These INSTRUCTIONS are for experienced operators. If you are not fully familiar with the
principles of operation and safe practices for arc welding and cutting equipment, we urge
you to read our booklet, “Precautions and Safe Practices for Arc Welding, Cutting, and
Gouging,” Form 52-529. Do NOT permit untrained persons to install, operate, or maintain
this equipment. Do NOT attempt to install or operate this equipment until you have read
and fully understand these instructions. If you do not fully understand these instructions,
contact your supplier for further information. Be sure to read the Safety Precautions before installing or operating this equipment.
USER RESPONSIBILITY
This equipment will perform in conformity with the description thereof contained in this manual and accompanying labels and/or inserts when installed, operated, maintained and repaired in accordance with the instructions provided. This equipment must be checked periodically. Malfunctioning or poorly maintained equipment
should not be used. Parts that are broken, missing, worn, distorted or contaminated should be replaced immediately. Should such repair or replacement become necessary, the manufacturer recommends that a telephone
or written request for service advice be made to the Authorized Distributor from whom it was purchased.
This equipment or any of its parts should not be altered without the prior written approval of the manufacturer.
The user of this equipment shall have the sole responsibility for any malfunction which results from improper
use, faulty maintenance, damage, improper repair or alteration by anyone other than the manufacturer or a service facility designated by the manufacturer.
READ AND UNDERSTAND THE INSTRUCTION MANUAL BEFORE INSTALLING OR OPERATING.
for your protection. They summarize precautionary information from the references
listed in Additional Safety Information section. Before performing any installation or operating
procedures, be sure to read and follow the safety precautions listed below as well as all other manuals, material
safety data sheets, labels, etc. Failure to observe Safety
Precautions can result in injury or death.
PROTECT YOURSELF AND OTHERS -Some welding, cutting, and gouging
processes are noisy and require ear
protection. The arc, like the sun, emits
ultraviolet (UV) and other radiation
and can injure skin and eyes. Hot metal can cause
burns. Training in the proper use of the processes
and equipment is essential to prevent accidents.
Therefore:
1. Always wear safety glasses with side shields in any
work area, even if welding helmets, face shields, and
goggles are also required.
2. Use a face shield tted with the correct lter and
cover plates to protect your eyes, face, neck, and
ears from sparks and rays of the arc when operating
or observing operations. Warn bystanders not to
watch the arc and not to expose themselves to the
rays of the electric-arc or hot metal.
3. Wear ameproof gauntlet type gloves, heavy long-
sleeve shirt, cuess trousers, high-topped shoes,
and a welding helmet or cap for hair protection, to
protect against arc rays and hot sparks or hot metal.
A ameproof apron may also be desirable as protection against radiated heat and sparks.
4. Hot sparks or metal can lodge in rolled up sleeves,
trouser cus, or pockets. Sleeves and collars should
be kept buttoned, and open pockets eliminated from
the front of clothing.
5. Protect other personnel from arc rays and hot
sparks with a suitable non-ammable partition or
curtains.
6. Use goggles over safety glasses when chipping slag
or grinding. Chipped slag may be hot and can y far.
Bystanders should also wear goggles over safety
glasses.
1.1 Safety - English
FIRES AND EXPLOSIONS -- Heat from
ames and arcs can start res. Hot
slag or sparks can also cause res and
explosions. Therefore:
1. Remove all combustible materials well away from
the work area or cover the materials with a protective non-ammable covering. Combustible materials
include wood, cloth, sawdust, liquid and gas fuels,
solvents, paints and coatings, paper, etc.
2. Hot sparks or hot metal can fall through cracks or
crevices in oors or wall openings and cause a hidden smoldering re or res on the oor below. Make
certain that such openings are protected from hot
sparks and metal.“
3. Do not weld, cut or perform other hot work until the
workpiece has been completely cleaned so that there
are no substances on the workpiece which might
produce ammable or toxic vapors. Do not do hot
work on closed containers. They may explode.
4. Have re extinguishing equipment handy for instant
use, such as a garden hose, water pail, sand bucket,
or portable re extinguisher. Be sure you are trained
in its use.
5. Do not use equipment beyond its ratings. For example, overloaded welding cable can overheat and
create a re hazard.
6. After completing operations, inspect the work area
to make certain there are no hot sparks or hot metal
which could cause a later re. Use re watchers when
necessary.
7. For additional information, refer to NFPA Standard
51B, "Fire Prevention in Use of Cutting and Welding
Processes", available from the National Fire Protection Association, Batterymarch Park, Quincy, MA
02269.
ELECTRICAL SHOCK -- Contact with
live electrical parts and ground can
cause severe injury or death. DO NOT
use AC welding current in damp areas,
if movement is conned, or if there is
danger of falling.
5
SECTION 1 SAFETY PRECAUTIONS
1. Be sure the power source frame (chassis) is connected to the ground system of the input power.
2. Connect the workpiece to a good electrical
ground.
3. Connect the work cable to the workpiece. A poor
or missing connection can expose you or others
to a fatal shock.
4. Use well-maintained equipment. Replace worn or
damaged cables.
5. Keep everything dry, including clothing, work
area, cables, torch/electrode holder, and power
source.
6. Make sure that all parts of your body are insulated
from work and from ground.
7. Do not stand directly on metal or the earth while
working in tight quarters or a damp area; stand
on dry boards or an insulating platform and wear
rubber-soled shoes.
8. Put on dry, hole-free gloves before turning on the
power.
3. Welders should use the following procedures to
minimize exposure to EMF:
A. Route the electrode and work cables together.
Secure them with tape when possible.
B. Never coil the torch or work cable around your
body.
C. Do not place your body between the torch and
work cables. Route cables on the same side of
your body.
D. Connect the work cable to the workpiece as close
as possible to the area being welded.
E. Keep welding power source and cables as far
away from your body as possible.
FUMES AND GASES -- Fumes and
gases, can cause discomfort or harm,
particularly in conned spaces. Do
not breathe fumes and gases. Shielding gases can cause asphyxiation.
Therefore:
9. Turn o the power before removing your gloves.
10. Refer to ANSI/ASC Standard Z49.1 (listed on
next page) for specic grounding recommendations. Do not mistake the work lead for a ground
cable.
ELECTRIC AND MAGNETIC FIELDS
— May be dangerous. Electric current owing through any conductor causes localized Electric and
Magnetic Fields (EMF). Welding and
cutting current creates EMF around welding cables
and welding machines. Therefore:
1. Welders having pacemakers should consult their
physician before welding. EMF may interfere with
some pacemakers.
2. Exposure to EMF may have other health eects which
are unknown.
1. Always provide adequate ventilation in the work area
by natural or mechanical means. Do not weld, cut, or
gouge on materials such as galvanized steel, stainless steel, copper, zinc, lead, beryllium, or cadmium
unless positive mechanical ventilation is provided.
Do not breathe fumes from these materials.
2. Do not operate near degreasing and spraying operations. The heat or arc rays can react with chlorinated
hydrocarbon vapors to form phosgene, a highly
toxic gas, and other irritant gases.
3. If you develop momentary eye, nose, or throat irritation while operating, this is an indication that
ventilation is not adequate. Stop work and take
necessary steps to improve ventilation in the work
area. Do not continue to operate if physical discomfort persists.
4. Refer to ANSI/ASC Standard Z49.1 (see listing below)
for specic ventilation recommendations.
6
SECTION 1 SAFETY PRECAUTIONS
5. WARNING: This product, when used for welding
or cutting, produces fumes or gases
which contain chemicals known to
the State of California to cause birth
defects and, in some cases, cancer.
(California Health & Safety Code
§25249.5 et seq.)
CYLINDER HANDLING -- Cylinders,
if mishandled, can rupture and violently release gas. Sudden rupture
of cylinder, valve, or relief device can
injure or kill. Therefore:
1. Use the proper gas for the process and use the
proper pressure reducing regulator designed to
operate from the compressed gas cylinder. Do not
use adaptors. Maintain hoses and ttings in good
condition. Follow manufacturer's operating instructions for mounting regulator to a compressed gas
cylinder.
1. Always have qualied personnel perform the installation, troubleshooting, and maintenance work.
Do not perform any electrical work unless you are
qualied to perform such work.
2. Before performing any maintenance work inside a
power source, disconnect the power source from
the incoming electrical power.
3. Maintain cables, grounding wire, connections, power
cord, and power supply in safe working order. Do
not operate any equipment in faulty condition.
4. Do not abuse any equipment or accessories. Keep
equipment away from heat sources such as furnaces,
wet conditions such as water puddles, oil or grease,
corrosive atmospheres and inclement weather.
5. Keep all safety devices and cabinet covers in position
and in good repair.
6. Use equipment only for its intended purpose. Do
not modify it in any manner.
2. Always secure cylinders in an upright position by
chain or strap to suitable hand trucks, undercarriages, benches, walls, post, or racks. Never secure
cylinders to work tables or xtures where they may
become part of an electrical circuit.
3. When not in use, keep cylinder valves closed. Have
valve protection cap in place if regulator is not connected. Secure and move cylinders by using suitable
hand trucks. Avoid rough handling of cylinders.
4. Locate cylinders away from heat, sparks, and ames.
Never strike an arc on a cylinder.
5. For additional information, refer to CGA Standard P-1,
"Precautions for Safe Handling of Compressed Gases
in Cylinders", which is available from Compressed
Gas Association, 1235 Jeerson Davis Highway,
Arlington, VA 22202.
EQUIPMENT MAINTENANCE -- Faulty or
improperly maintained equipment can
cause injury or death. Therefore:
ADDITIONAL SAFETY INFORMATION -- For
more information on safe practices for
electric arc welding and cutting equipment, ask your supplier for a copy of
"Precautions and Safe Practices for Arc
Welding, Cutting and Gouging", Form
52-529.
The following publications, which are available from
the American Welding Society, 550 N.W. LeJuene Road,
Miami, FL 33126, are recommended to you:
1. ANSI/ASC Z49.1 - "Safety in Welding and Cutting"
2. AWS C5.1 - "Recommended Practices for Plasma Arc
Welding"
3. AWS C5.2 - "Recommended Practices for Plasma Arc
Cutting"
4. AWS C5.3 - "Recommended Practices for Air Carbon
Arc Gouging and Cutting"
7
SECTION 1 SAFETY PRECAUTIONS
5. AWS C5.5 - "Recommended Practices for Gas Tungsten Arc Welding“
6. AWS C5.6 - "Recommended Practices for Gas Metal
Arc Welding"“
8. ANSI/AWS F4.1, "Recommended Safe Practices for
Welding and Cutting of Containers That Have Held
Hazardous Substances."
MEANING OF SYM BOLS - As used
throughout this manual: Means Attention! Be Alert! Your safety is involved.
Means immediate hazards which,
if not avoided, will result in immediate, serious personal injury
or loss of life.
Means potential hazards which
could result in personal injury or
loss of life.
Means hazards which could result
in minor personal injury.
8
SECCION 1 SEGURIDAD
1.2 Safety - Spanish
ADVERTENCIA: Estas Precauciones de Se-
guridad son para su protección. Ellas hacen
resumen de información proveniente de las
referencias listadas en la sección "Información Adicional Sobre La Seguridad". Antes de hacer cualquier
instalación o procedimiento de operación , asegúrese
de leer y seguir las precauciones de seguridad listadas
a continuación así como también todo manual, hoja
de datos de seguridad del material, calcomanias, etc.
El no observar las Precauciones de Seguridad puede
resultar en daño a la persona o muerte.
PROTEJASE USTED Y A LOS DEMAS-Algunos procesos de soldadura, corte
y ranurado son ruidosos y requiren
protección para los oídos. El arco,
como el sol , emite rayos ultravioleta
(UV) y otras radiaciones que pueden dañar la piel
y los ojos. El metal caliente causa quemaduras. EL
entrenamiento en el uso propio de los equipos y
sus procesos es esencial para prevenir accidentes.
Por lo tanto:
1. Utilice gafas de seguridad con protección a los lados
siempre que esté en el área de trabajo, aún cuando
esté usando careta de soldar, protector para su cara
u otro tipo de protección.
2. Use una careta que tenga el ltro correcto y lente
para proteger sus ojos, cara, cuello, y oídos de las
chispas y rayos del arco cuando se esté operando y
observando las operaciones. Alerte a todas las personas cercanas de no mirar el arco y no exponerse
a los rayos del arco eléctrico o el metal fundido.
3. Use guantes de cuero a prueba de fuego, camisa
pesada de mangas largas, pantalón de ruedo liso,
zapato alto al tobillo, y careta de soldar con capucha
para el pelo, para proteger el cuerpo de los rayos y
chispas calientes provenientes del metal fundido.
En ocaciones un delantal a prueba de fuego es
necesario para protegerse del calor radiado y las
chispas.
4. Chispas y partículas de metal caliente puede alojarse
en las mangas enrolladas de la camisa , el ruedo del
pantalón o los bolsillos. Mangas y cuellos deberán
mantenerse abotonados, bolsillos al frente de la
camisa deberán ser cerrados o eliminados.
