensions
p/n 0558008459
 0.281
(7.1mm)
0.313”
(8.0mm)
DESCRIPTION
DESCRIPTION
4.00”
(101.6mm)
0.37”
(9.5mm)
CGC Bottom View
7.5 0 ”
(190.5mm)
4.72”
(120.0mm)
0.37”
(9.5mm)
(22.9mm)
(64.0mm)
M6
0.90”
2.52”
43
DESCRIPTION

2.5 Power Distribution Box (PDB)

p/n 0558010242
The Power Distribution Box (PDB) takes 230 VAC or 115 VAC depending on the switch setup. Outputs of 24 VDC and 24 VAC are to supply power to the Com­bined Gas Control (CGC). The PDB also recieves com-
DESCRIPTION
mands from the ICH via the A/C CTRL port. This is for controlling the air curtain outputs. By default, the PDB can control one CGC and one air curtain. If need­ed, a second CGC and air curtain can be controlled af­ter putting another power block and necessary con­nectors inside. Power block and connectors kit part number is 0558010247.
Specications
Dimensions: 10” (254 mm) long x 9.5” (241.3 mm) wide x 4.25” (108 mm) high Weight: 9.0 lbs. (4.1 kg)
Input Power
Output Power 24 V AC/DC
PDB Mounting Dimensions
230 VAC, 2 Amps 115 VAC, 3 Amps
8.00”
(203.2 mm)
6.50”
(165.1 mm)
M6
44
.875”
(22.2 mm)
3.00”
(76.2 mm)
4.25”
(108.0 mm)
10.00”
(254.0 mm)
PDB Mounting Plate Dimensions
p/n 0558008794
 0.281
(7.1mm)
0.313”
(8.0mm)
DESCRIPTION
DESCRIPTION
5.75”
(146.0mm)
0.50”
(12.7mm)
9.50”
(241.3mm)
PDB Schematic
From the factory, the PDB’s 230/115VAC switch is set to 230VAC. If the customer requires a dierent input volt­age, then change the switch to 115 VAC.
45
DESCRIPTION

2.6 Remote Arc Starter (RAS)

p/n 0558008150
The Remote Arc Starter is more commonly referred to as the RAS Box. The RAS box serves as an interface between the plasma controller and the EPP family of plasma power supplies, helping to deliver a stable plasma arc. The RAS
DESCRIPTION
box also provides a voltage feedback to the plasma torch lift. This voltage is used to regulate the torch height while cutting, maintaining the proper height of the torch above the work piece.
Within the RAS box there is an I/O module for communi­cating with the plasma controller, a High Frequency/Voltage Divider circuit board which provides pilot arc ion­ization and voltage divider functions to regulate torch height.
Coolant connections and torch power connections are made within the RAS box and provide an interface be­tween the power supply, coolant circulator and the torch.
Specications
Dimensions: 8.75” (222.3 mm) high x 7.50” (190.5 mm) wide x 17.00” (431.8 mm) deep Weight: 28.5 lbs. (12.9 kg)
Remote Arc Starter Connections
A
B
G, H
C
D
EF
Chassis must be connected to
the machine ground.
Letter Description
A 3 Pin Voltage Divider Connection to the Lift
B 8 Pin Can Bus Connection to the CNC or Interface
C 24 Pin Amphenol Power Supply Connection
D E-Stop
E Coolant Inlet - Flowing to the Torch
Coolant Return - Flowing back to the Coolant Circu-
F
G, H Strain Relief Fittings
J
I Torch Shroud Connection
J Machine Ground Connection
Note:
lator from the Torch
46
I
DESCRIPTION
RAS Box Mounting Dimensions
The box has four M6 x 1 threaded mounting holes shown in pattern below.
If fasteners are threaded into the box from below, the length of the fasteners
CAUTION
5.00”
(12 7.0 0 mm)
must not allow them to extend more than 0.25” beyond the edge of the internal female threads. If fasteners are too long they can interfere with the components inside the box.
DESCRIPTION
1.00”
(2.54 mm)
2.75”
(69.85 mm)
RAS Box Mounting Plate Dimensions
p/n 0558008461
8.75"
(222.3 mm)
3.25"
7.50"
(190 .5 mm)
(82.6 mm)
6.50"
(165.1 mm)
13.75”
(349.25 mm)
18. 50"
(469.9 mm)
17. 50"
(444.5 mm)
47

2.7 PT-36 Plasma Torch

p/n 0558008300
The PT-36 Mechanized Plasmarc Cutting Torch is a plasma arc torch factory assembled to provide torch component concentricity and consistent cutting ac­curacy.
DESCRIPTION
7.54"
(191. 5 mm)
DESCRIPTION
(50.8 mm)
9.13"
(231.9 mm)
6.17"
(156.7 mm)
10.50" (266.7 mm) Length of Sleeve
Specications
Type: Water cooled, Dual gas, mechanized plasmarc cutting torch Current Rating: 1000 Amps @ 100% duty cycle Mounting Diameter: 2 “(50.8 mm) Length of Torch without leads: 16.7 “(42 cm) IEC 60974-7 Voltage Rating: 500 volts peak Striking Voltage (maximum value of HI-FREQUENCY voltage): 8000 VAC Minimum Coolant Flowrate: 1.3 GPM (5.9 L/min) Minimum Coolant Pressure at Inlet: 175 psig (12.1 bar) Maximum Coolant Pressure at Inlet: 200 psig (13.8 bar) Minimum Acceptable Rating of Coolant Recirculator: 16,830 BTU/HR (4.9 kW) at High Coolant Temperature -
Ambient = 45°F (25°C) and 1.6 USGPM (6 L/min)
Maximum Safe Gas Pressures at Inlets to Torch: 125 psig (8.6 bar) Safety Interlocks: This torch is intended for use with ESAB plasmarc cutting systems and controls employing a
water ow switch on the coolant return line from the torch. Removal of the nozzle retaining cup to service the torch breaks the coolant return path.
2.00"
48
DESCRIPTION

2.8 Air Curtain Control (ACC)

p/n 374 4 0
DESCRIPTION
p/n 0558010243
Specications
Dimensions: 6.00” high (152.4 mm) x 9.56” wide (242.8 mm) x 2.50” deep (63.5 mm) Weight: 4.00 lbs. (1.81 kg)
Input Power: 24 VAC
The Air Curtain is a device used to improve the performance of plasma arc when cutting underwater. The device mounts onto the torch and produces a curtain of air. This allows the plasma arc to operate in a relatively dry zone to reduce noise, fume, and arc radiation, even though the torch has been submerged.
The Air Curtain requires a source of compressed air that needs to be clean, dry and oil-free. It should be delivered at 80 psi @ 1200 cfh (5.5 bar @ 34 CMH).
49
ACC Mounting Dimensions
DESCRIPTION
9.31”
(236.5 mm)
DESCRIPTION
5.81”
(147. 6 mm)
2.91”
(74.0 mm)
1.16”
(29.5 mm)
.312” x .500”
slots
7.00”
(17 7.8 mm)
ACC Component Connections
NOTE:
Cables “A” and “B” are listed in the ACC Component Connections, INSTALLATION
section of this manual.
A
Compressed Air
50
B
DESCRIPTION

