ESAB Cutmaster 120 Plasma Cutting System SL100 1TORCH Instruction manual

ESAB Cutmaster® 120
SL100 1Torch™
Operating Manual
Art # A-12769_AB
120
Revision: AB Issue Date: April 15, 2015 Manual No.: 0-5380
208/230V
400V
460V
esab.com.br
WE APPRECIATE YOUR BUSINESS!
Congratulations on your new ESAB product. We are proud to have you as our customer and will strive to provide you with the best service and reliability in the industry. This product is backed by our extensive warranty and world-wide service network. To locate your nearest distributor or service agency, visit us on the web at www.esab.com.br.
This Operating Manual has been designed to instruct you on the correct use and operation of your ESAB product. Your satisfaction with this product and its safe operation is our ultimate concern. Therefore please take the time to read the entire manual, especially the Safety Precautions. They will help you to avoid potential hazards that may exist when working with this product.
YOU ARE IN GOOD COMPANY!
The Brand of Choice for Contractors and Fabricators Worldwide.
ESAB is a Global Brand of manual and automation Plasma Cutting Products.
We distinguish ourselves from our competition through market-leading, dependable products that have stood the test of time. We pride ourselves on technical innovation, competitive prices, excellent delivery, superior customer service and technical support, together with excellence in sales and marketing expertise.
Above all, we are committed to developing technologically advanced products to achieve a safer working environment within the welding industry.
WARNING
!
Read and understand this entire Manual and your employer’s safety practices before install­ing, operating, or servicing the equipment. While the information contained in this Manual represents the Manufacturer's best judgement, the Manufacturer assumes no liability for its use.
Plasma Cutting Power Supply ESAB Cutmaster® 120 with SL100 1Torch™ Operating Manual Number 0-5380
Published by: ESAB
2800 Airport Rd. Denton, TX 76208
www.esab.com.br
Copyright 2015 by ESAB
All rights reserved.
Reproduction of this work, in whole or in part, without written permission of the pub­lisher is prohibited.
The publisher does not assume and hereby disclaims any liability to any party for any loss or damage caused by any error or omission in this Manual, whether such error results from negligence, accident, or any other cause.
Original Publication Date: April 15, 2015 Revision Date: April 15, 2015
Record the following information for Warranty purposes:
Where Purchased:_______________________________ ________________
Purchase Date:__________________________________ ________________
Power Supply Serial #:___________________________ ________________
Torch Serial #:___________________________________ ________________
i
Be sure this information reaches the operator.
You can get extra copies through your supplier.
CAUTION
These INSTRUCTIONS are for experienced operators. If you are not fully familiar with the principles of operation and safe practices for arc welding and cutting equip­ment, we urge you to read our booklet, “Precautions and Safe Practices for Arc Welding, Cutting, and Gouging,” Form 52-529. Do NOT permit untrained persons to install, operate, or maintain this equipment. Do NOT attempt to install or operate this equipment until you have read and fully understand these instructions. If you do not fully understand these instructions, contact your supplier for further information. Be sure to read the Safety Precautions before installing or operating this equipment.
USER RESPONSIBILITY
This equipment will perform in conformity with the description thereof contained in this manual and accompanying labels and/or inserts when installed, operated, maintained and repaired in accordance with the instructions provided. This equipment must be checked periodically. Malfunctioning or poorly maintained equipment should not be used. Parts that are broken, missing, worn, distorted or contaminated should be replaced immediately. Should such repair or replacement become necessary, the manufacturer recommends that a telephone or written request for service advice be made to the Authorized Distributor from whom it was purchased.
This equipment or any of its parts should not be altered without the prior written approval of the manu­facturer. The user of this equipment shall have the sole responsibility for any malfunction which results from improper use, faulty maintenance, damage, improper repair or alteration by anyone other than the manufac­turer or a service facility designated by the manufacturer.
!
READ AND UNDERSTAND THE INSTRUCTION MANUAL BEFORE INSTALLING OR
OPERATING.
PROTECT YOURSELF AN D OTHERS!
TABLE OF CONTENTS
SECTION 1: SAFETY ..............................................................................................................1-1
1.0 Safety Precautions ...................................................................................... 1-1
SECTION 2 SYSTEM: INTRODUCTION ................................................................................ 2-1
2.01 How To Use This Manual ...........................................................................2-1
2.02 Equipment Identification .............................................................................2-1
2.03 Receipt Of Equipment ................................................................................. 2-1
2.04 Power Supply Specifications ......................................................................2-2
2.05 Input Wiring Specifications .........................................................................2-3
2.06 Power Supply Features ..............................................................................2-4
SECTION 2 TORCH: INTRODUCTION .................................................................................2T-1