5. Proteja a otras personas de los rayos del arco y chis-
pas calientes con una cortina adecuada no-amable
como división.
6. Use careta protectora además de sus gafas de segu-
ridad cuando esté removiendo escoria o puliendo.
La escoria puede estar caliente y desprenderse con
velocidad. Personas cercanas deberán usar gafas
de seguridad y careta protectora.
FUEGO Y EXPLOSIONES -- El calor de
las amas y el arco pueden ocacionar
fuegos. Escoria caliente y las chispas
pueden causar fuegos y explosiones.
Por lo tanto:
1. Remueva todo material combustible lejos del área
de trabajo o cubra los materiales con una cobija a
prueba de fuego. Materiales combustibles incluyen
madera, ropa, líquidos y gases amables, solventes,
pinturas, papel, etc.
2. Chispas y partículas de metal pueden introducirse en
las grietas y agujeros de pisos y paredes causando
fuegos escondidos en otros niveles o espacios.
Asegúrese de que toda grieta y agujero esté cubierto
para proteger lugares adyacentes contra fuegos.
3. No corte, suelde o haga cualquier otro trabajo
relacionado hasta que la pieza de trabajo esté totalmente limpia y libre de substancias que puedan
producir gases inamables o vapores tóxicos. No
trabaje dentro o fuera de contenedores o tanques
cerrados. Estos pueden explotar si contienen vapores
inamables.
4. Tenga siempre a la mano equipo extintor de fuego para uso instantáneo, como por ejemplo una
manguera con agua, cubeta con agua, cubeta con
arena, o extintor portátil. Asegúrese que usted esta
entrenado para su uso.
5. No use el equipo fuera de su rango de operación. Por
ejemplo, el calor causado por cable sobrecarga en
los cables de soldar pueden ocasionar un fuego.
6. Después de termirar la operación del equipo, inspeccione el área de trabajo para cerciorarse de que las
chispas o metal caliente ocasionen un fuego más
tarde. Tenga personal asignado para vigilar si es
necesario.
7. Para información adicional , haga referencia a la
publicación NFPA Standard 51B, "Fire Prevention in
Use of Cutting and Welding Processes", disponible
a través de la National Fire Protection Association,
Batterymarch Park, Quincy, MA 02269.
CHOQUE ELECTRICO -- El contacto
con las partes eléctricas energizadas
y tierra puede causar daño severo o
muerte. NO use soldadura de corri-
ente alterna (AC) en áreas húmedas,
de movimiento connado en lugares estrechos o
si hay posibilidad de caer al suelo.
9
SECCION 1 SEGURIDAD
1. Asegúrese de que el chasis de la fuente de poder
esté conectado a tierra através del sistema de
electricidad primario.
2. Conecte la pieza de trabajo a un buen sistema de
tierra física.
3. Conecte el cable de retorno a la pieza de trabajo.
Cables y conductores expuestos o con malas
conexiones pueden exponer al operador u otras
personas a un choque eléctrico fatal.
4. Use el equipo solamente si está en buenas condiciones. Reemplaze cables rotos, dañados o con
conductores expuestos.
5. Mantenga todo seco, incluyendo su ropa, el área de
trabajo, los cables, antorchas, pinza del electrodo,
y la fuente de poder.
6. Asegúrese que todas las partes de su cuerpo están
insuladas de ambos, la pieza de trabajo y tierra.
7. No se pare directamente sobre metal o tierra mientras trabaja en lugares estrechos o áreas húmedas;
trabaje sobre un pedazo de madera seco o una
plataforma insulada y use zapatos con suela de
goma.
8. Use guantes secos y sin agujeros antes de energizar
el equipo.
9. Apage el equipo antes de quitarse sus guantes.
10. Use como referencia la publicación ANSI/ASC
Standard Z49.1 (listado en la próxima página) para
recomendaciones especícas de como conectar el
equipo a tierra. No confunda el cable de soldar a
la pieza de trabajo con el cable a tierra.
CAMPOS ELECTRICOS Y MAGNETICOS - Son peligrosos. La corriente
eléctrica uye através de cualquier
conductor causando a nivel local
Campos Eléctricos y Magnéticos
(EMF). Las corrientes en el área de corte y soldadura,
crean EMF alrrededor de los cables de soldar y las
maquinas. Por lo tanto:
1. Soldadores u Operadores que use marca-pasos para
el corazón deberán consultar a su médico antes de
soldar. El Campo Electromagnético (EMF) puede
interferir con algunos marca-pasos.
2. Exponerse a campos electromagnéticos (EMF) puede
causar otros efectos de salud aún desconocidos.
3. Los soldadores deberán usar los siguientes procedimientos para minimizar exponerse al EMF:
A. Mantenga el electrodo y el cable a la pieza de
trabajo juntos, hasta llegar a la pieza que usted
quiere soldar. Asegúrelos uno junto al otro con
cinta adhesiva cuando sea posible.
B. Nunca envuelva los cables de soldar alrededor
de su cuerpo.
C. Nunca ubique su cuerpo entre la antorcha y el
cable, a la pieza de trabajo. Mantega los cables a
un sólo lado de su cuerpo.
D. Conecte el cable de trabajo a la pieza de trabajo
lo más cercano posible al área de la soldadura.
E. Mantenga la fuente de poder y los cables de soldar
lo más lejos posible de su cuerpo.
HUMO Y GASES -- El humo y los
gases, pueden causar malestar o
daño, particularmente en espacios
sin ventilación. No inhale el humo
o gases. El gas de protección puede
causar falta de oxígeno.
Por lo tanto:
1. Siempre provea ventilación adecuada en el área
de trabajo por medio natural o mecánico. No solde,
corte, o ranure materiales con hierro galvanizado,
acero inoxidable, cobre, zinc, plomo, berílio, o cadmio a menos que provea ventilación mecánica
positiva . No respire los gases producidos por
estos materiales.
2. No opere cerca de lugares donde se aplique sub-
stancias químicas en aerosol. El calor de los rayos
del arco pueden reaccionar con los vapores de
hidrocarburo clorinado para formar un fosfógeno,
o gas tóxico, y otros irritant es.
3. Si momentáneamente desarrolla inrritación de
ojos, nariz o garganta mientras est á operando, es
indicación de que la ventilación no es apropiada.
Pare de trabajar y tome las medidas necesarias
para mejorar la ventilación en el área de trabajo.
No continúe operando si el malestar físico persiste.
4. Haga referencia a la publicación ANSI/ASC Standard
Z49.1 (Vea la lista a continuación) para recomendaciones especícas en la ventilación.
10
SECCION 1 SEGURIDAD
5. ADVERTENCIA-- Este producto cuando se utiliza para soldaduras o cortes,
produce humos o gases, los
cuales contienen químicos
conocidos por el Estado de California de causar defectos en el
nacimiento, o en algunos casos,
Cancer. (California Health &
Safety Code §25249.5 et seq.)
MANEJO DE CILINDROS-- Los
cilindros, si no son manejados
correctamente, pueden romperse y liberar violentamente
gases. Rotura repentina del
cilindro, válvula, o válvula de
escape puede causar daño o
muerte. Por lo tanto:
1. Utilize el gas apropiado para el proceso y utilize
un regulador diseñado para operar y reducir la
presión del cilindro de gas . No utilice adaptadores. Mantenga las mangueras y las conexiones
en buenas condiciones. Observe las instrucciones
de operación del manufacturero para montar el
regulador en el cilindro de gas comprimido.
2. Asegure siempre los cilindros en posición vertical
y amárrelos con una correa o cadena adecuada
para asegurar el cilindro al carro, transportes, tablilleros, paredes, postes, o armazón. Nunca asegure
los cilindros a la mesa de trabajo o las piezas que
son parte del circuito de soldadura . Este puede ser
parte del circuito elélectrico.
3. Cuando el cilindro no está en uso, mantenga la
válvula del cilindro cerrada. Ponga el capote de
protección sobre la válvula si el regulador no
está conectado. Asegure y mueva los cilindros
utilizando un carro o transporte adecuado. Evite
el manejo brusco de los
1. Siempre tenga personal cualicado para efectuar l a instalación, diagnóstico, y mantenimiento
del equipo. No ejecute ningún trabajo eléctrico a
menos que usted esté cualicado para hacer el
trabajo.
2. Antes de dar mantenimiento en el interior de la
fuente de poder, desconecte la fuente de poder
del suministro de electricidad primaria.
3. Mantenga los cables, cable a tierra, conexciones,
cable primario, y cualquier otra fuente de poder
en buen estado operacional. No opere ningún
equipo en malas condiciones.
4. No abuse del equipo y sus accesorios. Mantenga
el equipo lejos de cosas que generen calor como
hornos, también lugares húmedos como charcos
de agua , aceite o grasa, atmósferas corrosivas y
las inclemencias del tiempo.
5. Mantenga todos los artículos de seguridad y
coverturas del equipo en su posición y en buenas
condiciones.
6. Use el equipo sólo para el propósito que fue
diseñado. No modique el equipo en ninguna
manera.
INFORMACION ADICIONAL DE SEGURIDAD -- Para más información sobre las
prácticas de seguridad de los equipos de
arco eléctrico para soldar y cortar, pregunte
a su suplidor por una copia de "Precautions
and Safe Practices for Arc Welding, Cutting
and Gouging-Form 52-529.
Las siguientes publicaciones, disponibles através de
la American Welding Society, 550 N.W. LeJuene Road,
Miami, FL 33126, son recomendadas para usted:
1. ANSI/ASC Z49.1 - "Safety in Welding and Cutting"
2. AWS C5.1 - "Recommended Practices for Plasma Arc
Welding"
MANTENIMIENTO DEL EQUIPO -- Equipo
defectuoso o mal mantenido puede
causar daño o muerte. Por lo tanto:
3. AWS C5.2 - "Recommended Practices for Plasma Arc
Cutting"
4. AWS C5.3 - "Recommended Practices for Air Carbon
Arc Gouging and Cutting"
11
SECCION 1 SEGURIDAD
SIGNIFICADO DE LOS SIMBOLOS
-- Según usted avanza en la lectura
de este folleto: Los Símbolos Signican ¡Atención! ¡Esté Alerta! Se
trata de su seguridad.
Signica riesgo inmediato que,
de no ser evadido, puede resultar
inmediatamente en serio daño
personal o la muerte.
Signica el riesgo de un peligro
potencial que puede resultar en
serio daño personal o la muerte.
Signica el posible riesgo que
puede resultar en menores daños
a la persona.
12
SECTION 1 SÉCURITÉ
1.3 Safety - French
AVERTISSEMENT : Ces règles de sécurité
ont pour but d'assurer votre protection. Ils
récapitulent les informations de précaution
provenant des références dans la section
des Informations de sécurité supplémentaires. Avant
de procéder à l'installation ou d'utiliser l'unité, assurezvous de lire et de suivre les précautions de sécurité cidessous, dans les manuels, les ches d'information sur la
sécurité du matériel et sur les étiquettes, etc. Tout défaut
d'observer ces précautions de sécurité peut entraîner
des blessures graves ou mortelles.
PROTÉGEZ-VOUS -- Les processus de
soudage, de coupage et de gougeage
produisent un niveau de bruit élevé et
exige l'emploi d'une protection auditive. L'arc, tout
comme le soleil, émet des rayons ultraviolets en plus
d'autre rayons qui peuvent causer des blessures à la
peau et les yeux. Le métal incandescent peut causer
des brûlures. Une formation reliée à l'usage des
processus et de l'équipement est essentielle pour
prévenir les accidents. Par conséquent:
1. Portez des lunettes protectrices munies d'écrans la-
téraux lorsque vous êtes dans l'aire de travail, même
si vous devez porter un casque de soudeur, un écran
facial ou des lunettes étanches.
2. Portez un écran facial muni de verres ltrants et de
plaques protectrices appropriées an de protéger
vos yeux, votre visage, votre cou et vos oreilles des
étincelles et des rayons de l'arc lors d'une opération
ou lorsque vous observez une opération. Avertissez
les personnes se trouvant à proximité de ne pas regarder l'arc et de ne pas s'exposer aux rayons de l'arc
électrique ou le métal incandescent.
3. Portez des gants ignifugiés à crispin, une chemise
épaisse à manches longues, des pantalons sans rebord
et des chaussures montantes an de vous protéger des
rayons de l'arc, des étincelles et du métal incandescent,
en plus d'un casque de soudeur ou casquette pour
protéger vos cheveux. Il est également recommandé
de porter un tablier ininammable an de vous protéger des étincelles et de la chaleur par rayonnement.
4. Les étincelles et les projections de métal incandescent
risquent de se loger dans les manches retroussées,
les rebords de pantalons ou les poches. Il est recommandé de garder boutonnés le col et les manches et
de porter des vêtements sans poches en avant.