2.9 Water Injection Control (WIC)

p/n 0558009370
The Water Injection Control (WIC) regulates the ow of cut water supplied to the plasma torch. This water is used as a shield in the cutting process. This shield assists in forming the plasma arc and also cools the cut surface. The selection and output of cut water is performed and controlled by the CNC. The WIC consists of a water regulator, pump and a closed feedback loop between proportional valve and ow sensor. This is controlled by a local Process Control Unit (PCU). The PCU communicates via CAN to the ICH while controlling the proportional and solenoid valves. The WIC is monitored and sends feedback signals through the CAN bus to the ICH for diagnostic purposes.
Specications
Dimensions (Electrical module) 163 mm x 307 mm x 163 mm (6.4 in x 12.1 in x 6.4 in) Dimensions (Pump Module) 465 mm x 465 mm x 218 mm (18.3 in x 18.3 in x 8.6 in) Weight (Electrical module) 15 lb. dry (6.8 kg) Weight (Pump Module) 60 lb. dry (27.2 kg)
Tap water with an allowable water hardness of <2 ppm as CaCO3 and Conductivity:
Water Requirements
Air Supply (anti-freezing function) 250 CFH @ 80 psi (7.1 cmh @ 5.5 bar)
Pump
Motor
Pressure Regulator
Pressure Transducer
Proportional Valve
Flow Sensor
Air Solenoid
>200,000 ohms per inch, ltered at 5 microns. 1 gpm (3.8 l/min) minimum ow rate @ 20 psi (1.4 bar).
Positive displacement, rotary vane with adjustable by-pass valve (250 psi / 17.2 bars maxi­mum), CW rotation, Capacity: 1.33 GPM @ 150 psi (5.04 l/min @ 10.3 bar), Nominal speed: 1725 rpm, Temperature rating: 150o F (66o C)
1/2 HP, 230 VAC single phase, 60 Hz, 1725 RPM, 3.6A current, Temperature rating: 150o F (66o C)
Inlet water pressure: 100 psi (6.9 bar) maximum Outlet water pressure: 20 psi (1.4 bar) factory set
Maximum pressure range: 0 - 200 psi (0 - 13.8 bar) Temperature range: -40o - 257o F (-40 Supply voltage: 24 VDC Pressure signal output: 4 mA for 0 psi, 20 mA for 200 psi (13.8 bar). Regulated to 1 to 5 VDC with 250 ohm resistor.
Supply voltage: 24 VDC Full load current: 500 mA, Input control signal: 0-10 VDC. Coil: Standard Voltage: 24 VDC, Operating current: 100-500 mA, Valve: Orice size: 3/32”, Cv:0.14 (fully open) Operating dierential pressure: 115 psi (8.0 bar) ; Max. ow 1.5 gpm Maximum uid temperature: 150o F (66o C)
Maximum operating pressure: 200 psi (13.8 bar), Operating temperature: -4o - 212o F (-20o - 100o C), Input power: 5 - 24 VDC @ 50 mA maxi­mum, Output signal: 58 - 575 Hz, Flow range: 0.13 - 1.3 gpm
Supply voltage: 24 VDC, Maximum operating pressure: 140 psi (9.7 bar) , Operating tem­perature: 32o - 77o F (0 - 25o C)
o
- 125o C)
DESCRIPTION
51
DESCRIPTION

2.10 Automatic Height Control (AHC)

p/n 0560947166
The B4 lift assembly provides vertical motion for the PT-36 plasma torch, using a typi­cal motor, screw, and slide conguration. The motor turns an enclosed spindle screw, which in turn raises/lowers the lifting plate along linear rails. Directional commands given from the plasma controller determine the direction of the travel. Fixed limit
DESCRIPTION
switches are included to prevent upper and lower lift’s over travel.
The lift assembly also contains components necessary to control height over work surfaces; initial, piercing, and cutting heights are encoder controlled during the plas­ma cycle. During part production, height is automatically controlled by taking volt­age measurements between the torch electrode and work surface.
The B4 lifts utilize an Omni Soft Touch® assembly to protect the system during sta­tion crashes. Proximity switches monitor torch position in the torch holder. If the torch is jarred in any direction, the process will stop and an error report will be sent to the controller.
Specications
Dimensions:
6.0” (152.4 mm) wide x 8.5” (215.9 mm) deep x 31.5” (800.1 mm) high
Lift Speed: 315 IPM [8.0m per minute] Vertical Travel: 8.00” [200.0 mm] Approximate Weight including torch holder: 85 lbs. [38.5 kg] Torch Barrel Size: 85.7 mm
IHS Accuracy: ± 0.5 mm
Component Tolerances
Encoder Accuracy: ± 0.25 mm Voltage Accuracy: ± 1 volt
52
DESCRIPTION
B4 Mounting Dimensions
B4 lift hole patterns are provided below to aid end users in mounting the plasma station. An optional plasma bracket/nut plate is available. For more specic details, please refer to the B4 Lift manual.
DESCRIPTION
2.50” [63.5mm]
4.47”
[113.5mm]
(6) M8 x 1.25 x 40 Socket Head Cap Screws
4.13” [104.9mm]
3.64” [92.4mm]
0.49” [12.4mm]
0.53” [13.5mm]
x6 M8x1.25 - 6H THRU HOLES
5.00”
[127.0mm]
Recommended Monting Bracket/Nut Plate
53
DESCRIPTION
DESCRIPTION
54

INSTALLATION

SAFETY DESCRIPTION
INSTALLATION
OPERATION APPENDIX
INSTALLATION
INSTALLATION
56
INSTALLATION

3.0 Grounding

Introduction

Machine grounding is an important part of the installation process, which can be greatly simplied if prepared in advance. The most dicult part of the grounding process is designing and installing a low impedance Earth ground rod. However, the better the Earth ground rod, the less chance there is of having electromagnetic interference problems after the installation is complete.
Most national electric codes address grounding for the purpose of re prevention and short circuit protection; they do not address equipment protection and electromagnetic interference noise reduction. Therefore, this manual presents more stringent requirements for machine grounding.
WARNING
ELECTRIC SHOCK HAZARD.
Improper grounding can cause severe injury or death.
Improper grounding can damage machine electrical components.
Machine must be properly grounded before putting it into service.
INSTALLATION
The cutting table must be connected to machine earth grounding rod.
57
INSTALLATION