2T.01 Scope of Manual .......................................................................................2T-1
2T.02 General Description ..................................................................................2T-1
2T.03 Specifications ...........................................................................................2T-1
2T.04 Options And Accessories ..........................................................................2T-2
2T.05 Introduction to Plasma ..............................................................................2T-2
SECTION 3 SYSTEM: INSTALLATION ..................................................................................3-1
3.01 Unpacking ................................................................................................... 3-1
3.02 Lifting Options ............................................................................................. 3-1
3.03 Opening the Contactor Cover .....................................................................3-1
3.04 Primary Input Power Connections ..............................................................3-1
3.05 Gas Connections ........................................................................................3-3
SECTION 3 TORCH: INSTALLATION .................................................................................3T-1
3T.01 Torch Connections ....................................................................................3T-1
3T.02 Setting Up Mechanical Torch ....................................................................3T-1
SECTION 4 SYSTEM: OPERATION .......................................................................................4-1
4.01 Front Panel Controls / Features .................................................................. 4-1
4.02 Preparations for Operation .........................................................................4-2
SECTION 4 TORCH: OPERATION .......................................................................................4T-1
4T.01 Torch Parts Selection ...............................................................................4T-1
4T.02 Cut Quality ................................................................................................4T-1
4T.03 General Cutting Information ......................................................................4T-2
4T.04 Hand Torch Operation ..............................................................................4T-3
4T.05 Gouging ....................................................................................................4T-6
4T.06 Mechanized Torch Operation ...................................................................4T-7
4T.07 Parts Selection for SL100 Torch Cutting ..................................................4T-9
4T.08 Recommended Cutting Speeds for SL100 Torch With Exposed Tip ......4T-10
4T.09 Recommended Cutting Speeds for SL100 Torch With Shielded Tip ......4T-14
PATENT INFORMATION .....................................................................................................4T-20
TABLE OF CONTENTS
SECTION 5 SYSTEM: SERVICE ............................................................................................. 5-1
5.01 General Maintenance .................................................................................5-1
5.02 Maintenance Schedule ...............................................................................5-2
5.03 Common Faults ..........................................................................................5-2
5.04 Fault Indicator ............................................................................................. 5-3
5.05 Basic Troubleshooting Guide ...................................................................... 5-4
5.06 Power Supply Basic Parts Replacement ....................................................5-6
SECTION 5 TORCH: SERVICE .............................................................................................5T-1
5T.01 General Maintenance ...............................................................................5T-1
5T.02 Inspection and Replacement of Consumable Torch Parts .......................5T-2
SECTION 6: PARTS LISTS ..................................................................................................... 6-1
6.01 Introduction ................................................................................................. 6-1
6.02 Ordering Information ................................................................................... 6-1
6.03 Power Supply Replacement .......................................................................6-1
6.04 Replacement Power Supply Parts ..............................................................6-2
6.05 Options and Accessories ............................................................................6-2
6.06 Replacement Parts for Hand Torch ...........................................................6-3
6.07 Replacement Parts - for Machine Torches with Unshielded Leads ............6-4
6.08 Replacement Shielded Machine Torch Leads Assemblies ........................ 6-6
6.09 Torch Consumable Parts (SL100) ..............................................................6-7
APPENDIX 1: SEQUENCE OF OPERATION (BLOCK DIAGRAM) ...................................... A-1
APPENDIX 2: DATA TAG INFORMATION ............................................................................ A-2
APPENDIX 3: TORCH PIN - OUT DIAGRAMS ...................................................................... A-3
APPENDIX 4: TORCH CONNECTION DIAGRAMS .............................................................. A-4
APPENDIX 5: SYSTEM SCHEMATIC, 208/460V UNITS ....................................................... A-6
Revision History .................................................................................................................... A-8
ESAB CUTMASTER 120
SECTION 1: SAFETY