5. Protégez toute personne se trouvant à proximité des
étincelles et des rayons de l'arc à l'aide d'un rideau ou
d'une cloison ininammable.
6. Portez des lunettes étanches par dessus vos lunettes
de sécurité lors des opérations d'écaillage ou de
meulage du laitier. Les écailles de laitier incandescent
peuvent être projetées à des distances considérables.
Les personnes se trouvant à proximité doivent également porter des lunettes étanches par dessus leur
lunettes de sécurité.
INCENDIES ET EXPLOSIONS -- La
chaleur provenant des ammes ou de
l'arc peut provoquer un incendie. Le
laitier incandescent ou les étincelles
peuvent également provoquer un
incendie ou une explosion. Par conséquent :
1. Éloignez susamment tous les matériaux combustibles de l'aire de travail et recouvrez les matériaux
avec un revêtement protecteur ininammable. Les
matériaux combustibles incluent le bois, les vêtements, la sciure, le gaz et les liquides combustibles,
les solvants, les peintures et les revêtements, le
papier, etc.
2. Les étincelles et les projections de métal incandescent peuvent tomber dans les ssures dans
les planchers ou dans les ouvertures des murs et
déclencher un incendie couvant à l'étage inférieur
Assurez-vous que ces ouvertures sont bien protégées
des étincelles et du métal incandescent.
3. N'exécutez pas de soudure, de coupe ou autre travail à chaud avant d'avoir complètement nettoyé la
surface de la pièce à traiter de façon à ce qu'il n'ait
aucune substance présente qui pourrait produire
des vapeurs inammables ou toxiques. N'exécutez
pas de travail à chaud sur des contenants fermés
car ces derniers pourraient exploser.
4. Assurez-vous qu'un équipement d'extinction
d'incendie est disponible et prêt à servir, tel qu'un
tuyau d'arrosage, un seau d'eau, un seau de sable
ou un extincteur portatif. Assurez-vous d'être bien
instruit par rapport à l'usage de cet équipement.
5. Assurez-vous de ne pas excéder la capacité de
l'équipement. Par exemple, un câble de soudage
surchargé peut surchauer et provoquer un incendie.
6. Une fois les opérations terminées, inspectez l'aire de
travail pour assurer qu'aucune étincelle ou projection de métal incandescent ne risque de provoquer
un incendie ultérieurement. Employez des guetteurs
d'incendie au besoin.
7. Pour obtenir des informations supplémentaires,
consultez le NFPA Standard 51B, "Fire Prevention in
Use of Cutting and Welding Processes", disponible au
National Fire Protection Association, Batterymarch
Park, Quincy, MA 02269.
CHOC ÉLECTRIQUE -- Le contact avec
des pièces électriques ou les pièces
de mise à la terre sous tension peut
causer des blessures graves ou mor-
telles. NE PAS utiliser un courant de
soudage c.a. dans un endroit humide, en espace
restreint ou si un danger de chute se pose.
13
SECTION 1 SÉCURITÉ
1. Assurez-vous que le châssis de la source
d'alimentation est branché au système de mise à
la terre de l'alimentation d'entrée.
2. Branchez la pièce à traiter à une bonne mise de
terre électrique.
3. Branchez le câble de masse à la pièce à traiter et
assurez une bonne connexion an d'éviter le risque
de choc électrique mortel.
4. Utilisez toujours un équipement correctement
entretenu. Remplacez les câbles usés ou endommagés.
5. Veillez à garder votre environnement sec, incluant
les vêtements, l'aire de travail, les câbles, le porteélectrode/torche et la source d'alimentation.
6. Assurez-vous que tout votre corps est bien isolé
de la pièce à traiter et des pièces de la mise à la
terre.
7. Si vous devez eectuer votre travail dans un espace
restreint ou humide, ne tenez vous pas directement sur le métal ou sur la terre; tenez-vous sur
des planches sèches ou une plate-forme isolée et
portez des chaussures à semelles de caoutchouc.
8. Avant de mettre l'équipement sous tension, isolez
vos mains avec des gants secs et sans trous.
9. Mettez l'équipement hors tension avant d'enlever
vos gants.
10. Consultez ANSI/ASC Standard Z49.1 (listé à
la page suivante) pour des recommandations
spéciques concernant les procédures de mise à
la terre. Ne pas confondre le câble de masse avec
le câble de mise à la terre.
CHAMPS ÉLECTRIQUES ET MAGNÉTIQUES — comportent un risque de
danger. Le courant électrique qui
passe dans n'importe quel conduc-
teur produit des champs électriques
et magnétiques localisés. Le soudage et le courant de coupage créent des champs électriques
et magnétiques autour des câbles de soudage et
l'équipement. Par conséquent :
1. Un soudeur ayant un stimulateur cardiaque doit
consulter son médecin avant d'entreprendre une
opération de soudage. Les champs électriques et
magnétiques peuvent causer des ennuis pour certains stimulateurs cardiaques.
2. L'exposition à des champs électriques et magné-
tiques peut avoir des eets néfastes inconnus pour
la santé.
3. Les soudeurs doivent suivre les procédures suivantes
pour minimiser l'exposition aux champs électriques
et magnétiques :
A. Acheminez l'électrode et les câbles de masse
ensemble. Fixez-les à l'aide d'une bande adhésive
lorsque possible.
B. Ne jamais enrouler la torche ou le câble de masse
autour de votre corps.
C. Ne jamais vous placer entre la torche et les câbles
de masse. Acheminez tous les câbles sur le même
côté de votre corps.
D. Branchez le câble de masse à la pièce à traiter le
plus près possible de la section à souder.
E. Veillez à garder la source d'alimentation pour le
soudage et les câbles à une distance appropriée
de votre corps.
LES VAPEURS ET LES GAZ -- peuvent
causer un malaise ou des dommages
corporels, plus particulièrement
dans les espaces restreints. Ne respirez pas les vapeurs et les gaz. Le
gaz de protection risque de causer
l'asphyxie. Par conséquent :
1. Assurez en permanence une ventilation adéquate
dans l'aire de travail en maintenant une ventilation naturelle ou à l'aide de moyens mécanique.
N'effectuez jamais de travaux de soudage, de
coupage ou de gougeage sur des matériaux tels que
l'acier galvanisé, l'acier inoxydable, le cuivre, le zinc,
le plomb, le berylliym ou le cadmium en l'absence
de moyens mécaniques de ventilation ecaces. Ne
respirez pas les vapeurs de ces matériaux.
2. N'eectuez jamais de travaux à proximité d'une
opération de dégraissage ou de pulvérisation. Lorsque la chaleur
ou le rayonnement de l'arc entre en contact avec les
vapeurs d'hydrocarbure chloré, ceci peut déclencher
la formation de phosgène ou d'autres gaz irritants,
tous extrêmement toxiques.
3. Une irritation momentanée des yeux, du nez ou de la
gorge au cours d'une opération indique que la ventilation n'est pas adéquate. Cessez votre travail an
de prendre les mesures nécessaires pour améliorer
la ventilation dans l'aire de travail. Ne poursuivez
pas l'opération si le malaise persiste.
4. Consultez ANSI/ASC Standard Z49.1 (à la page
suivante) pour des recommandations spéciques
concernant la ventilation.
14
SECTION 1 SÉCURITÉ
5. AVERTISSEMENT : Ce produit, lorsqu'il est utilisé
dans une opération de soudage ou de
coupage, dégage des vapeurs ou des
gaz contenant des chimiques considéres par l'état de la Californie comme
étant une cause des malformations
congénitales et dans certains cas, du
cancer. (California Health & Safety
Code §25249.5 et seq.)
MANIPULATION DES CYLINDRES -La manipulation d'un cylindre, sans
observer les précautions nécessaires,
peut produire des fissures et un
échappement dangereux des gaz.
Une brisure soudaine du cylindre, de la soupape ou
du dispositif de surpression peut causer des blessures graves ou mortelles. Par conséquent :
1. Utilisez toujours le gaz prévu pour une opération
et le détendeur approprié conçu pour utilisation
sur les cylindres de gaz comprimé. N'utilisez jamais
d'adaptateur. Maintenez en bon état les tuyaux et
les raccords. Observez les instructions d'opération
du fabricant pour assembler le détendeur sur un
cylindre de gaz comprimé.
2. Fixez les cylindres dans une position verticale, à
l'aide d'une chaîne ou une sangle, sur un chariot
manuel, un châssis de roulement, un banc, un mur,
une colonne ou un support convenable. Ne xez
jamais un cylindre à un poste de travail ou toute autre
dispositif faisant partie d'un circuit électrique.
3. Lorsque les cylindres ne servent pas, gardez les
soupapes fermées. Si le détendeur n'est pas branché, assurez-vous que le bouchon de protection de
la soupape est bien en place. Fixez et déplacez les
cylindres à l'aide d'un chariot manuel approprié.
Toujours manipuler les cylindres avec soin.
4. Placez les cylindres à une distance appropriée
de toute source de chaleur, des étincelles et des
ammes. Ne jamais amorcer l'arc sur un cylindre.
5. Pour de l'information supplémentaire, consultez
CGA Standard P-1, "Precautions for Safe Handling
of Compressed Gases in Cylinders", mis à votre disposition par le Compressed Gas Association, 1235
Jeerson Davis Highway, Arlington, VA 22202.
ENTRETIEN DE L'ÉQUIPEMENT -- Un équipement entretenu de façon défectueuse ou
inadéquate peut causer des blessures
graves ou mortelles. Par conséquent :
1. Efforcez-vous de toujours confier les tâches
d'installation, de dépannage et d'entretien à un
personnel qualié. N'eectuez aucune réparation
électrique à moins d'être qualié à cet eet.
2. Avant de procéder à une tâche d'entretien à
l'intérieur de la source d'alimentation, débranchez
l'alimentation électrique.
3. Maintenez les câbles, les ls de mise à la terre,
les branchements, le cordon d'alimentation et la
source d'alimentation en bon état. N'utilisez jamais un équipement s'il présente une défectuosité
quelconque.
4. N'utilisez pas l'équipement de façon abusive. Gardez
l'équipement à l'écart de toute source de chaleur,
notamment des fours, de l'humidité, des aques
d'eau, de l'huile ou de la graisse, des atmosphères
corrosives et des intempéries.
5. Laissez en place tous les dispositifs de sécurité et
tous les panneaux de la console et maintenez-les
en bon état.
6. Utilisez l'équipement conformément à son usage
prévu et n'eectuez aucune modication.
INFORMATIONS SUPPLÉMENTAIRES RELATIVES À LA SÉCURITÉ -- Pour obtenir de
l'information supplémentaire sur les règles
de sécurité à observer pour l'équipement
de soudage à l'arc électrique et le coupage,
demandez un exemplaire du livret "Precautions and Safe Practices for Arc Welding,
Cutting and Gouging", Form 52-529.
Les publications suivantes sont également recommandées et mises à votre disposition par l'American Welding
Society, 550 N.W. LeJuene Road, Miami, FL 33126 :
1. ANSI/ASC Z49.1 - "Safety in Welding and Cutting"
2. AWS C5.1 - "Recommended Practices for Plasma Arc
Welding"
3. AWS C5.2 - "Recommended Practices for Plasma Arc
Cutting"
4. AWS C5.3 - "Recommended Practices for Air Carbon
Arc Gouging and Cutting"
15
SECTION 1 SÉCURITÉ
SIGNIFICATION DES SYMBOLES
Ce symbole, utilisé partout dans ce manuel,
signie "Attention" ! Soyez vigilant ! Votre
sécurité est en jeu.
DANGER
Signie un danger immédiat. La situation peut
entraîner des blessures graves ou mortelles.
AVERTISSEMENT
Signie un danger potentiel qui peut entraîner des
blessures graves ou mortelles.
ATTENTION
Signie un danger qui peut entraîner des blessures
corporelles mineures.
16
SECTION 2 DESCRIPTION
2.1 Introduction
The ESP-600C power source is designed for high speed plasma mechanized cutting applications. It can be used
with other ESAB products such as the PT-15, Pt-19XLS, PT-600 and PT-36 torches along with the Smart Flow II, a
computerized gas regulation and switching system.
• 50 to 600 amperes cutting current range
• Forced air cooled
• Solid state DC power
• Input voltage protection
• Local or remote front panel control
• Thermal switch protection for main transformer and power semiconductor components
• Top lifting rings or base forklift clearance for transport
• Parallel supplemental power source capabilities to extend current output range.