Grounding Overview

There are three parts to a ground system;
•Component or "chassis" ground
•Earth ground
•Protective Earth ground
Component grounding connects all pieces to a single component, like the machine chassis, which is then connected to a common point known as the star point. This provides a path for electromagnetic
A common symbol used to identify
a chassis ground on drawings.
INSTALLATION
interference (EMI) from the enclosure to ground.
An earth ground provides a electromagnetic interference (EMI) to return to its source.
A protective earth (PE) ground provides a safe path for fault current. Without a properly grounded system, an unintended path through people or sensitive equipment may be found, resulting in serious injury, death, and/or premature equipment failure.
A common symbol used to identify an earth ground on drawings.
A common symbol used to identify a protective earth (PE) ground.
This section focuses on machines with a plasma cutting system. Machines with plasma cutting capability are particularly prone to electromagnetic interference problems and often utilize dangerous voltages and currents. All machines must have electrical components grounded and attached to an earth ground, regardless of process type (shape cutting, marking, or other material preparation).
58
Basic Layout
INSTALLATION
The electrical ground layout is similar for both large and small machines. The chassis ground , plasma positive electrical lead and the rail ground cables are attached to a common point on the cutting table. This common connection is referred to as a star point (see illustration below). One cable connects the star point to the Earth ground rod . The size of ground cables is dependant on the maximum current output of the plasma power supply . Specication of cable sizes is discussed later in this manual. Some country standards or directives require a separate ground rod for the plasma power supply. Consult your machine schematics for more information.
6 8
7
1
5
9
4
3
INSTALLATION
Note: The three phase electrical input to the plasma power supply must include an electrical ground.
2
8
This illustration demonstrates multiple ground cables fastened with a single bolt to create a star point . The location of the star point on the cutting table will vary.
8
59
INSTALLATION

Elements of a Ground System

The ground system consists of ve main components:
•plasma current return path
•plasma system safety ground
•utility power electrical ground
•cutting machine chassis ground
•rail system safety ground.
Ensure provisions are made during the installation for each of these elements for creating a complete ground system.
INSTALLATION
Plasma Current Return Path
The return path ground cable is the most important element of the ground system. It completes the path for the plasma current. Solid, low impedance, well maintained electrical connections are a necessity.
The plasma cutting current is generated by the plasma power supply . A welding cable carries this current from the negative (-) connection in the plasma power supply through the x axis cable chain to the torch. The current then arcs to the work piece on the cutting table. The current path must be closed so that the current can easily return to its source. This is done by connecting the cutting table to the positive (+) connection on the plasma power supply. If the return path ground cable is not connected, the plasma system will not work. There will be no way for the arc to establish between the torch and the work piece. If the cable is connected, but the connections have a very high resistance, it will limit the current of the arc, and cause dangerous voltage levels between system components.
1
5
3
2
2
4
4
1
3
60
5
INSTALLATION
The only way to ensure that all components are at the same voltage level (same potential), and thus eliminate the possibility of being shocked, is to ensure that all interconnections are making good electrical contact. Good electrical contact requires that connections are made with bare metal to metal contact, the connections are very tight, and are protected from rust and corrosion. Use a grinder or wire wheel to clean all paint, rust, and dirt from the surface when connecting cable lugs to any metal surface. Use an electrical joint compound between cable lugs and metal surfaces to prevent future rust and corrosion. Use the largest size bolts, nuts, and washers possible, and tighten fully. Use lock washers to ensure that connections stay tight.
Plasma System Safety Ground
The plasma system safety ground (or ground rod) serves several important purposes. It provides:
•Frame voltage for personnel safety by ensuring
that there are no potential dierences between system components and building components.
INSTALLATION
•A stable signal reference for all digital and analog
electrical signals on the cutting machine.
•Helps control electromagnetic Interference (or
EMI).
•Provides a discharge path for short circuits and
high voltage spikes, such as those caused by lightening strikes.
61
INSTALLATION
There are many misconceptions about the ground rod, and the role it plays in reducing electromagnetic interference. In theory, the ground rod is present to eliminate possible potential dierences between equipment and building structures. However many people believe that the ground rod allows all radio frequency noise to be absorbed and disappear into the Earth. Experience has shown that a good ground rod will eliminate radio frequency noise problems.
Misconception about Earth ground rods.
INSTALLATION
1
1
62
INSTALLATION
In reality the ground rod is providing a low impedance path by which noise currents may return to their source .
2
Earth ground rod reality.
1
INSTALLATION
2
1
63
INSTALLATION
Rail System Safety Ground
The rail system safety ground makes sure that the entire rail is at ground potential, eliminating any possible shock hazard, and providing backup for the machine chassis ground in case of a plasma current short circuit. All four corners of the rail system should be connected to the cutting table.
INSTALLATION
64
INSTALLATION

Earth Ground Rod

The best way to make sure that your Earth ground connection is optimized is to enlist the services of a professional. There are a number of engineering rms which specializes in designing and installing Earth grounding systems. However, if this option cannot be used, then there are several things which can be done to ensure that your Earth ground connection is good:
Ground Rod
The ground rod itself can be optimized in two ways: length and diameter. The longer the grounding rod, the better the connection. The same is true for diameter: the larger the diameter, the better the connection. However, if the soil resistance is very low, then a ground rod longer than 3m [10 feet] does not make a signicant dierence. Since soil resistivity is rarely as good as it could be, a standard grounding rod should be 25mm [1 inch] in diameter and 6m [20 feet] long.
Soil Resistivity
Soil resistivity can be changed in two ways: by altering the mineral content, the moisture content, or both. The ideal solution to poor soil resistivity is to excavate the immediate area and backll with conditioned soil additives. In extremely dry areas, the moisture content can be improved by installing a drip system which continually moisturizes the soil surrounding the ground rod. A crude way of aecting soil moisture and content is to use salt water, or rock salt to condition the surrounding soil.
INSTALLATION
65
INSTALLATION
Utility Power Electrical Ground
The utility power electrical ground must accompany all 3 phase and single phase power feeds. This electrical ground provides the proper reference for all incoming power. Failure to provide this ground is a violation of most electrical codes, and a serious safety hazard.
Depending on the 3 phase power arrangement (either a “Delta” or a “Y”), the line to ground voltage may be equal to, or less than the line to line voltage. A problem exists any time the line to ground voltage exceeds any individual line to line voltage (dierence in potential). Contact your local utility company if you are not sure that your 3 phase power has a proper electrical ground. Make sure that your electrical contractor properly installs the electrical ground wire with all 3 phase and single phase power feeds.
The electrical ground must be connected to the appropriate terminal inside of the plasma power supply. Size wire according to local electrical codes.
INSTALLATION
2
1
1
Utility Power Electrical Ground
2
3 Phase Electrical Supply
3
Plasma Power Supply
3
66
INSTALLATION
Multiple Ground Rods
There are a number of reasons why multiple ground rods should not be used. While installing multiple rods may improve a safety ground or lightening ground, it oers no advantage for electromagnetic interference reduction, and can cause more problems than it is worth.
The problem with multiple ground rods is that each rod uses an “interfacing Electromagnetic Interference
1.1
1
2
Multiple ground points can also create undetectable “sneak” pathways for radio frequency noise currents, actually causing more interference! Instead of considering multiple ground rods, take steps to make the single ground rod as good a ground connection as possible.
l
sphere” of earth, having a radius of 1.1 times the length of the rod. Overlapping of these Electromagnetic Interference spheres causes a loss in grounding eectiveness proportional to the amount of overlap.
INSTALLATION
l
1
2
Multiple ground rods should be avoided if possible. However, if all other avenues have been explored to lessen your systems’ electronic interferences, multiple ground rods are an option.
Such a system should be installed by a professional and the distance between the rods should exceed
2.5 l
2.5 times the length of the rods.
67
INSTALLATION