1.0 Safety Precautions

Users of ESAB welding and plasma cutting equipment have the ultimate responsibility for ensuring that anyone who works on or near the equipment observes all the relevant safety precautions. Safety precautions must meet the requirements that apply to this type of welding or plasma cutting equipment. The following recommendations should be observed in addition to the standard regulations that apply to the workplace.
All work must be carried out by trained personnel well acquainted with the operation of the welding or plasma cutting equipment. Incorrect operation of the equipment may lead to hazardous situations which can result in injury to the operator and damage to the equipment.
1. Anyone who uses welding or plasma cutting equipment must be familiar with:
- its operation
- location of emergency stops
- its function
- relevant safety precautions
- welding and / or plasma cutting
2. The operator must ensure that:
- no unauthorized person stationed within the working area of the equipment when it is started up.
- no one is unprotected when the arc is struck.
3. The workplace must:
- be suitable for the purpose
- be free from drafts
4. Personal safety equipment:
- Always wear recommended personal safety equipment, such as safety glasses, flame proof clothing, safety gloves.
- Do not wear loose fitting items, such as scarves, bracelets, rings, etc., which could become trapped or cause burns.
5. General precautions:
- Make sure the return cable is connected securely.
- Work on high voltage equipment may only be carried out by a qualified electrician.
- Appropriate fire extinguishing equipment must be clearly marked and close at hand.
- Lubrication and maintenance must not be carried out on the equipment during operation.
Dispose of electronic equipment at the recycling facility!
In observance of European Directive 2002/96/EC on Waste Electrical and Electronic Equipment and its implementation in accordance with national law, electrical and/or electronic equipment that has reached the end of its life must be disposed of at a recycling facility. As the person responsible for the equipment, it is your responsibility to obtain information on approved col­lection stations. For further information contact the nearest ESAB dealer.
ESAB can provide you with all necessary cutting protection and accessories.
Manual 0-5380 GENERAL INFORMATION
1-1
ESAB CUTMASTER 120
WARNING
ELECTRIC SHOCK - Can kill.
- Install and earth (ground) the welding or plasma cutting unit in accordance with appli­cable standards.
- Do not touch live electrical parts or electrodes with bare skin, wet gloves or wet clothing.
- Insulate yourself from earth and the workpiece.
- Ensure your working stance is safe.
FUMES AND GASES - Can be dangerous to health.
- Keep your head out of the fumes.
- Use ventilation, extraction at the arc, or both, to take fumes and gases away from your breathing zone and the general area.
ARC R AYS - Can injure eyes and burn skin.
- Protect your eyes and body. Use the correct welding / plasma cutting screen and filter lens and wear protective clothing.
- Protect bystanders with suitable screens or curtains.
FIRE HAZARD
- Sparks (spatter) can cause fire. Make sure therefore that there are no inflammable mate­rials nearby.
Arc welding and cutting can be injurious to yourself and others. Take precautions when welding and cutting. Ask for your employer's safety practices which should be based on manufacturers' hazard data.
NOISE - Excessive noise can damage hearing.
- Protect your ears. Use earmuffs or other hearing protection.
- Warn bystanders of the risk.
MALFUNCTION - Call for expert assistance in the event of malfunction.
READ AND UNDERSTAND THE INSTRUCTION MANUAL BEFORE INSTALLING OR OPERATING.
PROTECT YOURSELF AND OTHERS!
Do not use the power source for thawing frozen pipes.
WARNING
CAUTION
CAUTION
CAUTION
Class A equipment is not intended for use in residential locations where the electrical power is provided by the public low-voltage supply system. There may be potential difficulties in ensuring electromagnetic compatibility of class A equipment in those loca­tions, due to conducted as well as radiated disturbances.
This product is solely intended for metal removal. Any other use may result in personal injury and / or equipment damage.
Read and understand the instruction manual before installing or operating.
!
GENERAL INFORMATION Manual 0-5380
1-2
ESAB CUTMASTER 120
SECTION 2 SYSTEM:
INTRODUCTION