2.2 General Specications
Part Number055800646705580064680558006469
Voltage200 VDC
Output
(100 % duty cycle)
Input
Current range DC (cutting)50A to 600A
Power120 KW
Open Circuit Voltage (OCV)402/423 VDC427 VDC427 VDC
Voltage (3-phase)380/400 V460 V575 V
Current (3- phase)217/206A RMS179A RMS143A RMS
Frequency50/60 HZ60 Hz60 Hz
KVA142.7 KVA142.6 KVA142.9 KVA
Power129.9 KW129.8 KW129.6 KW
Power Factor91.0 %91.0%91.0%
Input Fuse Rec.250A250A200A
ESP-600C 380/400V,
50 / 60Hz CE
ESP-600C 460V,
60Hz
ESP-600C 575V,
60Hz
17
SECTION 2 DESCRIPTION
2.3 Dimensions and Weight
114.3 cm
45.00”
94.6 cm
37.25”
102.2 cm
40.25”
Weight = 825 kg. (1814 lbs.)
18
SECTION 3 INSTALLATION
3.1 General
FAILURE TO FOLLOW INSTRUCTIONS COULD LEAD TO DEATH, INJURY
OR DAMAGED PROPERTY. FOLLOW THESE INSTRUCTIONS TO PRE
WARNING
3.2 Unpacking
CAUTION
CAUTION
• Inspect for transit damage immediately upon receipt.
• Remove all components from shipping container and check for loose parts in container.
• Inspect louvers for air obstructions.
VENT INJURY OR PROPERTY DAMAGE. YOU MUST COMPLY WITH LO
CAL, STATE AND NATIONAL ELECTRICAL AND SAFETY CODES.
Using one lifting eye will damage sheet metal and frame.
Use both lifting eyes when transporting with overhead method.
3.3 Placement
Note:
Use both lifting eyes when transporting from overhead.
• A minimum of 1 M (3 ft.) clearance on front and back for cooling air ow.
• Plan for top panel and side panels having to be removed for maintenance, cleaning and inspection.
• Locate the ESP-600C relatively close to a properly fused electrical power supply.
• Keep area beneath power source clear for cooling air ow.
• Environment should be relatively free of dust, fumes and excessive heat. These factors will aect cooling eciency.
Conductive dust and dirt inside power source may cause arc ash-
CAUTION
over.
Equipment damage may occur. Electrical shorting may occur if dust is
allowed to build-up inside power source. See maintenance section.
19
SECTION 3 INSTALLATION
3.4 Input Power Connection
ELECTRIC SHOCK CAN KILL!
PROVIDE MAXIMUM PROTECTION AGAINST ELECTRICAL SHOCK.
WARNING
3.4.1 Primary Power
ESP-600C is a 3-phase unit. Input power must be provided from a line (wall) disconnect switch that contains
fuses or circuit breakers in accordance to local or state regulations.
BEFORE ANY CONNECTIONS ARE MADE INSIDE THE MACHINE, OPEN
THE LINE WALL DISCONNECT SWITCH TO TURN POWER OFF.
* Sizes per National Electrical Code for a 90° C (194˚ F) rated copper conductors @ 40° C (104˚ F) ambient. Not more
than three conductors in raceway or cable. Local codes should be followed if they specify sizes other than those listed
above.
** During heavy duty cutting at 600A, input current can momentarily rise above 200A and cause nuisance blowing of
200A fuses. When cutting currents are below 500A, 200A fuses are sucient.
To estimate the input current for a wide range of output conditions, use the formula below.
Input current =
(V arc) x (I arc) x 0.688
(V line)
conductor* CU/
mm2 (AWG)
Time delay
Fuse size
(amperes)
Dedicated power line may be necessary.
ESP-600C is equipped with line voltage compensation but to avoid
NOTICE
impaired performance due to an overloaded circuit, a dedicated
power line may be required.
20
SECTION 3 INSTALLATION
3.4.2 Input Conductors
• Customer supplied
• May consist either of heavy rubber covered copper conductors (three power and one ground) or run
in solid or exible conduit.
• Sized according to the chart.
Input conductors must be terminated with ring terminals.
NOTICE
3.4.3 Input Connection Procedure
Input conductors must be terminated with ring terminals sized for
12.7 mm (0.50”) hardware before being attached to the ESP-600C.
1. Remove left side panel of the ESP-600C
2. Thread cables through the access opening in the rear panel.
3. Secure cables with a strain relief or conduit coupling (not supplied) at the access opening.
1
4. Connect the ground lead to the stud on the chassis base.
5. Connect the power lead ring terminals to the primary terminals with supplied bolts, washers and nuts.
6. Connect the input conductors to the line (wall) disconnect.
ELECTRIC SHOCK CAN KILL!
RING TERMINALS MUST HAVE CLEARANCE BETWEEN SIDE PANEL
WARNING
WARNING
3.5 Output Connections
AND MAIN TRANSFORMER. CLEARANCE MUST BE SUFFICIENT TO
PREVENT POSSIBLE ARCING. MAKE SURE CABLES DO NOT INTER
FERE WITH COOLING FAN ROTATION.
IMPROPER GROUNDING CAN RESULT IN DEATH OR INJURY.
CHASSIS MUST BE CONNECTED TO AN APPROVED ELECTRICAL
GROUND. BE SURE GROUND LEAD IS NOT CONNECTED TO ANY PRI
MARY TERMINAL.
ELECTRIC SHOCK CAN KILL! DANGEROUS VOLTAGE AND CURRENT!
ANY TIME WORKING AROUND A PLASMA POWER SOURCE WITH COV
ERS REMOVED:
WARNING
• DISCONNECT POWER SOURCE AT THE LINE (WALL) DISCONNECT.
• HAVE A QUALIFIED PERSON CHECK THE OUTPUT BUS BARS (POSITIVE AND NEGATIVE) WITH A VOLTMETER.
3.5.1 Output Cables (customer supplied)
Choose plasma cutting output cables (customer supplied) on the basis of one 4/0 AWG, 600 volt insulated copper cable for each 400 amps of output current.
Note:
Do not use 100 volt insulated welding cable.
22
SECTION 3 INSTALLATION
3.5.2 Output Connection Procedure
1. Remove access panel on the lower front of the power source.
2. Thread output cables through the openings at the bottom of the front panel or at the bottom of the power source immediately behind the front panel.
3. Connect cables to designated terminals mounted inside the power source using UL listed pressure wire connectors.
4. Replace panel removed during the rst step.
Access Panel
3.6 Parallel Installation
Two ESP-600C power sources may be connected together in parallel to extend the output current range.
Parallel power source minimum output current exceeds recommended amounts when cutting below 100A.
CAUTION
Use only one power source for cutting below 100A.
We recommend disconnecting the negative lead from the supplemental power source when changing to currents below 100A. This
lead should be safely terminated to protect against electric shock.
23
SECTION 3 INSTALLATION
work
work
3.6.1 Connections for Two ESP-600C’s in Parallel
Note:
Primary power source has the electrode (-) conductor jumpered. The supplemental power source has the
work (+) jumpered.
1. Connect the negative (-) output cables to the arc starter box (high frequency generator).
2. Connect the positive (+) output cables to the workpiece.
3. Connect the positive (+) and negative (-) conductors between the power sources.
4. Connect the pilot arc cable to the pilot arc terminal in the primary power source. The pilot arc connection in the supplemental power source is not used. The pilot arc circuit is not run in parallel.
5. Set the Pilot Arc HIGH / LOW switch on the supplemental power source to “LOW”.
6. Set the Pilot Arc HIGH / LOW switch on the primary power source to “HIGH”.
7. If a remote 0.00 to +10.00 VDC current reference signal is used to set the output current, feed the same signal into both
power sources. Connect J1-B (positive 0.00 to 10.00 VDC) of both power sources together and connect J1-A (negative)
of both power sources together. With both power sources operating, the output current can be predicted using the
following formula: [output current (amps)] = [reference voltage] x [160]
Connections for parallel installation of two ESP-600C power sources with both power sources in operation.
ESP-600CESP-600C
S u p p l em e nt a l
Power Source
(+)
3 - 4/0 600V
positive leads
to workpiece
electrode
(-)
4/0 600V
cable jumpers
between units
(+)
1 - 14 AWG 600V
lead to pilot arc connection in arc starter
box (h.f. generator)
Primary Power
Source
pilot arc
electrode
(-)
3 - 4/0 600V
negative leads
in arc starter box
(h.f. generator)
24
SECTION 3 INSTALLATION
work
The ESP-600C does not have an ON/OFF switch. The main power is controlled through the line (wall) disconnect switch.
DO NOT OPERATE THE ESP600C WITH COVERS REMOVED.
HIGH VOLTAGE COMPONENTS ARE EXPOSED INCREASING SHOCK
WARNING
WARNING
HAZARD.
INTERNAL COMPONENT MAY BE DAMAGED BECAUSE COOLING
FANS WILL LOSE EFFICIENCY.
ELECTRIC SHOCK CAN KILL!
EXPOSED ELECTRICAL CONDUCTORS CAN BE HAZARDOUS!
DO NOT LEAVE ELECTRICALLY “HOT“ CONDUCTORS EXPOSED. WHEN
DISCONNECTING THE SUPPLEMENTAL POWER SOURCE FROM THE
PRIMARY, VERIFY THE CORRECT CABLES WERE DISCONNECTED. IN
SULATE THE DISCONNECTED ENDS.
WHEN USING ONLY ONE POWER SOURCE IN A PARALLEL CONFIGU
RATION, THE NEGATIVE ELECTRODE CONDUCTOR MUST BE DIS
CONNECTED FROM THE SUPPLEMENTAL POWER SOURCE AND THE
PLUMBING BOX. FAILURE TO DO THIS WILL LEAVE THE SUPPLEMEN
TAL ELECTRICALLY “HOT”.
Connections for parallel installation of two ESP-600C power sources with only one power source in operation.
ESP-600CESP-600C
S u p p l em e n t a l
Power Source
3 - 4/0 600V
positive leads
to workpiece
electrode
Disconnect negative connection from
supplemental power
source and insulate to
convert from two to
one power source
3.7.1 CNC Interface Cable with 19-Pin Mating Power Source Connector
27
SECTION 3 INSTALLATION
28
SECTION 4 OPERATION
4.1 Block Diagram Circuit Description
Blocking Diodes
L1
Sensor
Left Hall
ESP-600C
BLOCK DIAGRAM
NOZZLE
ELECTRODE
Circuit
Pilot Arc
R (snub)
T1
250V Peak
R (boost)
Blocking Diodes
L2
Right Hall
Free Wheeling
Diodes - See Note
T1
425V Peak
Sensor
WORK
Shunt
Precision
Note
Biased Snubber
Circuit
Boost Starting
Arc Contactor
Contact on Pilot
T
contained in the same module.
Both the IGBT’s and Free Wheeling Diodes are
T
Left
See Note
IGBT Modules
Cap.
Bank
Gate
Drive
Sync Signal
For Alternate
PWM
(Master)
Galvanic
Isolator
Left PWM / Gate Drive Board
Gate
Drive
Switching
PWM
(Slave)
Galvanic
Isolator
2
Right PWM / Gate Drive Board
DC Bus
-300V-375V
H
Right
300U120’s
Bus Rectiers
T1 Main
Transformer
See Note
IGBT Modules
See
Note
Current Servo
Twisted Pair
Feedback for Constant
“T” Common Connected to Earth Grounded Work Through the “+” Output
T
Control Circuit
Error Ampliers
Feedback For Fast Inner Servos
Galvanic
Isolator
S
Input
3 Phase
Iout = (Vref ) x (80)
0.0 - 10.0V DC Vref
(Floating)
CNC Common
29
EPP-600 10/20KHz Output RMS Ripple Current Versus Output Voltage
9.0
SECTION 4 OPERATION
4.1 Block Diagram Circuit Description (con’t.)
The power circuit utilized in the ESP-600C is commonly referred to as a Buck Converter or a Chopper. High speed electronic
switches turn on and o several thousand times per second providing pulses of power to the output. A lter circuit, consisting primarily of an inductor (sometimes called a choke), converts the pulses to a relatively constant DC (Direct Current)
output.
Although the lter inductor removes most of the uctuations from the “chopped” output of the electronic switches, some
small uctuations of output, called ripple, remain. The ESP-600C utilizes a patented power circuit combining the output
of two choppers, each providing approximately half the total output, in a manner that reduces ripple. The choppers are
synchronized so that when the ripple from the rst chopper is increasing output, the second chopper is decreasing output.
The result is the ripple from each chopper partially cancels the ripple from the other. The result is ultra low ripple with a
very smooth and stable output. Low ripple is highly desirable because torch consumable life is often improved with low
ripple.
The graph below shows the eect of ESAB’s patented ripple reduction using two choppers synchronized and switching
alternately. Compared to two choppers switching in unison, the alternate switching typically reduces ripple a factor of 4
to 10.