Machine Grounding Schematic

2
1
3
4
8
10
INSTALLATION
5
(+)
6
1
Main Control Enclosure
2
Component Enclosures
3
Main Star Ground
Rails
4
9
7
•All electrical enclosures bolted to the
machine chassis
•Machine chassis grounded to star point on
cutting table.
•Rails grounded to cutting table
Cutting Table
5
•Plasma ground connected to star point on
System Star Ground (on Table)
6
Earth Ground Rod
7
Plasma Power Supply
8
Plasma Power Supply Ground (required by EU
9
Standards)
Electrical System Ground
10
cutting table
•Earth ground rod connected to star point on
cutting table.
•A separate ground rod is required for the
plasma power supply by some regulations and directives. Check with local regulations to determine if this additional ground rod is required.
68
INSTALLATION
Check upon receipt
1. Verify all the system components on your order have been received.
2. Inspect the system components for any physical damage that may have occurred during shipping. If
there is evidence of damage, please contact your supplier with the model number and serial number from the nameplate.
Before Installation
All installation and service of the electrical and plumbing systems
WARNING
Locate the major components to the right position prior to making electrical, gas, and interface connections. Refer to the system interconnection diagrams for major components placement. Ground all major components to earth at one point. To prevent leaks, make sure to tighten all gas and water connections with specic torque.
must conform to national and local electrical and plumbing codes. Installation should be performed only by qualified, licensed personnel. Consult your local authorities for any regulation issues.

3.1 Placement of Power Supply

INSTALLATION
Failure to follow instructions could lead to death, injury or
WARNING
damaged property. Follow these instructions to prevent injury or property damage. You must comply with local, state and national electrical and safety codes.
•A minimum of 1 meter (3 ft.) clearance on front and back for cooling air ow.
•Plan for top panel and side panels having to be removed for maintenance, cleaning and inspection.
•Locate the power supply relatively close to a properly fused electrical power supply.
•Keep area beneath power supply clear for cooling air ow.
•Environment should be relatively free of dust, fumes and excessive heat. These factors will aect cooling
eciency.

Input Power Connection

Electric shock can kill! Provide maximum protection against
WARNING
Input power must be provided from a line (wall) disconnect switch that contains fuses or circuit breakers in ac­cordance to local or state regulations.
electrical shock. Before any connections are made inside the machine, open the line wall disconnect switch to turn power off.
Input Conductors
•Customer needs to supply the input conductors, which may consist either of heavy rubber covered copper
conductors (three power and one ground) or run in solid or exible conduit.
•Size of input conductors is dependent on the current. Please refer to the specic power supply manual for
the size on input conductors.
69
INSTALLATION
Input Connection Procedure
1. Remove cover panel.
2. Thread cables through the access opening.
3. Secure cables with strain relief at the access
opening.
4. Connect the ground lead to the stud on the chassis.
5. Connect the power leads to the primary terminals.
6. Connect the input conductors to the line (wall)
disconnect.
7. Before applying power, replace the cover panel.
INSTALLATION
Electric shock can kill! Dangerous voltage and current may be present any time working around a plasma power source with covers removed:
Connection example of EPP-360
Chassis Ground
Primary Terminals
WARNING
•DISCONNECT POWER SOURCE AT THE LINE (WALL) DISCONNECT.
•HAVE A QUALIFIED PERSON CHECK THE OUTPUT BUS BARS (POSITIVE
AND NEGATIVE) WITH A VOLTMETER.
Output Connection Procedure
1. Open access panel on the lower front of the
power source.
2. Thread output cables through the openings at
the bottom of the power source immediately behind the front panel.
3. Connect cables to designated terminals
mounted inside the power source using UL listed pressure wire connectors.
4. Close front access panel.
Workpiece connection
Connection example of EPP-360
70
Pilot Arc connection
Electrode connection
INSTALLATION

Interface Cables/Connections

Connection example of EPP-360
INSTALLATION
CNC Interface Cable
RAS Box front view
CNC Interface Cables
Part Number Length Part Number Length
0558004651 7.6m 0558004654 30.5m 0558004652 15.0 m 0558003978 38.1m 0558004653 22.8m 0558004655 45.7m
Water Cooler Interface Cable
CC-11 rear view
Water Cooler Interface Cables
Part Number Length
0558004837 5.0m 0558004838 10.0m 0558004839 20.0m
71
INSTALLATION

3.2 Placement of CC-11 Coolant Circulator

Install the CC-11 in an appropriate location so as to maintain adequate and unrestricted airow into and out of the cabinetry.

Input Power Connection

A 3-conductor power cable suitable to meet the required input power must be installed. The cable must have
0.25” (6.4 mm) ring lugs installed on the machine end. Connect the power leads to the L1 and L2 terminals and the ground lead to the ground lug located on the base near the rear panel. A strain relief tting is provided to feed a power cable through the rear panel of the cabinet. Please refer to the CC-11 Instruction manual for details. Electrical installation must be in accordance with local electrical codes for this type of equipment.
Voltage link MUST be moved if equipment is operated at any voltage
CAUTION
INSTALLATION
other than 575V. Failure to move voltage link to location that match­es input voltage can result in damage to equipment.
NOTE:
Voltage link is shipped in
this location which is for
575 volt operation.
Input Power Cable
L1 and L2 terminals
72
Typical connection for 460 VAC input
INSTALLATION

Coolant Connections and Optional Equipment

Connect the hoses to the CC-11 accordingly.
When the CC-11 unit is installed above the plasma torch location, Shut-o Valve (p/n 0558008364) should be or- dered and installed. It is connected to the CC-11 using the “Coolant Supply To Torch” tting located on the rear panel. The shut-o valve closes when delivery pressure falls below approximately 25 psig (1.7 bar). This will insure that wa- ter does not drain from the unit when changing consumables.
Shut-o Valve p/n 0558008364
CC-11 rear view
Coolant Connections Control Cable
INSTALLATION
An 8-pin receptacle J1 is provided on the rear panel to supply the CC-11 with 115 VAC control voltage for pump motor contactor control. The CC-11 is normally supplied with this control voltage in order for the pump and fan to operate. J1 also provides contact closure signals for a satised 1.00 gpm (3.8 l/min) ow switch (pins D and C) and coolant level switch satised (pins E and H).
RAS Box front view
Connection example of EPP-360
73
INSTALLATION
These connectors are located on the back of the unit. Connect the hoses to the CC-11 accordingly. The torch hose ends should be tted with one 5/8"-18 male left-hand air / water hose and one 5/8"-18 female right-hand air / water hose connector.
With the torch and the CC-11 connected, ll the res­ervoir with the specially formulated torch coolant. Do not use regular anti-freeze solutions, such as for an automobile, as the additives will harm the pump and torch. ESAB P/N 0558004297 is recommended for service down to 12° F (-11° C). ESAB P/N 156F05 is recommended for service below 12° F (-11° C) to -34° F (-36° C).
After lling the reservoir, run the pump with its cap
INSTALLATION
removed in order to purge air from the radiator, hos­es, and torch. Re-check coolant level to ensure reser­voir is lled. Replace reservoir cap after purging and checking coolant level.
Coolant Connections