2.01 How To Use This Manual

This Owner’s Manual applies to just specification or part numbers listed on page i.
To ensure safe operation, read the entire manual, includ­ing the chapter on safety instructions and warnings.
Throughout this manual, the words WARNING, CAU­TION, and NOTE may appear. Pay particular attention to the information provided under these headings. These special annotations are easily recognized as follows:
NOTE!
An operation, procedure, or background information which requires additional emphasis or is helpful in efficient operation of the system.
CAUTION
!
!
A procedure which, if not properly followed, may cause damage to the equipment.
WARNING
A procedure which, if not properly followed, may cause injury to the operator or others in the operating area.
2.02 Equipment Identification
The unit’s identification number (specification or part number), model, and serial number usually appear on a data tag attached to the rear panel. Equipment which does not have a data tag such as torch and cable as­semblies are identified only by the specification or part number printed on loosely attached card or the shipping container. Record these numbers on the bottom of page i for future reference.

2.03 Receipt Of Equipment

When you receive the equipment, check it against the invoice to make sure it is complete and inspect the equipment for possible damage due to shipping. If there is any damage, notify the carrier immediately to file a claim. Furnish complete information concerning damage claims or shipping errors to the location in your area listed in the inside back cover of this manual.
Include all equipment identification numbers as de­scribed above along with a full description of the parts in error.
Move the equipment to the installation site before un-crating the unit. Use care to avoid damaging the equipment when using bars, hammers, etc., to un-crate the unit.
WARNING
Gives information regarding possible electri­cal shock injury. Warnings will be enclosed in a box such as this.
DANGER
Means immediate hazards which, if not
!
Additional copies of this manual may be purchased by contacting ESAB at the address and phone number in your area listed on back cover of this manual. Include the Owner’s Manual number and equipment identifica­tion numbers.
Electronic copies of this manual can also be downloaded at no charge in Acrobat PDF format by going to the ESAB web site listed below
http://www.esab.com.br
avoided, will result in immediate, serious personal injury or loss of life.
Manual 0-5380 INTRODUCTION
2-1
ESAB CUTMASTER 120
2.04 Power Supply Specifications
ESAB Cutmaster® 120 Power Supply Specifications
Input Power 208 / 230 VAC (187 - 253 VAC), Single Phase, 60 Hz
230 VAC (187 - 253 VAC), Three Phase, 50/60 Hz 380 VAC (360 - 440 VAC), Three Phase, 50/60 Hz 400 VAC (360 - 440 VAC), Three Phase, 50 Hz 460 VAC (414 - 506 VAC), Single Phase, 60 Hz 460 VAC (414 - 506 VAC), Three Phase, 60 Hz