ESP-600C 10/20 KHz Output RMS Ripple Current Versus Output Voltage
Choppers Synchronized and Switching in Unison (10KHz Ripple)
Choppers Synchronized and Switchng in Unison (10KHz Ripple)
8.0
7.0
6.0
5.0
4.0
Choppers Synchronized and Switching in Alternately (20KHz Ripple)
Choppers Synchronized and Switching Alternately (20KHz Ripple)
3.0
2.0
RMS Ripple Current (Amperes)
1.0
0.0
050100150200250300350
Output Voltage (Volts)
30
SECTION 4 OPERATION
4.1 Block Diagram Circuit Description (con’t.)
The ESP-600C Block Diagram (after Subsection 6.4.4) shows the main functional elements of the power source. T1, the
Main Transformer, provides isolation from the primary power line as well as the proper voltage for the *375V DC Bus. The
Bus Rectiers convert the three phase output of T1 to the *375V bus voltage. A capacitor bank provides ltering and energy storage that supplies power to the high speed electronic switches. The switches are IGBT’s (Insulated Gate Bipolar
Transistors). The *375V bus provides power for both the Left (Master) Chopper and the Right (Slave) Chopper.
Each chopper contains IGBT’s, Free Wheeling Diodes, a Hall Sensor, a Filter Inductor, and Blocking Diodes. The IGBT’s are
the electronic switches that, in the ESP-600C, turn on and o 10,000 times per second. They provide the pulses of power
ltered by the inductor. The Free Wheeling Diodes provide the path for current to ow when the IGBT’s are o. The Hall
Sensor is a current transducer that monitors the output current and provides the feedback signal for the control circuit.
The Blocking Diodes provide two functions. First, they prevent the 425V DC from the Boost Starting Circuit from feeding
back to the IGBT’s and the *375V Bus. Second, they provide isolation of the two choppers from one another. This permits
independent operation of each chopper without the other chopper functioning.
The Control Circuit contains regulating servos for both choppers. It also contains a third servo that monitors the total
output current signal fed back from the Precision Shunt. This third servo adjusts the two chopper servos to maintain an
accurately controlled output current commanded by the Vref signal.
The Vref circuitry is galvanically isolated from the rest of the power source. The isolation prevents problems that can arise
from “ground” loops.
Each chopper, the Left Master, and the Right Slave, contain their own PWM / Gate Drive PC Boards mounted next to the
IGBT’s. This circuitry provides the on / o PWM (Pulse Width Modulation) signals to drive the IGBT’s. The Left (Master) PWM
provides a synchronized clock signal to its own Gate Drive circuitry as well as to the Right (Slave) Gate Drive circuitry. It is
through this synchronized signal that the IGBT’s from the two sides switch alternately reducing output ripple.
The ESP-600C contains a Boost Supply for providing approximately 425V DC for arc starting. After the cutting arc is established, the Boost Supply is turned o with a contact on the Pilot Arc Contactor (K4).
A Biased Snubber reduces the voltage transients created during cutting arc termination. It also reduces the transient voltages from a parallel power source thus preventing damage to the power source.
The Pilot Arc Circuit consists of the necessary components for establishing a pilot arc. This circuit disengages when the
cutting arc is established.
* The Bus voltage for the 400V, 50Hz model is approximately 320V DC.
Indicator illuminates when input power is applied to the power source.
B - Contactor On
Indicator illuminates when the main contactor is energized.
C - Over Temp
Indicator illuminates when power source has overheated.
D - Fault
Indicator illuminates when there are abnormalities in the cutting process or
when the input line voltage falls outside of the required nominal value by
±10%.
E - Power Reset Fault
Indicator illuminates when a serious fault is detected. Input power must be
disconnected for at least 5 seconds and then reapplied.
F - Current Dial (Potentiometer)
ESP-600C dial shown. ESP-600C has a range of 50 to 600 A. Used only in
panel mode.
• Place in the PANEL position for control using the current potentiometer.
• Place in REMOTE position for control from an external signal
(CNC).
H and L - Remote Connections
H - 19 pin plug for connecting the power source to CNC (remote control)
I - Pilot Arc HIGH / LOW Switch
Used to select amount of pilot arc current desired. As a general rule, for 100
amperes and below, a setting of LOW is used. This can vary depending on
gas, material and torch used. High/Low settings are specied in cutting data
included in the torch manual.
I
J
H
F
G
A
C
K
B
D
E
33
SECTION 4 OPERATION
4.2 Control Panel (con’t.)
J - Meters
Displays voltage and amperage when cutting. The ammeter can be activated
when not cutting to view an estimation of the cutting current before cutting
begins.
K - Actual/Preset Switch
The ACTUAL AMPS / PRESET AMPS spring return toggle switch, S42, defaults
to the ACTUAL (UP) position. In the ACTUAL position, the OUTPUT AMMETER
displays the output cutting current.
In the PRESET (DOWN) position, the OUTPUT AMMETER displays an estimate
of the output cutting current by monitoring the 0.00 to 10.00 VDC cutting
current reference signal (Vref). The reference signal comes from the CURRENT
POTENTIOMETER with the PANEL/REMOTE switch in the PANEL (UP) position
and from a remote reference signal (J1-D / J1-C(+)) with the PANEL/REMOTE
switch in the REMOTE (DOWN) position. The value displayed on the OUTPUT
AMMETER will be the value of Vref (volts) times 80. For example, a reference
signal of 5.00V will result in a preset reading of 400 Amps on the meter.
WARNING
The switch may be changed to and from the ACTUAL and PRESET positions
at any time without aecting the cutting process.
DANGEROUS VOLTAGES AND CURRENT!
ELECTRIC SHOCK CAN KILL!
BEFORE OPERATION, ENSURE INSTALLATION AND GROUNDING PRO
CEDURES HAVE BEEN FOLLOWED. DO NOT OPERATE THIS EQUIP
MENT WITH COVERS REMOVED.
34
SECTION 4 OPERATION
1.Apply powerbyclosing the line (wall) switch.(TheESP-400Cdoesnothaveanon/offswitch). Themain power light willilluminateandthefaultlightwillflashandthengoout.
1. Apply power by closing the line (wall) switch. (The ESP-600C
does not have an on / o switch). The main power light will
illuminate and the fault light will ash and then go out.
2. Select the Panel / Remote setting.
3. Set pilot arc High / Low switch. (Refer to cutting data in the
torch manual.)
4. If using panel mode, view preset amps with the ACTUAL /
PRESET AMPS switch. Adjust current until the approximate
desired value is shown on the ammeter. If using the remote
mode, placing the actual Amps / Preset Amps switch in the
Preset Amps position provides the initial output current commanded by the remote control.
5. Begin plasma cutting operation. This may include manually
setting up other options, depending on the total plasma
package.
6. If using panel mode, after cutting has begun, adjust current
to desired amount.
7. If cutting fails to initiate, check for fault light. If a fault light
illuminates, refer to troubleshooting section.
Begin
Cutting
The fault light ashes when the contactor is rst
turned on signifying the DC Bus powered up nor-
Note:
mally.
35
SECTION 4 OPERATION
4.4 Arc Initiation Settings
The time to achieve full current can be adjusted for a soft start. This feature uses a reduced current to start and then gradually ramps up to full current. The ESP-600C is factory shipped with soft start enabled. The default settings are:
These timing functions can be disabled or adjusted to suit individual system requirements.
Start Current Wave Form With Soft Start OFF
Approx. 2 msec time to full current
DC Output Current
WARNING
Start Current Wave Form With Soft Start ON
Time
Cut Current
1
= 80 V
OUT
REF
Start Current
DC Output Current
Dwell
Time
Time to full cu rrent
800 msec
Time
Cut Current
1
OUT
ELECTRIC SHOCK CAN KILL!
SHUT OFF POWER AT THE LINE WALL DISCONNECT BEFORE RE
MOVING ANY COVERS OR MAKING ANY ADJUSTMENTS TO THE
POWER SOURCE.
= 80 V
REF
36
SECTION 4 OPERATION
12345678
SW2
12345678
SW2
4.4.1 Enable/Disable Arc Initiation Conditions
Factory default setting shown.
on
o
SW1
1. Remove access panel on the upper-right corner of the front panel. Be sure to replace this panel after adjustments have
been made.
2. Locate SW1 and PCB1 and push both rocker switches down to disable. To enable push both switches up. (If one switch
is up and the other is down, arc initiation time is considered on.)
Factory default settings shown
on
o
4.4.2 Adjusting Arc Initiation Dwell Timer
Dwell Time is controlled by selections of positions 1 through 4 of SW2 on PCB1. When a switch is pushed on, its value is
added to the minimum dwell time of 10 msec.
Switch #1 = 10 msec dwell time
Switch #2 = 20 msec dwell time
Switch #3 = 40 msec dwell time
Switch #4 = 80 msec dwell time
The default setting is with switch #3 on. 40 msec + 10 msec (minimum) = 50 msec
4.4.3 Adjusting the Minimum Start Current
Minimum Start Current is controlled by selection of positions 5 through 8 of SW2. When a switch is pushed on, its value is
added to the factory set minimum value of 5A.
Switch #5 = 40A min. start current
Switch #6 = 20A min. start current
Switch #7 = 10A min. start current
Switch #8 = 5A min. start current
Default setting is with 5 on 40A + 5A = 45A
37
SECTION 4 OPERATION
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%
0 1 2 3 4 5 6 7
8 9 10
4.4.4 Arc Initiation Controls
Start Current Potentiometer
UP-Slope Timer
SW1
SW2
4.4.5 Start Current and Up-Slope Timer
Starting Current (%) and Pot Setting Relationship
Start Current
Set using potentiometer located above and to the left of center
of PCB1. Factory default setting of 7 results in a starting current
that is 50% of the cutting current..
Up-Slope Timer
Three position switch located next to the start current potentiometer. Time is from start current (after dwell ends) to full
current. Factory default = 800 msec.
Left position = 250 msec
Center position = 800 msec
Right Position = 1200 msec
Percentage (%) of Cutting Current
MAX
Start Current Pot Setting
38
ESP-600C V-I CURVES FOR 460V & 575V INPUTS
450
OUTPUTVOLTAGE(Volts)
V
625V
V
000V
V
000V
V
V
V
000V
V
500V
V
000V
V
000V
V
V
I
OUT
= (80) x (V
REF
)
SECTION 4 OPERATION
4.5.1 ESP-600C V-I Curves for 460V and 575V, 60Hz Inputs
0
50
100
Output Voltage (Volts)
150
200
0100200300400500600700
V
= 0.625V
REF
= 1.000V
V
REF
V
= 2.000V
REF
V
= 3.000V
REF
Output Current (Amperes)
V
= 4.000V
REF
=0.
REF
= 1.
=2.000
=3.
=4.
Min. Rating
250
MINRATING
300
350
400
Output of Boost/Start Circuit
Outp ut of B oost / Start Circuit
427V Open Circuit Voltage
427V Open C ircuit Voltage
V
= 5.000V
REF
V
= 6.000V
REF
= 7.000V
V
REF
V
= 7.500V
REF
Max. Current Rating
=5.000
REF
=6.
REF
=7.
=7.
MAXRATING
Internal Current Limit
INTERNALCURRENTLIMIT
39
MAX RATING
MAX RATING
DATA PLATE
DATA PLATE
I
Max Output Voltage
Max. Output Voltage
@ Nominal Line
@Nominal Line
OU T
= ( 80) x ( V
RE F
)
ESP-600C V-I CURVES FOR 400V INPUT
450
0100200300400500600700
OUTPUTVOLTAGE(Volts)
V
625V
MINRATING
V
000V
V
000V
V
000V
V
V
V
500V
V
000V
V
000V
V
000V
I
OUT
= (80) x (V
REF
)
SECTION 4 OPERATION
4.5.2 ESP-600C V-I Curves for 380-400V, 50/60Hz Inputs
Output Voltage (Volts)
0
50
100
150
200
250
300
350
400
= 0.625V
V
REF
= 1.000V
V
REF
V
= 2.000V
REF
V
= 3.000V
REF
Output Current (Amperes)
= 4.000V
V
REF
=0.
REF
=2.
=4.
= 1.000
=3.
Min. Rating
Output of Boost/Start Circuit
Outp ut of B oost / Start Circuit
423V Open Circuit Voltage
423V Open C ircuit Voltage
V
= 5.000V
REF
V
REF
V
REF
V
REF
Max. Current Rating
=5.
= 6.000V
=6.
= 7.000V
= 7.500V
=7.
=7.
MAXRATING
Internal Current Limit
INTERNALCURRENTLIMIT
40
@Nominal Line
MAX RATING
MAX RATING
DATA PLATE
DATA PLATE
Max Output Voltage
Max. Output Voltage
@ Nominal Line
I
OU T
= ( 80) x ( V
RE F
)
SECTION 5 MAINTENANCE
5.1 General
ELECTRIC SHOCK CAN KILL!
WARNING
WARNING
CAUTION
SHUT OFF POWER AT THE LINE WALL DISCONNECT BEFORE AT
TEMPTING ANY MAINTENANCE.
EYE HAZARD WHEN USING COMPRESSED AIR TO CLEAN.
• Wear approved eye protection with side shields when cleaning the
power source.
• Use only low pressure air.
Maintenance On This Equipment Should Only Be Performed By
Trained Personnel.