3.3 Placement of RAS Box

Connections on the RAS Box

1. Remove or unlock the cover screws and lift the box cover o to expose internal components.
The cover is grounded to the Remote Arc Starter Box internally with
WARNING
2. Power cables pass through the strain relief ttings.
a short ground wire. Remove cover carefully to avoid damage to the wire or loosening of the ground wire.
Pilot Arc Cable enters through strain relief tting
to Voltage Divider (VDR)
to CAN
74
to PS Control Coolant IN to E-Stop Coolant OUT
Power Source Cables enter through strain relief ttings
INSTALLATION
Buss Bar / Block
Nomex Insulation
Locking Screw
3. Strip back the insulation of the 4/0 (95 mm
4. Insert the 4/0 (95 mm
2
) cable in the buss bar/block hole until copper extends to the edge of the buss bar /
2
block.
5. Tighten the locking screw(s) down on the cable.
Connection for Pilot Arc Cable
) cable, approximately 38 mm.
INSTALLATION
Standard VDR Cable
VDR Cable (with free end)
6. If a non-ESAB lifter is to be used with a system the supplied VDR cable will only have a connector on one
end. The other end of the cable will have no connector. The end with the supplied connector is to be connected to the RAS box to its corresponding socket which is labeled “Voltage Divider.”
The free end of the VDR cable will be connected to the lifter. Although this is a three conductor cable, only two of the wires are used, BRN (VDR - ) and BLU (WORK). The black wire is a spare and is to be terminated and capped inside of the lifter. The corresponding pin at the RAS box comes terminated from the factory. The RAS box is not to be modied.
It is imperative that the BLUE wire be connected to ground. The BROWN wire is the VDR(-) output.
Customer
Supplied
Lifter
Ground
in Lifter is
VDR (Voltage Divider Cable)
required for
reference
75
INSTALLATION

3.4 Torch Connections

Torch hook-up requires the connection of power cables / coolant hoses, pilot arc cable and chassis ground. On the PT-36 torch, the coolant hoses from the RAS box to the torch also carry electrode power.
The pilot arc cable is connected inside the arc starter box. The pilot arc cable also has a green/yellow wire that is connected to a grounding stud.
Power Cable /
Coolant Connections
Pilot Arc Connection
INSTALLATION
Power Cable /
Ground
Stud
Chassis
Ground
Wire
Pilot
Arc Cable
Coolant
76
PG Hose
SG Hose
INSTALLATION

3.5 Mounting Torch to Machine

Clamping on Torch body may cause dangerous current to flow
WARNING
Mount torch on insulated sleeve here.
through machine chassis.
•Do not mount on stainless steel torch body.
•Torch body is electrically insulated, however high frequency start
current may arc through to nd a ground.
•Clamping near torch body may result in arcing between body and
DO NOT mount on steel torch body here.
machine.
•When this arcing occurs, torch body may require non-warranty
replacement.
•Damage to machine components may result.
INSTALLATION
•Clamp only on insulated torch sleeve (directly above label) not less
than 1.25" (31.75 mm) from the torch end of the sleeve.
•PT-36 Torch has an outside diameter of 50mm for standard
mounting.
77
INSTALLATION

3.6 Placement of ICH

The ICH should be located close to the operator for easy access.
Connect required CAN cables between ICH and other CAN nodes, such as Remote Arc Starter (RAS), B4 lifter, if applicable. CAN con­nection is always made from left to right, if one node is removed from CAN bus, all nodes on the right need to be shifted to left. After connecting all CAN nodes, a terminator is required. Leave all unused CAN ports open.
Connect DB37 cable to port “CNC” on ICH. The other side of DB37, is connected to the customer’s CNC via a male DB37 connector. An optional breakout board may be used.
INSTALLATION
Connect power from ICH to PDB and B4 lifter, if applicable. Make sure the power switch on ICH is o.
Connect power to ICH box.

3.7 Placement of PDB

The PDB should be placed on the deck as it is used for supplying power to the CGC.

3.8 Placement of CGC

The CGC regulates the plasma gas and shield gas. For optimum performance, it should always be placed close to torch. Accord­ing to the material being cut, the customer needs to select and connect the correct inlet gases. Inline lters are embedded into the inlet ttings. Please make sure all inlet gases meet the pres­sure and ow requirements.
Connect 24V AC/DC power from PDB, then connect CAN cable to ICH.
78
INSTALLATION

Individual Component Connections

Part numbers and lengths for the cables shown below are provided on the following page.
PDB front
ICH back
A
INSTALLATION
B
CGC front
C
“A” - Power cable from ICH to PDB (115/230V)
Part Number Length Part Number Length
0560947962 1m (3. 3’) 0560947088 5m (16’)
0560946776 2m (6.4’) 0560947089 6m (19 ’)
0560947964 3m (10’) 0560947090 7m (23’)
0560947087 4m (13’)
“C” - Power cable PDB to CGC (24 VAC/DC)
Part Number Length Part Number Length
0560947079 1.5m (5’ ) 056094706 4 8m (26’)
0560947080 3m (10’) 0560947065 9m (30’)
0560947061 4m (13’ ) 0560947082 10m (33’)
0560947081 5m (16’) 0560946780 12.8m (42')
0560947062 6m (19’) 0560947066 15m (49’)
0560947063 7m (23’) 0560947083 20m (66’)
PDB back
“B” - CAN cable from ICH to CGC
Part Number Length Part Number Length
0558008464 1m (3. 3’) 0558008473 10 m (33’)
0558008465 2m (6.5’) 0558008474 11m (3 6’)
0558008466 3m (10 ’) 0558008475 12m (39 ’)
0558008467 4m (13’) 0558008476 13m (43’ )
0558008468 5m (16’) 0558008477 14m (46’)
0558008469 6m (19’) 0558008478 15 m (49 ’)
0558008470 7m (23’) 0558008479 20m (66’)
0558008471 8m (26’) 0558008809 25m (82')
0558008472 9m (30’) 0558008480 36m (118')
79
INSTALLATION

ACC Component Connections

A
INSTALLATION
B
Compressed Air
“A” - Cable from ACC to PDB
Part Number Length Part Number Length
0560947067 0.5m (1.7’) 0560947070 7m (23’) 0560947075 1.5m (5’) 0560947071 8m (26’) 0560947076 3m (10’) 0560947072 9m (30’) 0560947068 4m (13’) 0560947078 10m (33’) 0560947077 5m (16’) 0560947073 15m (49’) 0560947069 6m (19’) 0560947074 20m (66’) 0560946782 6.1m (20') 0560946758 25m (82')
“B” - Air Curtain hose from ACC to CGC
Part Number Length Part Number Length
0558004841 1.4m (4.75’) 0558004846 7.6m (25’) 0558004842 1.8m (6’) 0558008503 8.0m (26.25’) 0558004843 3.7m (12’) 0558008504 9.1m (30’)
0558004844 4.6m (15.25’) 0558008505 10.1m (33')
0558004845 5. 3 m (17. 2 5’ ) 0558008506 11. 0 m ( 3 6 .25’) 0558006865 6.1m (20’) 0558008507 11.9m (39.5’) 0558008502 7. 0 m (23 ’ )
80
INSTALLATION