600 VAC (540 - 630), Three Phase, 60 Hz Input Power Cable Power Supply includes input cable. Output Current 30 - 120 Amps, Continuously Adjustable Power Supply Gas
Filtering Ability
ESAB Cutmaster® 120 Power Supply Duty Cycle *
Ambient Temperature Duty Cycle Ratings @ 40° C (104° F)
All Units Duty Cycle **60% 80% 100%
* NOTE: The duty cycle will be reduced if the primary input power (AC) is low or the output voltage (DC) is higher than shown in this chart. **60% at 208/230V 1 Phase input ONLY
Particulates to 5 Microns
Operating Range 0° - 50° C
Current 120 120 100
DC Voltage 128 128 120
IEC IEC IEC
NOTE!
IEC Rating is determined as specified by the International Electro-Technical Commission. These specifica­tions include calculating an output voltage based upon power supply rated current. To facilitate comparison between power supplies, all manufacturers use this output voltage to determine duty cycle.
Power Supply Dimensions & Weight Ventilation Clearance Requirements
10.75"
273 mm
Art # A-08358_AB
16.375"
416 mm
63 lb / 28.6 kg
30.5"
774.7 mm
24"
610 mm
6"
150 mm
Art # A-07925_AB
150 mm
6"
150 mm
6"
INTRODUCTION Manual 0-5380
2-2
2.05 Input Wiring Specifications
ESAB Cutmaster® 120 Power Supply Input Cable Wiring Requirements
Input voltage
Volts Hz kVA I max I eff Fuse
1 Phase 208 60 26.2 126 98 150 4 Type W
230 60 27.6 118 95 125 4 Type W 460 60 35 76 68 100 4
3 Phase 208 60 21.6 60 55 60 4
230 60 22.3 56 50 60 4 380 50 23 35 32 40 8 400 50 23.6 34 31 40 8 460 60 29.5 37 33 40 8 600 60 29.0 28 25 30 10
Line Voltages with Suggested Circuit Protection and Wire Sizes Based on National Electric Code and Canadian Electric Code
Freq Power
Input
ESAB CUTMASTER 120
Suggested Sizes
Flexible Cord
(amps)
(Min. AWG)
NOTE!
Refer to Local and National Codes or local authority having jurisdiction for proper wiring requirements.
The suggested sizes are based on flexible power cable with power plug installations. For hard-wired installations refer to local or national codes.
I1max is taken at TDC rated minimum duty cycle.
I1eff is taken at TDC 100% rated duty cycle.
Manual 0-5380 INTRODUCTION
2-3
ESAB CUTMASTER 120
Handle and Leads Wrap
and Clamp

2.06 Power Supply Features

Art # A-08359
Control Panel
To rch Leads Receptacle
Input Power Selection
Filter Assembly
Gas Inlet Port
Input Power Cord
Work Cable
Port for Optional Automation Interface Cable
Art # A-08360
INTRODUCTION Manual 0-5380
2-4
ESAB CUTMASTER 120
SECTION 2 TORCH:
INTRODUCTION

2T.01 Scope of Manual

This manual contains descriptions, operating instruc­tions and maintenance procedures for the 1Torch Models SL100/Manual and SL100/Mechanized Plasma Cutting Torches. Service of this equipment is restricted to properly trained personnel; unqualified personnel are strictly cautioned against attempting repairs or adjust­ments not covered in this manual, at the risk of voiding the Warranty.
Read this manual thoroughly. A complete understanding of the characteristics and capabilities of this equipment will assure the dependable operation for which it was designed.