5.2 Cleaning
Regularly scheduled cleaning of the power source is required to help keep the unit running trouble free. The frequency of
cleaning depends on environment and use.
1. Turn power o at wall disconnect.
2. Remove side panels.
3. Use low pressure compressed dry air, remove dust from all air passages and components. Pay particular attention to
heat sinks in the front of the unit. Dust insulates, reducing heat dissipation. Be sure to wear eye protection.
41
SECTION 5 MAINTENANCE
Air restrictions may cause ESP-600C to over heat.
Thermal Switches may be activated causing interruption of func-
CAUTION
5.3 Lubrication
• Some units are equipped with oil tubes on the fans. These fans should be oiled after 1 year of service.
• All other ESP-600Cs have fan motors that are permanently lubricated and require no regular maintenance.
tion.
Do not use air lters on this unit.
Keep air passages clear of dust and other obstructions.
WARNING
ELECTRIC SHOCK HAZARD!
BE SURE TO REPLACE ANY COVERS REMOVED DURING CLEANING
BEFORE TURNING POWER BACK ON.
ELECTRIC SHOCK CAN KILL!
DO NOT PERMIT UNTRAINED PERSONS TO INSPECT OR REPAIR THIS
WARNING
CAUTION
6.2 Fault Indicators
EQUIPMENT. ELECTRICAL WORK MUST BE PERFORMED BY AN EXPE
RIENCED ELECTRICIAN.
Stop work immediately if power source does not work properly.
Have only trained personnel investigate the cause.
Use only recommended replacement parts.
Front Panel Fault
Indicators
PCB1 Located behind
this panel.
Fault indicators are found on the front panel Used with
the LEDs on PCB1 (located behind the cover with the
ESP label) problems can be diagnosed.
NOTE:
It is normal for momentary lighting (ashing) of the fault indicator
and LED 3 when a “contactor on”
signal is applied at the beginning
of each cut start.
Fault Indicator used with:
LED 3 - Bus Ripple
LED 4 - High Bus
LED 5 - Low Bus
LED 7 - Arc Voltage Saturation
LED 8 - Arc Voltage Cuto
Power Reset Fault Indicator used with:
LED 6 - Right Overcurrent
LED 9 - Left Overcurrent
LED 10 - Left IGBT Unsaturated
LED 11 - Right IGBT Unsaturated
LED 12 - Left -12V Bias Supply
LED 13 - Right -12V Bias Supply
43
SECTION 6 TROUBLESHOOTING
Fault Indicator (Front Panel)
Illuminates when there are abnormalities in the cutting process or when the input
voltage falls ±10% outside the normal value. Momentary illumination is normal. If
continuously lit, check LEDs 3, 4, 5, 7, and 8 on PCB1 for further diagnosis.
LED 3 – (amber) Bus Ripple Fault - Momentarily illuminates at the beginning
of each cut. Continuously lit during single-phasing or imbalanced line-to-line
voltages of the three phase input line (Excessive Ripple). Power Source is shut
down.
LED 4 – (amber) High Bus Fault – Illuminates when input line voltage is too high
for proper operation (approximately 20% above nominal line voltage rating).
Power source is shut down.
LED 5 – (amber) Low Bus Fault – Illuminates when input line
voltage is approximately 20% below nominal line voltage
rating. Power Source is shut down.
LED 7 – (amber) Arc Voltage Saturation Fault – Illuminates
when the cutting arc voltage is too high and cutting current
drops below preset level. LED will extinguish after voltage
decreases and current rises.
LED 8 – (amber) Arc Voltage Cuto Fault – Illuminates when arc
voltage increases over the preset value. PS is shut down.
44
SECTION 6 TROUBLESHOOTING
Power Reset Fault Indicator (on front panel)
Illuminates when a serious fault is detected. Input power must be disconnected for a
least 5 seconds to clear this fault. Check PCB1 Red LEDs 6, 9, 10, 11, 12, and 13 if this
fault is illuminated for further diagnosis.
LED 6 – (red) Right Overcurrent Fault – Illuminates when the current out of the right
side chopper is too high (400 amps). This current is measured by the right-side hall
sensor. The power source is shut down.
LED 9 – (red) Left Overcurrent Fault – Illuminates when the current from the left side
chopper is too high (400 amps). Measured by the left hall sensor. Power source is
shut down.
LED 10 _ (red) Left IGBT Unsaturated Fault – Illuminates when left IGBT is not fully
conducting. PS (PS) is shut down.
LED 11 – (red) Right IGBT Unsaturated Fault – Illuminates
when right IGBT is not fully conducting. Power Source (PS)
is shut down.
LED 12 – (red) Left -(neg) 12V Bias Supply Fault – Illuminates
when negative 12 V bias supply to the left side IGBT gate
drive circuit (located on PWM-drive board PCB2) is missing.
PS is shut down.
LED 13 – (red) Right –(neg) 12V Bias Supply Fault - Illuminates when negative 12 V bias
supply to the right side IGBT gate drive circuit (located on PWM drive board PCB3) is
missing. PS is shut down.
45
SECTION 6 TROUBLESHOOTING
6.3 Fault Isolation
Many of the most common problems are listed by symptom.
6.3.1 Fans not working
6.3.2 Power not on
6.3.3 Fault Light Illumination
6.3.4 Torch won’t re
6.3.5 Fusses Blown F1 and F2
6.3.6 Intermittent, Interrupted or Partial Operation
6.3.1 Fans Not Working
ProblemPossible CauseAction
This is normal when not cutting.
All 4 fans do not run
1, 2 or 3 fans do not run.
Fans run only when “Contactor On”
signal is received.
Broken or disconnected wire in fan
motor circuit.
Faulty fan(s)Replace fans
None
Repair wire.
6.3.2 Power Not On or LOW Voltage
ProblemPossible CauseAction
Power source inoperable:
Main power lamp is o.
Low open circuit voltage
Missing 3-phase input voltage
Missing 1 of 3-phase input voltage
Fuse F3 blownReplace F3
Pilot arc Contactor (K4) faultyReplace K4
Faulty Control PCB1Replace Control PCB1 (P/N
Restore all 3 phases of input voltage to within
±10% of nominal line.
Restore all 3 phases of input voltage to within
±10% of nominal line.
0558038287
)
46
SECTION 6 TROUBLESHOOTING
6.3.3 Fault Light Illumination
ProblemPossible CauseAction
Fault light illuminates at the end of
cut but goes o at the start of the
next.
LED 3 – (amber) Bus Ripple
LED 4 – (amber) High Bus
LED 5 – (amber) Low Bus
Normal condition caused when terminating the arc by running the torch
o the work or the arc being attached
to a part that falls away.
Imbalance of 3-phase input power
Momentary loss of one phase of
input power
Faulty control PCB1Replace PCB1 P/N
One or more phases of input voltage
exceed nominal line voltage by more
than 15%.
Faulty control PCB1Replace PCB1 P/N
One or more shorted diode rectiers
(D25-D28) on the “Electrode Plate”
One or more phases of input volt-
age are lower than nominal by more
than 15%.
Blown F1 and F2 fuses
Over temp Light comes on.See over temp in Fault Light Section
Imbalanced 3-phase input
power
Momentary loss of one phase of
input power
Faulty Main Contactor (K1)Replace K1
FAULTY Control PCB1Replace PCB1 P/N
Reprogram cutting process to
ensure arc is terminated only by
removing the “Contactor On” signal.
Maintain phase voltage imbalance
of less than 5%.
Restore and maintain input power
within ±10% nominal
0558038287
Restore and maintain line voltage
within ±10%
0558038287
Replace shorted diode rectiers
Restore and maintain within
±10% of nominal
See F1 and F2 in Blown
Fuses Section
Maintain phase voltage imbalance
of less than 5%
Restore and maintain within
±10% of nominal
0558038287
47
SECTION 6 TROUBLESHOOTING
ProblemPossible CauseAction
LED 6 – (red) Right Over Current
Note:
If operation at 400A or less is
possible, then the LEFT side is
not working.
LED 9 – (red) Left Over Current
Note:
If operation at 400A or less is
possible, then the Right side is
not working.
Output current of the right side exceeds
300A because of operating the power source
over 600A.
Cutting at over 400A with a faulty left side
(left side output = 0)
Right current transducer connector loose
or unplugged. PCB loose.
Loose or unplugged connector at right
PWM/Drive Printed circuit board.
P2 at left of PWM / Drive PCB loose or unplugged.
Check voltage between P7-6 and P7-7. A
voltage in either polarity of greater than
0.01 V indicates a faulty right current transducer (TD2).
Faulty PCB1Replace PCB1 P/N
Faulty right PWM / Drive PCB
Output current of the left side exceeds 300A
because of operating the power source
over 600A.
Cutting at over 400A with a faulty right side
(right side output = 0)
Left current transducer connector loose or
unplugged. PCB loose.
Loose or unplugged connector at left PWM
/ Drive Printed circuit board.
P2 at right of PWM / Drive PCB loose or
unplugged.
Check voltage between P7-2 and P7-3. A
voltage in either polarity of greater than
0.01 V indicates a faulty left current transducer (TD1).
Faulty PCB1Replace PCB1 P/N
Faulty left PWM / Drive PCB
Turn the output current down to
400A
See faulty left or right side
Secure connections
Secure connection
Secure connection
Replace right current transducer
(TD2)
Replace right PWM / Drive PCB P/N
0558038308
Turn the output current down to
400A
See faulty right side
Secure connections
Secure connection
Secure connection
Replace left current transducer (TD1)
Replace left PWM / Drive PCB P/N
0558038308
0558038287
0558038287
CAUTION
NEVER attempt to power-up or operate the power source with any
Gate / Emitter IGBT Plug disconnected from it’s PWM / Gate Drive
Board. Attempting to operate the power source with any open (unplugged) IGBT Gate / Emitter Connector may damage the IGBT and
the plasma cutting torch.
48
SECTION 6 TROUBLESHOOTING
ProblemPossible CauseAction
Shorted IGBTReplace the IGBTs
Very high Output current accompanied by either a left or
right over current (LED 6)
LED 10 - (red) Left IGBT Unsaturated
LED 11 - (red) Right IGBT
Unsaturated
Current pot set too highLower the current setting
Faulty left PWM / Drive PCBReplace left PWM / Drive PCB
High remote current signalDecrease remote current signal
Faulty PCB1Replace PCB1 P/N 0558038287
Black wire connecting IGBT (Q2) collector to P3 of the
left PWM / Drive PCB (PCB2) is disconnected.
Shorted Freewheeling Diode(s)Replace freewheeling diode(s)
Loose or unplugged P1 connector at the left PWM /
Drive PCB
Loose or unplugged P10 connector at PCB1Secure P10
Faulty PCB1Replace PCB1 P/N 0558038287
Faulty left PWM / Drive PCBReplace PCB2 P/N 0558038308
Black wire connecting IGBT (Q5) collector to P3 of the
right PWM / Drive PCB (PCB3) is disconnected.
Shorted Freewheeling Diode(s)Replace freewheeling diode(s)
Loose or unplugged P1 connector at the left PWM /
Drive PCB
Loose or unplugged P10 connector at PCB1Secure P11
Faulty PCB1Replace PCB1 P/N 0558038287
Faulty right PWM / Drive PCBReplace PCB3 P/N 0558038308
Secure connector
Secure P1
Secure connector
Secure P1
49
SECTION 6 TROUBLESHOOTING
ProblemPossible CauseAction
LED 12 – (red) Left –12V Missing
LED 12 – (red) Right –12V Missing
Very high Output current accompanied by either a left or right over current (LED 9 or LED 6 respectively)
Over Temp Lamp illuminates
Loose or unplugged P1 connector at
the left PWM / Drive PCB
Loose or unplugged P10 connector
at PCB1
Faulty left PWM / Drive PCB
Loose or unplugged P1 connector at
the right PWM / Drive PCB
Loose or unplugged P11 connector
at PCB1
Faulty right PWM / Drive PCB
Shorted IGBTReplace the IGBTs
Current pot set too highLower the current setting
Faulty left PWM / Drive PCB
High remote current signalDecrease remote current signal
Faulty PCB1Replace PCB1 P/N 0558038287
One or more fans inoperableRepair or replace fan(s)
Broken wire or unplugged connector
at thermal switch.
Obstruction to air ow closer than 3 feet
(1 m) to rear of power source.
Excessive dirt restricting cooling air
ow
Obstructed air intake
Secure P1 connector
Secure P10 connector
Replace left PWM / Drive PCB P/N
0558038308
Secure P1 connector
Secure P11 connector
Replace right PWM / Drive PCB P/N
0558038308
Replace lef t PWM / Drive PCB P/N
0558038308
Repair broken wires and unplugged connector
Allow 3 ft. (1 m) minimum between the rear
of the power source and any object that may
restrict air ow.
Clean out excessive dirt, especially in the
extrusions for the IGBTs and freewheeling
diodes, the POS, NEG and Electrode Plates,
the main transformer (T1) and the lter
inductors (L1 and L2).