Component Placement Example

6
5
7
2
1
alternative mounting location
8
6
INSTALLATION
4
3
Components
1 CNC
2 3 PT-36 Torch 4 B4 Lift 5 6 Remote Arc Starter Box (RAS) 7 Power Supply 8 Power Distribution Box (PDB)
Interface Control Hub (ICH)
Combined Gas Control (CGC)
81
INSTALLATION
INSTALLATION
82
SAFETY DESCRIPTION INSTALLATION

OPERATION

OPERATION
APPENDIX
OPERATION
OPERATION
84
OPERATION

4.0 Interface Control Hub

The ICH (Interface Control Hub) is used to interface the ESAB m3 Process Control with the customer CNC using RS232/RS422/RS485 and digital I/O.
Operation of the m3 IGC system can be made via the ICH (Interface Control Hub) in the following modes.
1. Remote mode without serial communications. (Default)
2. Remote mode with serial communications.
3. Local mode - diagnostics only.
The following pages describe how to operate the ICH.
OPERATION
85
OPERATION
7
6
OPERATION
1 2 3 4 5
ICH front view
8 9 10 11
16
15
GND
12
13
14
Note:
Chassis must be connected
to the machine ground.
86
ICH back view
OPERATION

4.1 Operation

ICH Connectors

Item Number Item Description
In Local mode, this switch will start the plasma process. If the Gas Test switch
1 Plasma Start
2 Gas Te st
3 Local/Remote
4 Station Select
5 Screen Select This switch will allow the user to select dierent screens.
6
7 Power Switch This switch will turn on the Interface Control Hub.
8 Input Power
9 AHC Power Power connection for an ESAB lift (B4 or A6).
10 Gas Power
11 RS232 RS232 protocol for remote control if needed. 12 ASIOB1 ASIOB1 protocol for retrotting older ESAB systems.
13 CNC
14 AUX Control DB25 connector for auxiliary options such as Air Curtain. 15 CAN Vision 5x Not used. 16 Fuses Replace fuses with same type and size.
Encoder Wheel
with Push Button
is set to on, then the process will go into TEST Mode. In TEST Mode the power supply faults, errors, and warnings are ignored while at the same time the steps for starting the power supply and turning HF on are skipped.
In Local mode, this switch will start the plasma gas and shield gas at their start values. If the plasma start switch is turned on after this one, the plasma process will start in TEST mode.
This switch will change the ICH system from being remotely controlled, via the serial communications and digital inputs from the CNC, to locally controlled via the switches on the Interface Control Hub.
This switch is a momentary switch which will change the station of which the information on the screen is displaying. If the system is in local mode, then the station selected will change to only the station displayed.
This only has an eect in local mode under normal operation, when commu­nication is set to none, and in the set up mode. This wheel will allow you to change the parameter the cursor is currently on. The button will also allow you to see a more detailed error message when on the error log screen. To work the wheel for editing a parameter, push the wheel, move the wheel to change the value, and then press the wheel again to lock in the value.
Customer supplied input power to ICH. See specications for power require­ments.
Power connection to the Power Distribution Box (PDB), which provides 24 VAC/ DC to the Combined Gas Control (CGC).
DB37 connector to interface to customer I/O. This also has the RS422/485 con­nections.
OPERATION
87
OPERATION

Display Screens

Startup Screen
On powerup the ICH screen displays the following information for 3 seconds:
Software version
OPERATION
Editing a Parameter on the Display
Only available when communication is set to none or Local/Remote switch is set to Local.
1. Use the encoder wheel to scroll to the parameter.
2. Push the wheel.
3. Turn the wheel to edit the value.
4. Push the wheel again to lock the value.
Gas Selection Screen
L = Local C = Cutting M = Marking
Parameter Set Type Gas Selection (see table) Plasma Start (Bar) Shield Start (CMH)
Plasma Cut (Bar) Shield Cut (CMH) Cut Current (Amp) Start Current (Amp)
Plasma Output (Bar) Shield Output (CMH) Current Output (Amp)
Gas Select Table
Plasma Shield
GS
Start Cut Start Cut
1 N2 O2 N2 N2
2 Air O2 Air Air
3 N2 N2 N2 N2
4 N2 H35 Air Air
5 N2 H35 N2 N2
6 Ar Ar Air Air
7 Ar Ar N2 N2
8 Air Air Air Air
9 N2 O2 Air Air
10 N2 N2 Air Air
11 Ar O2 N2 N2
12 Ar O2 Air Air
13 Ar Ar H2O H2O
14 N2 N2 H2O H2O
88
Timers Screen
OPERATION
Timers Current Ramp Up Time (seconds)
Piercing Time (seconds) Second Ramp for Thick Plate (seconds) Current Ramp Down Time (seconds) Time to delay gas o from the time plasma start is re­moved. (seconds) Time to raise torch when cutting is complete (Height Con­trol option required) (seconds)
OPERATION
Height Control Screen (Height Control option required)
Height Settings Initial/Ignition Height (mm)
Piercing Height (mm) Cutting Height (mm) Plate Thickness (mm) Arc Voltage (volts)
Encoder Height (mm)
Arc Voltage Output (volts)
89
CNC Input Screen
OPERATION
Inputs
Plasma Start 0 0
Corner 0 0
Block AHC 0 0 Plasma Test 0 0 Mark Mode 0 0
Stat 1 ON 0 0 Stat 2 ON 0 0
Stat 1 UP** 0** 0**
Stat 1 Down** 0** 0**
Stat 2 UP** 0** 0**
Stat 2 Down** 0** 0**
CNC’s Direct
Input
ACT
(selection program
is currently
running)
OPERATION
CNC Output Screen
**only present when the Height Control option is present
Outputs Dened by motion signal System has faulted Arc was lost during cut/mark System is not ready to cut/mark Station 1 is on Upper Limit Switch Station 2 is on Upper Limit Switch
Motion Signal options:
Arc On - Motion Enable only goes high when arc is
on. Normally used when no torch lifter is supplied with plasma system.
90
Motion - Motion Enable only goes high when motion
is allowed. Normally used when a torch lifter is sup­plied with plasma system.
OPERATION