2T.02 General Description

Plasma torches are similar in design to the automotive spark plug. They consist of negative and positive sec­tions separated by a center insulator. Inside the torch, the pilot arc starts in the gap between the negatively charged electrode and the positively charged tip. Once the pilot arc has ionized the plasma gas, the superheated column of gas flows through the small orifice in the torch tip, which is focused on the metal to be cut.
A single torch lead provides gas from a single source to be used as both the plasma and secondary gas. The air flow is divided inside the torch head. Single - gas operation provides a smaller sized torch and inexpen­sive operation.
NOTE!
Refer to Section "2T.05 Introduction to Plasma", for a more detailed description of plasma torch operation. Refer to the Appendix Pages for additional specifications as related to the Power Sup­ply used.
2T.03 Specifications
A. Torch Configurations
1. Hand/Manual Torch, Models
The hand torch head is at 75° to the torch handle. The hand torches include a torch handle and torch trigger assembly.
10.125" (257 mm)
3.75"
(95 mm)
1.17" (29 mm)
2. Mechanized Torch, Model
The standard machine torch has a positioning tube with rack & pinch block assembly.
15.875" / 403 mm
9.285" / 236 mm
1.375" / 35 mm
1.75" /
44.5 mm
B. Torch Leads Lengths
Hand Torches are available as follows:
• 20ft/6.1m,withATCconnectors
• 50ft/15.2m,withATCconnectors
Machine Torches are available as follows:
• 5foot/1.5m,withATCconnectors
• 10foot/3.05m,withATCconnectors
• 25foot/7.6m,withATCconnectors
• 50foot/15.2m,withATCconnectors
0.625" / 16 mm
4.95" / 126 mm
1.175" / 30 mm
Art # A-03322_AB
Art # A-02998
C. Torch Parts
D. Parts - In - Place (PIP)
E. Type Cooling
Manual 0-5380 INTRODUCTION
Starter Cartridge, Electrode, Tip, Shield Cup
Torch Head has built - in switch
12 VDC circuit rating
Combination of ambient air and gas stream through torch.
2T-1
ESAB CUTMASTER 120
F. Torch Ratings
Manual Torch Ratings
Ambient
Temperature
Duty Cycle
Maximum Current
Voltage (V
Arc Striking Voltage
Ambient
Temperature
Duty Cycle
Maximum Current
Voltage (V
Arc Striking Voltage
G. Gas Requirements
Manual and Mechanized Torch Gas
)
peak
Mechanized Torch Ratings
)
peak
Specifications
104° F
40° C
100% @ 100 Amps @ 400 scfh
120 Amps
500V
7kV
104° F
40° C
100% @ 100 Amps @ 400 scfh
120 Amps
500V
7kV

2T.05 Introduction to Plasma

A. Plasma Gas Flow
Plasma is a gas which has been heated to an extremely high temperature and ionized so that it becomes electrically conductive. The plasma arc cutting and gouging processes use this plasma to transfer an electrical arc to the workpiece. The metal to be cut or removed is melted by the heat of the arc and then blown away.
While the goal of plasma arc cutting is separation of the material, plasma arc gouging is used to remove metals to a controlled depth and width.
In a Plasma Cutting Torch a cool gas enters Zone B, where a pilot arc between the electrode and the torch tip heats and ionizes the gas. The main cut­ting arc then transfers to the workpiece through the column of plasma gas in Zone C.
Gas (Plasma and Secondary)
Operating Pressure
Refer to NOTE
Maximum Input Pressure
Gas Flow (Cutting and
Gouging)
Compressed Air
60-95psi
4.1-6.5bar
125psi/8.6bar
300 - 500 scfh
142 - 235 lpm
WARNING
!
This torch is not to be used with oxygen (O2).
NOTE!
Operating pressure varies with torch model, operating amperage, and torch leads length. Refer to gas pressure settings charts for each model.
H. Direct Contact Hazard
Forstandofftiptherecommendedstandoffis3/16
inches / 4.7 mm.