Check and clear any obstructions from the
bottom, front, and top rear of the Power
Source.
50
SECTION 6 TROUBLESHOOTING
6.3.4 Torch Will Not Fire
ProblemPossible CauseAction
Remote control removes the start
signal when the main arc transfers to
Main Arc Transfers to the work with a
short “pop”, placing only a small dimple
in the work.
Arc does not start. There is no arc at the
torch. Open circuit voltage is OK.
the work.
Panel/Remote switch in “Remote” with
no remote control of the current
Remote current control present but
signal missing.
Current pot set too low.Increase current pot setting.
Start current pot, located behind the
cover for the control PCB is set too
low.
Open connection between the power
source positive output and the work.
Fuse F6 in the Pilot arc circuit is blown. Replace F6
Fuse F7 in the pilot arc circuit is blown. Replace F7
Pilot arc High/Low switch is in the ”LOW”
position when using consumables for
100A or higher (Refer to process data
included in torch manuals)
Pilot arc contactor (K4) faulty.Replace K4
Faulty PCB1
Place Panel/Remote switch in “Panel”
position
Check for current reference signal at
TB1-4(+) and TB1-5(-). See Signal vs.
Output Current Curve this section.
Increase the start current post setting
to “7”.
Repair connection
Change Pilot arc to “High” position.
(Refer to process data included in torch
manuals)
Replace PCB1 P/N
0558038287
51
SECTION 6 TROUBLESHOOTING
6.3.5 Fuses F1 and F2 Blown
ProblemPossible CauseAction
Process controller must allow at least
Fuses F1 and F2 blown.
Process controller ignites pilot arc too
soon after providing the “Contactor
On” signal
Faulty negative (Electrode) output cable
shorting to earth ground.
Shorted freewheeling diode.
One or more shorted diode rectiers
(D13-D18) on “POS Plate”.
One or more shorted diode rectiers
(D7-D12) on “NEG Plate”.
300MS to lapse between the application of the “Contactor On” signal and
the ignition of the pilot arc. Fix process
controller logic and replace diodes.
Repair cable
Replace shorted freewheeling diode
and F1-F2
Replace all diode rectiers on the “POS
Plate”.
Replace all diode rectiers on the “NEG
Plate”.
6.3.6 Intermittent, Interrupted or Partial Operation
ProblemPossible CauseAction
Loose or unplugged connector at left PWM /
Drive PCB (PCB2)
Works OK at 400A or less - Over
current right side when cutting
over 400A. LED 6 on control board
illuminated.
Works OK at 400A or less - Over
current left side when cutting
over 400A. LED 9 on control board
illuminated.
Faulty left PWM / Drive PCB
Check voltage between P5-1 and P5-2 at the
left PWM / Drive PCB (PCB2). Should be 20V
AC. Between P5-1 and P5-3 should be 40V AC.
If not the control transformer (T5) is faulty.
Loose or unplugged connector at Right PWM
/ Drive PCB (PCB3)
Faulty Right PWM / Drive PCB
Check voltage between P5-1 and P5-2 at the
right PWM / Drive PCB (PCB3). Should be 20V
AC. Between P5-1 and P5-3 should be 40V AC.
If not the control transformer (T7) is faulty.
Secure connector
Replace right PWM / Drive PCB P/N
0558038308
Replace control transformer T5
Secure connector
Replace right PWM / Drive PCB P/N
0558038308
Replace control transformer T7
CAUTION
NEVER attempt to power-up or operate the power source with any
Gate / Emitter IGBT Plug disconnected from it’s PWM / Gate Drive
Board. Attempting to operate the power source with any open (unplugged) IGBT Gate / Emitter Connector may damage the IGBT and
the plasma cutting torch.
52
SECTION 6 TROUBLESHOOTING
ProblemPossible CauseAction
Power Supply turns o prematurely in the middle of the cut.
ProblemPossible CauseAction
Output current is unstable and
drifts above or below the setting.
“Contactor On” signal is removed from unit.
Momentary loss of primary input power.
Faulty condition, indicated by illumination
of the fault lamp.
Faulty condition, indicated by the illumination
of the power reset fault lamp.
Current setting too low.Increase current setting
Remote current signal removed during cut.Fix remote current signal
Place the PANEL / REMOTE switch in the “PANEL”
position. Adjust current control pot. If current
no longer drifts, the remote current control
signal is faulty.
Select “PANEL” on the PANEL / REMOTE switch
and adjust the current control pot. The current still drifts, measure the current reference
signal at TB1-4 (+) and TB1-5 (-). If the signal
drifts, the current control pot is faulty. If the
signal does not drift, the Control PCB (PCB1)
is faulty.
Power source is OK. Trouble shoot process controller.
Restore and maintain input voltage
within ±10% of nominal.
Remove control PCB (PCB1) access panel
to determine the fault causing the shutdown. Refer to fault light illumination
section.
Remove control PCB (PCB1) access panel
to determine the fault causing the shutdown. Refer to fault light illumination
section.
Fix the remote current control signal to
operate the PANEL / REMOTE switch in
the “PANEL” position.
Replace the current control pot.
Replace the control PCB (PCB1) P/N
0558038287
53
SECTION 6 TROUBLESHOOTING
6.4 Testing and Replacing Components
• Replace a PC board only when a problem is isolated to that board.
• Always disconnect power before removing or installing a PC board.
• Do not grasp or pull on board components.
• Always place a removed board on a static free surface.
NOTICE
Power Semiconductor Components
Categories of power semiconductors include;
• Power Rectiers
• Modules containing the free wheeling diodes and IGBTs
• If a PC board is found to be a problem, check with your ESAB distributor
for a replacement. Provide the distributor with the part number of the
board as well as the serial number of the power source.
• Do not attempt to repair the board yourself. Warranty will be voided if
repaired by the customer or an unauthorized repair shop.
54
SECTION 6 TROUBLESHOOTING
6.4.1 Power Rectiers
Power Rectiers – Procedure to access behind the front panel
1. Remove top cover and side panels
2. Locate and disconnect plug in rear of ammeter (attached tone red and one black wire)
3. Remove pilot arc switch
4. Disconnect voltmeter
5. Disconnect orange and yellow wires from relay K4.
6. Remove two bolts holding the left side of the front
panel to the base.
7. Remove three bolts holding across the center base
of the front panel. These are accessed from underneath.
8. Remove one of the bolts holding the right side of the
front panel to the base. Loosen the second bolt. Of
these two bolts, remove the bolt on the left and loosen
the bold on the right.
9. Swing the front panel out to gain access to power
rectier components.
Power Rectiers located behind the
front panel.
Troubleshooting Procedures –Negative Plate
Location of Neg. Plate
Location of fuses F8 and F9
1. Visually inspect fuses F8 and F9. Replace if they show signs
of being blown or melted. Inspect diodes. If ruptured
or burned, replace all diodes on the NEG Plate. If diodes
appear to be OK, proceed to next step.
55
SECTION 6 TROUBLESHOOTING
D27,28
D25,26
Diode RectierNEG Plate
1. Check ohms between NEG Plate and BR “A” Bus. A reading
of 2 ohms or less indicates one or more shorted diodes.
Replace all Diodes on NEG Plate.
2. If fuses F8 and/or F9 were open in the rst step, make two
more ohmmeter readings.
A. Measure resistance between the NEG Plate and
BR “B” bus.
Troubleshooting POS Plate
Location of Pos. Plate
Location of fuses F8 and F9
POS PlateElectrode Plate
B. Measure between NEG Plate and BR “C” bus.
If resistance is 2 ohms or less in either case, replace all the
diodes on the NEG Plate.
1. Check ohms between POS Plate and BR “A” Bus. A reading
of 2 ohms or less indicates one or more shorted diodes.
Replace all Diodes on POS Plate.
2. If fuses F8 and/or F9 were open in the rst step, make two
more ohmmeter readings.
A. Measure resistance between the POS Plate and BR
“B” bus.
B. Measure between POS Plate and BR “C” bus.
If resistance is 2 ohms or less in either case, replace all the
diodes on the POS Plate.
Bus
Cathode
Leads
1. Visually inspect for ruptured or burned diodes. Replace
only those damaged.
2. Check resistance between Electrode Plate and the parallel
pig tails (cathode leads) of D25 and D26. If reading is 2
ohms or less, disconnect leads from bus and check each
diode. Replace only shorted diodes.
Repeat procedure for D27 and D28. Replace only shorted
diodes.
56
SECTION 6 TROUBLESHOOTING
6.4.2 IGBT / Freewheeling Diode (FWD) Replacement
The emitter and the gate of each aected IGBT must be jum-
CAUTION
CAUTION
pered together to prevent electrostatic damage. Each power
source is supplied with six jumper plugs that mate to the IGBT
Gate / Emitter Plug.
Electrostatic Discharge Hazard
Electrostatic discharge may damage these components.
• Damage is accumulative and may only appear as shortened component life and not as a catastrophic failure.
• Wear a protective ground strap when handling to prevent damage to
PCB components.
• Always place a pc board in a static-free bag when not installed.
REMOVAL:
A. Insure that input power is removed by two actions such as a disconnect switch and removal of fuses. Tag and lock any
disconnect switch to prevent accidental activation.
B. Remove the top panel to gain access to the modules located in the top rear of the power source.
C. Clean the compartment containing the modules with dry, oil-free compressed air.
D. Unplug the gate drive leads connecting the IGBT Gates to the PWM/Gate Drive PC Board. In order to prevent damage
to the IGBT, install jumper plugs into the IGBT Gate Drive Connector. See Caution below. Jumper plugs are supplied
with each power source.
E. Remove the copper buss plates and bars connected to the IGBT’s. Save the M6 hardware connecting the bus structure
to the module terminals. You may need to re-use the hardware. Longer hardware can damage the module by contact-
ing the circuitry directly below the terminals.
F. Remove the M6 hardware mounting the modules to the heat sink. Save the hardware because you may need to re-use
it. Hardware too short can strip the threads in the Aluminum heat sink. Hardware too long can hit the bottom of the
holes causing the modules to have insucient thermal contact to the heat sink. Hardware too long or too short can
cause module damage due to over heating.
The module gate plugs must be plugged into the PWM/Gate
CAUTION
Drive PC Board whenever the power source is in operation.
Failure to plug them in will result in damage to the module and
possible damage to the torch.
57
SECTION 6 TROUBLESHOOTING
REPLACEMENT:
A. Thoroughly clean any thermal compound from the heat sink and the modules. Any foreign material trapped between
the module and heat sink, other than an appropriate thermal interface, can cause module damage due to over heating.
B. Inspect the thermal (interface) pad, P/N 951833, for damage. A crease or deformity can prevent the module from seat-
ing properly, impeding the heat transfer from the module to the heat sink. The result can be module damage due to
over heating.
If a thermal pad is not available, a heat sink compound such as Dow Corning® 340 Heat Sink Compound may be used. It’s
a good idea to mount all paralleled modules located on the same heat sink using the same thermal interface. Dierent interfaces can cause the modules to operate at dierent temperatures resulting in un-equal current sharing. The imbalance
can shorten module life.
C. Place a thermal pad, and an IGBT module on the heat sink. Carefully align the holes in the thermal pad with the heat-
sink and module holes. If heat sink compound is used in place of a thermal pad, apply a thin coat of even thickness to
the metal bottom of the module. A thickness of 0.002” – 0.003” (0.050mm – 0.075mm) is optimum. Too much compound impedes heat transfer from the module to the heat sink resulting in short module life due to over heating.
D. Insert the four M6 mounting bolts, but do not tighten. Leave them loose a few turns. Be certain that the threads from
the mounting bolts do not bend the edges of the thermal pad clearance holes. A bent thermal pad can prevent the
module from seating properly, impeding the heat transfer from the module to the heat sink. The result can be module
damage due to over heating.
E. Partially tighten the four mounting bolts a little more than nger tight in the order: A-B-C-D. See gure below.
F. Fully tighten, in the same order above, to a torque of 35 – 44 in-lbs (4.0 – 5.0 N-M). See gure below.
G. Install the bus plates and bus bars. Be careful that the sheets of insulation separating the bus plates are still in their
original positions. It’s a good idea to tighten the mounting hardware only after getting it all started. Torque the M6
module terminal hardware to 35 – 44 in-lbs (4.0 – 5.0 N-M).
H. Remove the jumper plugs from the module gate lead plugs, and plug into the appropriate plugs from the PWM/Gate
Drive PC Board. See Caution below.
I. Replace the top panel.
CAUTION
1 - IBGT Collector, Free Wheeling
Diode (FWD) Anode
2 - IGBT Emitter
3 - FWD Cathode
6 - IGBT Gate
7 - IGBT Emitter
The module gate plugs must be plugged into the PWM/Gate
Drive PC Board whenever the power source is in operation.
Failure to plug them in will result in damage to the module and
possible damage to the torch.