Setup Descriptions

Setup - The “setup screen” on the Interface Control Hub is accessed by having “Plasma Start” set to “ON” and “Remote/
Local” set to “L O CAL” when powering up the box. It is exited by turning the power o and then back on. Make sure to
reset the switches back to the original state for parameter display. The encoder wheel with pushbutton, is used to select an item and change the values or to select a sub-menu.
An example shown here, is for setting up a Plasma System congured for the following:
1� m3 Integrated Gas Control System 2� EPP-360 Plasma Power Supply 3� Supplied with ESAB Lifter 4� No Water Injection option
Long Preow Timer (seconds) Short Preow Timer (seconds) Gas purge before Intial Height sensing (seconds) Power Supply type ESAB lifter installed ESAB Water Injection Module installed Motion Enable Signal meaning Gas Control type
Gas Test timeout (seconds) Error Log
Communication Options Station 1 Lift Options Station 2 Lift Options Save Constants
Reload Constants
OPERATION
If the ESAB lifter has not been supplied with the system, the ICH setup screen for the above conguration would be as shown below:
Long Preow Timer (seconds) Short Preow Timer (seconds) Gas purge before Intial Height sensing (seconds) Power Supply type ESAB lifter installed ESAB Water Injection Module installed Motion Enable Signal meaning Gas Control type
Gas Test timeout (seconds) Error Log
Communication Options
Save Constants
Reload Constants
91
OPERATION
Described below are the various options to be modied before setting up the plasma system for operation:
Long Preow The long preow is the time, in milliseconds, the system will wait for the gases to ow before starting the power supply. This
Short Preow The short preow is the time, in milliseconds, the system will wait for the gases to ow before starting the power supply. This
Power Supply The power supply option is where the power supply attached to the system is specied. The EPP-201, EPP-360, EPP-450 and the
ESAB Lifter The ESAB Lifter option is set to “YES” if an ESAB lifter was purchased for use with this system.
ESAB Injection The ESAB Injection option species that the ESAB water injection module was purchased for use with this system.
Motion Signal Arc On - Motion Enable only goes high when arc is on. Normally used when no torch lifter is supplied with plasma system.
Gas Control This option species which type of Gas Control is to be used. The options are: (1) Water - Water Injection is the only shield avail-
Gas Timeout This species the maximum time, in seconds, which gases will be allow to ow during a gas test before they are automatically
Error Log The error log stores up to 13 errors at a time reported by the ICH in the order they are detected. These errors are only cleared by
Communication The communication section is used to change the serial communications between the ICH and the CNC.
OPERATION
time is only used for each start until there is a successful start (after power-up) or when the gas being used is not compatible with the previous gas being used.
time is only used for when it can be asserted that the last gas used and the current gas are compatible.
EPP-601 are the available choices.
Motion - Motion Enable only goes high when motion is allowed. Normally used when a torch lifter is supplied with plasma system.
able, (2) CGC - Combined Gas Control in use, (3) Full - The fully automatic gas control system is in use.
shut o.
selecting “CLEAR”. Select the error, by pushing the pushbutton part of the encoder wheel, to see more details about the error.
Protocol - There are four options: None, RS-232, RS-422, and RS-485. Serial communications is disabled when none is selected. The RS-422 protocol uses four wire while the RS-485 uses two wire. Baud Rate - The baud rate must be set to the same rate as the CNC’s serial communication transfer rate. Available options are: 300, 1200, 2400, 9600, 19200.
Parity - The parity needs to match the CNC’s serial communication parity. Available options are: None, Even, and Odd. Stop Bits - The stop bits needs to match the CNC’s serial communication stop bits. Available options are: 1 or 2.

Communication Options

Communication Options Protocol
Baud Rate Parity Stop Bits
Previous Screen
92
OPERATION

Station Options

The following are the options listed under station 1 and station 2:
Li ft Type The lifter type species which lift is being used. Available options are: A6 or B4.
Arc Volt Cut The arc voltage calibration used when in CUTTING mode. Using a calibrated voltmeter, measure the voltage from the bus bar in
Arc Volt Mark The arc voltage calibration used when in marking mode. Using a calibrated voltmeter, measure the voltage from the bus bar in
ULS to Table The distance from the torch tip, when on the upper limit switch, to the top of the table slats. This is in micrometers.
the Remote Arc Starter Box to ground, while the process is active in cut mode. If that is higher than the arc voltage requested, then raise this number. If it is lower, then low this number.
the Remote Arc Star ter Box to ground, while the process is active in MARK mode. If that is higher than the arc voltage requested, then raise this number. If it is lower, then lower this number. The result should be around half of the “Arc Volt Cut” option.
Fast Speed This is the speed at which the lifter will move when not in the slowdown zone, when using height control, or when moving up.
The slowdown zone is the plate thickness, plus 25 millimeter, above the table slats.
Slow Speed This is the speed at which the lifter will m ove when in the slowdown zone or using height control. The slowdown zone is the plate
thickness, plus 25 millimeter, above the table slats.
Station 1 Lift Options Lif t Type Arc Voltage for Cutting
Arc Voltage for Marking Upper Limit Switch to Table (µm)
Fast Speed (Relative speed 0-500) Slow Speed (Relative speed 0-500) Previous Screen
OPERATION
Station 2 Lift Options Lif t Type
Arc Voltage for Cutting Arc Voltage for Marking Upper Limit Switch to Table (µm)
Fast Speed (Relative speed 0-500) Slow Speed (Relative speed 0-500) Previous Screen
93
OPERATION
Once the setup is complete, make sure to save the constants by selecting the “Save Constants” tab. The follow­ing screen will be displayed for a couple of seconds to conrm that your changes have been taken.
Save Complete
If you do not want to keep the changes you have made and would like to revert back to the last saved settings
OPERATION
then select the “Reload Constants” tab. The following screen will be displayed for a couple of seconds to con- rm that your changes have been taken.
Load Complete
94
OPERATION

Digital I/O

Digital Inputs
Digital inputs are to be only turned on with 24 VDC. Any other voltage may damage the board or cause unpre­dictable results. The best method is to send the 24 VDC from the DB37 connector back on the input, via a relay or opto-isolator chip.
Signal Name Description
Corner
Block AHC Block height control
Plasma Test
Plasma Start Start the plasma process
Mark Switch to marking mode and use the last loaded marking data
Station 1 Up Move the station 1 lifter up (if installed)
Station 1 Down Move the station 1 lifter down (if installed)
Station 2 Up Move the station 2 lifter up (if installed)
Station 2 Down Move the station 2 lifter down (if installed)
Station 2 On Turn on station 2. Station 1 On Turn on station 1.
Informs the ICH to reduce the current to the corner current and block height control (if enabled)
Prevents the ICH from sending the start signal to the high frequency unit and power supply during a plasma start. Power supply faults are ignored.
OPERATION
Digital Outputs
Digital outputs should only be 24 VDC with less than 80 milli-amperes current requirement.
Signal Name Description
This signal is high when the arc is on or the process is o, when motion signal
Motion Enable/Arc On
System Fault
Arc Lost
Not Ready
Station 1 ULS Station 1 is on the upper limit switch. Station 2 ULS Station 2 is on the upper limit switch.
is set to Motion in the setup screen. This signal is high when the arc is on, when motion signal is set to Arc On in the setup screen.
The ICH has detected a problem which required the process to stop. Send mes­sage 003 or check the error log to get the exact set of errors. These are reset with a 000 command, but will remain in the error log.
The arc was lost during a cut/mark operation. This is reset on the next plasma start.
The ICH is not ready to start the process. Possible causes: no Station selected, not in Remote Mode, Plasma Start was high on boot up and is still high, Gas settings missing, Start Current missing, Cut Current missing, Timers missing, Height Control settings missing (if a lifter is installed).
95
OPERATION