2T.04 Options And Accessories

Foroptionsandaccessories,seesection6.
_
Power
Supply
A
+
B
Workpiece
C
Typical Torch Head Detail
By forcing the plasma gas and electric arc through a small orifice, the torch delivers a high concentra­tion of heat to a small area. The stiff, constricted plasma arc is shown in Zone C. Direct current (DC) straight polarity is used for plasma cutting, as shown in the illustration.
Zone A channels a secondary gas that cools the torch. This gas also assists the high velocity plasma gas in blowing the molten metal out of the cut al­lowing for a fast, slag - free cut.
A-00002
INTRODUCTION Manual 0-5380
2T-2
ESAB CUTMASTER 120
Remote Pendant
B. Gas Distribution
The single gas used is internally split into plasma and secondary gases.
The plasma gas flows into the torch through the negative lead, through the starter cartridge, around the electrode, and out through the tip orifice.
The secondary gas flows down around the outside of the torch starter cartridge, and out between the tip and shield cup around the plasma arc.
C. Pilot Arc
When the torch is started a pilot arc is established between the electrode and cutting tip. This pilot arc creates a path for the main arc to transfer to the work.
D. Main Cutting Arc
DC power is also used for the main cutting arc. The negative output is connected to the torch electrode through the torch lead. The positive output is con­nected to the workpiece via the work cable and to the torch through a pilot wire.
E. Parts - In - Place (PIP)
The torch includes a 'Parts - In - Place' (PIP) circuit. When the shield cup is properly installed, it closes a switch. The torch will not operate if this switch is open.
To Control
Torch Switch
Cable Wiring
PIP Switch
A-02997
Torch Trigger
Shield Cup
Parts - In - Place Circuit Diagram for Hand Torch
To AT C
PIP Sw itch
CNC Start
Sh ield Cup
To AT C
To AT C
PIP Sw itch
Automation Torch
PIP Sw itch
Sh ield Cup
Art # A-08168
Sh ield Cup
Parts - In - Place Circuit Diagram for Machine Torch
Manual 0-5380 INTRODUCTION
2T-3
ESAB CUTMASTER 120
This Page Intentionally Blank
INTRODUCTION Manual 0-5380
2T-4
ESAB CUTMASTER 120
SECTION 3 SYSTEM:
INSTALLATION

3.01 Unpacking

1. Use the packing lists to identify and account for each item.
2. Inspect each item for possible shipping damage. If dam­age is evident, contact your distributor and / or shipping company before proceeding with the installation.
3. Record Power Supply and Torch model and serial numbers, purchase date and vendor name, in the information block at the front of this manual.

3.02 Lifting Options

The Power Supply includes a handle for hand lifting only. Be sure unit is lifted and transported safely and securely.
WARNING
Do not touch live electrical parts. Disconnect input power cord before moving unit.

3.03 Opening the Contactor Cover

The input power cord is connected to the main contactor, the contactor is located inside a box with a snap on cover. The cover is held in place with two or more snap lock tabs. To remove the cover release the front latch and tilt the cover up about ½ inch. Then squeeze both sides of the cover and lift it straight up. See the Primary Input Power Connections section for the necessary changes to the Contactor. Remember to replace the Contactor Cover when the changes are complete.
1
2
1
2
Art# A-11478
Contactor cover
WARNING
!
FALLING EQUIPMENT can cause serious per­sonal injury and can damage equipment. HANDLE is not for mechanical lifting.
• Onlypersons of adequatephysicalstrengthshouldliftthe
unit.
• Liftunitbythehandles,usingtwohands.Donotusestraps
for lifting.
• Useoptionalcartorsimilardeviceofadequatecapacityto
move unit.
• Placeunitonaproperskidandsecureinplacebeforetrans­porting with a fork lift or other vehicle.