Four-Point Mounting Type
Partial tightening - A
A
D
Fully tightening - A
1
2
58
•B•C•D
•B•C•D
C
Key Plug
B
7 (RED)
3
6 (WHT)
Position 1 (RED)
SECTION 6 TROUBLESHOOTING
6.4.3 Power Shunt Installation
Instability or oscillation in cutting current can be caused by improper dressing of shunt pick-up leads.
CAUTION
Poor torch consumable life will be the result.
There are two cables that attach to the shunt pick-up points:
a two conductor cable drives the ammeter
a three conductor which provides the current feedback signal to PCB1 (control PCB).
Dressing of the 2 conductor cable is not critical.
The following is the dressing procedure for the 3 conductor cable.
• The breakout point should be physically at the middle of the shunt. The breakout point is the place
where the conductors exit from the outer insulation jacket.
• The black and clear insulated wires must be kept next to the shunt and under the cable ties.
• The wire terminals for the black and clear insulated wires should be oriented in parallel with bus bars
as shown.
three leads
Terminals parallel
to bus bars
clear insulation
• It is important to have the barrels of the black
and clear insulated wires, from the three lead
cable, be pointing in opposite directions.
• The third wire attaches to the bus bar on the left
with the shunt mounting hardware. Orientation
of this wire is not critical.
two leads
59
SECTION 6 TROUBLESHOOTING
6.4.4 Procedure For Verifying Calibration Of Digital Meters.
Voltmeter
1. Connect a digital meter known to be calibrated to the positive and negative output bus bars.
2. Compare the power source voltmeter reading to the calibrated meter reading. Readings should match within
±0.75%.
Ammeter
1. External to the power source, connect a precision shunt in series with the work lead(s). The best shunt is one with a
value of 100 micro-ohms (50mV / 500A or 100mV / 1000A) and a calibrated tolerance of 0.25%.
2. Use a calibrated 4 ½ digit meter to measure the output of the shunt. The amperage indicated with the external shunt
and meter should match power source ammeter to within 0.75%.
6.5 Control Circuit Interface Using J1 Connector
Interface to the ESP-600C control circuitry is made with connector J1 on the front panel. J1 has 19 conductors.
J1-A and J1-B provide access to the galvanically isolated transistor output signal indicating an “Arc On” condition. See
Subsection 6.8, Arc Current Detector Circuits. J1-C and J1-D are the inputs for the remote Voltage Reference Signal that
commands the ESP-600C output current Subsection 6.9, Current Control Pot & Remote Vref. J1-F and J1-G supply 115V AC
for remote controls. See Subsection 6.6, Auxiliary Main Contactor (K3) & Solid State Contactor Circuits and Subsection 6.6,
Pilot Arc Hi/lo Circuit.
60
SECTION 6 TROUBLESHOOTING
J1-J
J1-K
J1-H
J1-G
J1-F
J1-E
J1-C
J1-D
J1-B
J1-A
SPARE
TB1-13
TB1-14
+
-
(80)
61
SECTION 6 TROUBLESHOOTING
6.6 Auxiliary Main Contactor (K3) and Solid State Contactor Circuits
K3, activated by supplying a Contactor Signal, initiates and controls the operation of K2 (Starting Contactor) and K4 (Pilot
Arc Contactor). K3 is called the Auxiliary Main Contactor because it must be activated before the Main Contactor (K1)
power-up sequence can occur. The Contactor Signal is supplied through a remote contact connecting 115VAC from J1-F
to J1-E. If K6-2 is closed (no fault) and the Emergency Stop loop is closed, K3 will activate. The closing of K3-3 activates K2,
the Starting Contactor, and K4, the Pilot Arc Contactor, provided the power source is not over heated. See Subsection 6.7,
Main Contactor (K1A, K1B and K1C) Activation Circuit for more information on the operation of K2. K4 is turned o when the
Current Detector senses arc current and opens the contact connecting P2-5 to P2-6 on the Control PC Board.
In addition to operating K3, the Contactor Signal also activates the Solid State Contactor. The Solid State Contactor is a
logic and interlock circuit permitting the IGBT’s to conduct whenever the remote Contactor Signal is present. The 115V AC
Contactor Signal is fed to TB1-9, TB7-8, and resistors R45 and R45A. These resistors reduce the 115V to approximately 16V
AC fed into the Control PC Board at P6-1 and P6-2. The Control PC Board sends a signal to both the Left and Right PWM /
Gate Drive PC Boards mounted directly on the IGBT’s. Illumination of LED3 on both of the PWM / Gate Drive PC Boards is
indication that the Solid State Contactor is functioning.
J1-F
J1-G
J1-H
J1-E
R45A
TB7-11
10K - 8W
TB7-10
62
SECTION 6 TROUBLESHOOTING
6.7 Main Contactor (K1A, K1B and K1C) Activation Circuit
A power-up sequence takes place before the Main Contactor (K1) activates. K1 is actually three separate contactors – one
for each primary input phase. Thus, K1A, K1B, and K1C switch phases A, B, and C respectively to the Main Transformer, T1.
The power-up sequence begins with a remote Contactor Signal activating K3. Refer to the description entitled, “Auxiliary
Main Contactor (K3) & Solid State Contactor Circuits” for more information. K3 activates K2 closing the three contacts of
K2. K2 bypasses K1 contacts providing primary input power to the Main Transformer, T1. This current is limited by three
one Ohm resistors, R1, R2, and R3. The resistors eliminate the high surge currents typical of the turn-on inrush transients
associated with large transformers. The high current surge of charging the Bus Capacitor Bank is also eliminated by initially
powering the Main Transformer through K2 and the resistors.
The discharged Bus Capacitor Bank initially prevents the output of the Main transformer from reaching its normal value.
As the Bus Capacitor Bank charges, the Main Transformer output voltage rises and becomes high enough for K1A, K1B, and
K1C to close. Once the K1’s are closed, the contacts of the Starting Contactor, K2, are bypassed, and full primary line power
is supplied to the Main Transformer.
Because the starting sequence takes time, it is important at least 300 mS lapse between applying the Contactor Signal and
applying load to the power source. Applying load too soon will prevent K1 from closing, and fuses F1 and F2 will open.
63
SECTION 6 TROUBLESHOOTING
6.8 Arc Current Detector Circuits
There are three Arc Current Detector circuits in the ESP-600C. One is used internally to control the Pilot Arc Contactor, K4.
The other two are available for remote use.
A galvanically isolated transistor Current Detector Output is accessible at J1-A (-) and J1-B (+). J1 is the 19 conductor connector on the ESP-600C front panel. The transistor is best suited for switching small relays or low current logic signals like
those utilized by PLC’s (Programmable Logic Controllers). The transistor can withstand a maximum peak voltage of 150V.
It can switch a maximum of 50 mA. The transistor turns on whenever the arc current through the Work Lead exceeds 5A.
Pilot arcs not establishing main arcs will not turn on the transistor.
A second current detector output is available at TB8-3 and TB8-4. This output is supplied by an isolated relay contact rated
for 150V, 3 Amperes. This contact is closed when the primary input power to the ESP-600C is o. It opens whenever primary power is supplied to the power source, and it closes when main arc current is established. Like the transistor output,
the relay contact closes whenever the arc current through the Work Lead exceeds 5A. Pilot arcs not establishing main arcs
will not close the contact.
J1-A J1-B
64
SECTION 6 TROUBLESHOOTING
6.9 Current Control Pot and Remote Vref
The ESP-600C operates through a single continuously adjustable output current range from 50A through 600A using either
the Current Potentiometer, on the front panel, or a remote current reference signal, Vref, fed into connector, J1.
The reference voltage, Vref, is used to command the output current of the ESP-600C. Vref is a DC voltage that can come from
either the Current Control Potentiometer on the front panel or from a remote source. In the “Panel” position, S2, the Panel
/ Remote switch selects the Current Control Potentiometer. In the “Remote” position, the Panel/Remote switch selects the
Vref fed into J1-C (+) and J1-D (-). The ESP-600C Output Current, I (out), will follow Vref with the following relationship:
I(out) = (80) x (Vref)
The Control PC Board contains two inputs for Vref: High Speed; and Normal. When the negative of the Vref signal is fed
into the High Speed input (P8-3), the ESP-600C will respond to a change in Vref within 10 mS. When the negative of the
Vref signal is fed into the Low Speed input (P8-1), the ESP-600C will respond to a change in Vref within 50 mS. The slower
response of the “Normal” input helps lter electrical noise sometimes encountered in industrial environments.
J1-DJ1-C
65
SECTION 6 TROUBLESHOOTING
66
SECTION 7 REPLACEMENT PARTS
7.0 Replacement Parts
7.1 General
Always provide the serial number of the unit on which the parts will be used. The serial number is stamped on
the unit serial number plate.
7.2 Ordering
To ensure proper operation, it is recommended that only genuine ESAB parts and products be used with this
equipment. The use of non-ESAB parts may void your warranty.
Replacement parts may be ordered from your ESAB Distributor.
Be sure to indicate any special shipping instructions when ordering replacement parts.
Refer to the Communications Guide located on the back page of this manual for a list of customer service phone
numbers.
Note
Bill of material items that have blank part numbers are provided for customer information only.
Hardware items should be available through local sources.
NOTE:
Schematics on 279.4mm x 431.8mm
(11” x 17”) paper are included
inside the back cover of this manual.
67
SECTION 7 REPLACEMENT PARTS
68
SECTION 7 REPLACEMENT PARTS
69
SECTION 7 REPLACEMENT PARTS
70
SECTION 7 REPLACEMENT PARTS
71
SECTION 7 REPLACEMENT PARTS
72
SECTION 7 REPLACEMENT PARTS
73
SECTION 7 REPLACEMENT PARTS
49
74
SECTION 7 REPLACEMENT PARTS
75
SECTION 7 REPLACEMENT PARTS
76
SECTION 7 REPLACEMENT PARTS
77
SECTION 7 REPLACEMENT PARTS
78
SECTION 7 REPLACEMENT PARTS
0558006170M
0558005712M
0558005705Y
0558007604M
0558007605MPANEL CONTROL
79
SECTION 7 REPLACEMENT PARTS
17280215R10-11 RESISTOR 1.5K OHMS 100W
R28-31
951198
L3
FERRITE CORE
80
SECTION 7 REPLACEMENT PARTS
81
SECTION 7 REPLACEMENT PARTS
82
SECTION 7 REPLACEMENT PARTS
83
SECTION 7 REPLACEMENT PARTS
0558954035
84
SECTION 7 REPLACEMENT PARTS
85
SECTION 7 REPLACEMENT PARTS
4600610
3.62 W
86
REVISION HISTORY
1. Original release - 08 / 2006
2. 10 / 2007 - Changed 400V callout to 380-400V.
3. 03 / 2008 - Made changes per CN# 083032.
4. Revision 08/2010 - Updated with new DOC form.
87
ESAB Welding & Cutting Products, Florence, SC
COMMUNICATION GUIDE - CUSTOMER SERVICES
A. CUSTOMER SERVICE QUESTIONS:
Telephone: (800)362-7080 / Fax: (800) 634-7548 Hours: 8:00 AM to 7:00 PM EST
Order Entry Product Availability Pricing Order Information Returns
B. ENGINEERING SERVICE:
Telephone: (843) 664-4416 / Fax : (800) 446-5693 Hours: 7:30 AM to 5:00 PM EST
Warranty Returns Authorized Repair Stations Welding Equipment Troubleshooting
C. TECHNICAL SERVICE:
Telephone: (800) ESAB-123/ Fax: (843) 664-4452 Hours: 8:00 AM to 5:00 PM EST
Part Numbers Technical Applications Specications Equipment Recommendations
D. LITERATURE REQUESTS:
Telephone: (843) 664-5562 / Fax: (843) 664-5548 Hours: 7:30 AM to 4:00 PM EST
E. WELDING EQUIPMENT REPAIRS:
Telephone: (843) 664-4487 / Fax: (843) 664-5557 Hours: 7:30 AM to 3:30 PM EST
Repair Estimates Repair Status
F. WELDING EQUIPMENT TRAINING
Telephone: (843)664-4428 / Fax: (843) 679-5864 Hours: 7:30 AM to 4:00 PM EST
Training School Information and Registrations
G. WELDING PROCESS ASSISTANCE:
Telephone: (800) ESAB-123 Hours: 7:30 AM to 4:00 PM EST
H. TECHNICAL ASST. CONSUMABLES:
Telephone : (800) 933-7070 Hours: 7:30 AM to 5:00 PM EST
IF YOU DO NOT KNOW WHOM TO CALL
Telephone: (800) ESAB-123
Fax: (843) 664-4462
Hours: 7:30 AM to 5:00 PM EST
or
visit us on the web at http://www.esabna.com
The ESAB web site oers
Comprehensive Product Information
Material Safety Data Sheets
Warranty Registration
Instruction Literature Download Library
Distributor Locator
Global Company Information
Press Releases
Customer Feedback & Support
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.