4.2 Modes of Operation:

Remote Interface without Serial Communication

This mode describes the instance when the CNC controls everything except parameter selection via the digital inputs and outputs. To operate in this mode, go to the setup screen and change the “Protocol” to “None” un­der “Communications”.
•The process parameters need to be modied on the ICH screen every time the CNC needs to change the
cutting or marking parameters. The ICH system supports a cutting parameter set and a marking parameter set. The last used set will be available upon restarting the ICH. This requires starting the process at least once with the set.
•The cutting parameters and marking parameters can be loaded into dierent tables in the ICH. After all the
parameters are loaded, switching can be done by pressing the push button on the parameter line in the Gas Selection screen.
•Gas Test - The gas test function is designed to allow diagnostics of the gas control system. The gas test
feature can be enabled by turning on the “Plasma Test” digital input and issuing a “Plasma Start”. The gases owing in each test and the pressure/ow at which they are set to, is based on the currently loaded parameters on the ICH display.
•The ICH system has two possible sequences it can be running. One with the lifter height controlled by the
ICH system and another with the lifter height controlled by the CNC.
OPERATION
Described below are examples for cutting a part from the CNC. The parameters from the cut data manual used for the setup below are detailed on the following page.
Material Type Carbon Steel Material Thickness 12 mm Cut Quality Production Current 200 Amps Start Gas N2 Cut Gas O2 Shield Gas Air
96
OPERATION
OPERATION
P MS 100A GS9 ncode112 pic2
OPERATION
9 9 9 9
1.7 1.7 1.7 1.7
2.8 2.8 2.8 2.8
3(0.125) 6(0.250) 10(0.375) 12(0.500)
4.1 4.1 4.1 4.1
PRODUCTION
Material Carbon Steel
Gas Select 9
Cut Gas O2
Start Gas N2/AI R
Amperes 100
Shield Gas N2 /AIR
Code Description Material Thickness - mm (inch)
Gas Parameters:
P1 Gas Select
P2 Plasma Start - Bar
P3 Shield Start - CMH
P4 Plasma Cut - Bar
2.8 2.8 2.8 2.8
100 100 100 100
P5 Shield Cut - CMH
P6 Cut Current - Amps
50 50 50 50
P7 Start Current - Amps
Timers: (sec)
0.6 0.6 0.6 0.6
0.1 0.1 0.2 0.4
T1 Ramp Up
T2 Pierce
0.0 0.0 0.0 0.0
T3 Thick Plate
0.6 0.6 0.6 0.6
T4 Ramp Down
0.35 0.35 0.35 0.35
T5 Gas O
1.0 1.0 1.0 1.0
T6 Raise Lift
(inch)
Height Parameters: mm
(0.160) 4(0.160) 4(0.160) 4(0.160)
4
H1 Ignition
6(0.250) 6(0.250) 6(0.250) 6(0.250)
H2 Pierce
3(0.125) 3(0.125) 3(0.125) 3(0.125)
H3 Cutting
3(0.125) 6(0.250) 10(0.375) 12(0.500)
H4 Thickness
142 149 153 155
H5 Arc Voltage - Volts
Machine Parameters:
(225) 3556(140) 1905(75) 1524(60)
1.7(0.065) 2.0(0.080) 2.5(0.100) 2.5(0.100)
5715
(in/min)
Speed - mm/min
Kerf - mm (inch)
97
OPERATION
Operation sequence with ESAB supplied plasma lifter:
1. Setup the part program that needs to be cut from the CNC.
2. Go to the ICH screen for “C:Cutting Parameters” and setup the parameters according to the cut data manual:
L = Local C = Cutting M = Marking
Parameter Set Type Gas Selection (see table under DISPLAY SCREENS section) Plasma Start (Bar) Shield Start (CMH)
Plasma Cut (Bar) Shield Cut (CMH) Cut Current (Amp) Start Current (Amp)
Plasma Output (Bar) Shield Output (CMH)
OPERATION
Current Output (Amp)
3. Next, go to the ICH screen for Timers and setup the timer values according to the cut data manual:
Timers Current Ramp Up Time (seconds)
Piercing Time (seconds) Second Ramp for Thick Plate (seconds) Current Ramp Down Time (seconds) Time to delay gas o from the time plasma start is re­moved. (seconds) Time to raise torch when cutting is complete (Height Con­trol option required) (seconds)
98
OPERATION
4. Next, go to the ICH screen for Height Settings and setup the height parameters according to the cut data manual:
Height Settings Initial/Ignition Height (mm)
Piercing Height (mm) Cutting Height (mm) Plate Thickness (mm) Arc Voltage (volts)
Encoder Height (mm)
Arc Voltage Output (volts)
OPERATION
5. Once all of the setups have been completed on the ICH, refer to the cut data manual for the Speed and Kerf inputs to be made on the CNC part program.
6. Execute the program from the CNC and send a “Plasma Start” signal to the ICH.
7. The following happens while the CNC waits for motion enable.
a. The ICH starts the purge before initial height sensing. b. The torch comes down, does the initial height sensing and nishes the preow. c. The ICH starts the power supply. d. The ICH waits for the arc to transfer and the main current to start, turning the high frequency generator
o once the arc has transferred. If the motion signal constant is set to “Arc On”, this is when the
“Motion Enable” signal is returned to the CNC. e. The gas switches from start to cut values and gas. f. The ICH ramps the current up to the desired cutting/marking current. g. The ICH raises to the piercing height. h. The ICH waits a time, from the parameters, for the current to pierce the plate. i. The ICH lowers down to the cutting height. If the motion signal constant is set to “Motion”, this is
when the “Motion Enable” signal is returned to the CNC.
8. Start moving the machine in the shape desired, turning the corner signal on when not going at full speed for the parameters sent.
9. Remove the “Plasma Start” signal to the ICH at the end of cut.
10. The following happens while the CNC waits for “Motion Enable” to be removed and come back (if the mo­tion signal constant is set to “Motion”).
a. “Motion Enable” is removed, if the motion signal constant is set to “Motion”. b. The current ramps down. c. The power supply is turned o and, after a time specied in the parameters, the gas stop owing. If the motion signal constant is set to “Arc On”, this is when the “Motion Enable” signal is removed. d. The lift raises for an amount of time specied in the process parameters. e. If the motion signal constant is set to “Motion”, then this is when “Motion Enable” is returned.
99
OPERATION
Operation sequence with customer supplied plasma lifter:
1. Setup the part program that needs to be cut from the CNC.
2. Go to the ICH screen for “C:Cutting Parameters” and setup the parameters according to the cut data man-
ual:
L = Local C = Cutting M = Marking
Parameter Set Type Gas Selection (see table under DISPLAY SCREENS section) Plasma Start (Bar) Shield Start (CMH)
Plasma Cut (Bar) Shield Cut (CMH) Cut Current (Amp) Start Current (Amp)
Plasma Output (Bar) Shield Output (CMH)
OPERATION
Current Output (Amp)
3. Next go to the ICH screen for Timers and setup the timer values according to the cut data manual:
Timers Current Ramp Up Time (seconds)
Piercing Time (seconds) Second Ramp for Thick Plate (seconds) Current Ramp Down Time (seconds) Time to delay gas o from the time plasma start is re­moved. (seconds) Time to raise torch when cutting is complete (Height Con­trol option required) (seconds)
100
Loading...