3.04 Primary Input Power Connections

CAUTION
!
The following illustration and directions are for changing phase of the power supply.
Single-Phase (1ø) and Jumper Settings
Store copper jumpers on base plate
L1
L2
L3
L4
Check your power source for correct volt­age before plugging in or connecting the unit. Check the Voltage Selector at the rear of the unit for correct setting before plug­ging in or connecting the unit. The primary power source, fuse, and any extension cords used must conform to local electrical code and the recommended circuit protec­tion and wiring requirements as specified in Section 2.
Input Power Cable Connections
Three-Phase (3ø)
L1
L2
L3
L4
GND
GND
Single and Three Phase Input Power Wiring
Art # A-08493
Manual 0-5380 INSTALLATION
NOTE!
There are two jumpers used for the single phase 230V setting and none for three phase.
3-1
ESAB CUTMASTER 120
A. Connections to Single Phase Input Power
WARNING
Disconnect input power from the power supply and input cable before attempting this procedure.
These instructions are for changing the input power and or cable on the 208/230, 400, 460 VAC Power Supply to Single - Phase input power.
1. Remove the Power Supply cover per instructions found in section 5.
2. Disconnect the original input power cable from the main input contactor and the chassis ground connection.
3. Loosen the through - hole protector on the back panel of the power supply. Pull the original power cable out of the power supply.
4. If the power cable being used is not the factory - sup­plied cable, use a three - conductor input power cable for the voltage desired and strip back the insulation on the individual wires.
5. Pass the cable being used through the access opening in the back panel of the power supply. Refer to Section 2 for power cable specifications.
CAUTION
!
The primary power source and power cable must conform to local electrical code and the recommended circuit protection and wiring requirements (refer to table in Sec­tion 2).
6. Connect the wires as follows.
• ConnectBusBarJumpersonthecontactorasshown
in prior illustration and on label in the power supply.
• Green/YellowwiretoGround.
7. Reinstall the Power Supply cover per instructions found in section 5.
8. Connect the opposite end of individual wires to a customer supplied plug or main disconnect.
9. Connect the input power cable (or close the main discon­nect switch) to supply power.
B. Connections to Three Phase Input Power
WARNING
Disconnect input power from the power supply and input cable before attempting this procedure.
These instructions are for changing the input power and or cable on the 208/230, 400, 460 VAC Power Supply to Three - Phase input power.
1. Remove the Power Supply cover per instructions found in section 5.
2. Disconnect the original input power cable from the main input contactor and the chassis ground connection.
3. Loosen the through - hole protector on the back panel of the power supply. Pull the original power cable out of the power supply.
4. Using a customer supplied four - conductor input power cable for the voltage desired, strip back the insulation on the individual wires.
5. Pass the cable being used through the access opening in the back panel of the power supply. Refer to Section 2 for power cable specifications.
CAUTION
!
The primary power source and power cable must conform to local electrical code and the recommended circuit protection and wiring requirements (refer to table in Sec­tion 2).
6. Connect the wires as follows.
• WirestoL1,L2andL3input.Itdoesnotmatterwhat
order these wires are attached. See previous illustra­tion and on label in the power supply.
• Green/YellowwiretoGround.
7. With a little slack in the wires, tighten the through - hole protector to secure the power cable.
8. Reinstall the Power Supply cover per instructions found in section 5.
9. Connect the opposite end of individual wires to a customer supplied plug or main disconnect.
10. Connect the input power cable (or close the main discon-
nect switch) to supply power.
INSTALLATION Manual 0-5380
3-2
ESAB CUTMASTER 120
Regulator/Filter

3.05 Gas Connections

Connecting Gas Supply to Unit
The connection is the same for compressed air or high pressure cylinders. Refer to the following two subsections if an optional air line filter is to be installed.
1. Connect the air line to the inlet port. The illustration shows typical fittings as an example.
NOTE!
For a secure seal, apply thread sealant to the fitting threads, according to manufac­turer's instructions. Do not use Teflon tape as a thread sealer, as small particles of the tape may break off and block the small air passages in the torch.
Regulator/Filter Assembly
Inlet Port
Installing Optional Single - Stage Air Filter
An optional filter kit is recommended for improved filtering with compressed air, to keep moisture and debris out of the torch.
1. Attach the Single - Stage Filter Hose to the Inlet Port.
2. Attach the Filter Assembly to the filter hose.
3. Connect the air line to the Filter. The illustration shows typical fittings as an example.
NOTE!
For a secure seal, apply thread sealant to the fitting threads, according to the maker's instructions. Do Not use Teflon tape as a thread sealer, as small particles of the tape may break off and block the small air pas­sages in the torch. Connect as follows:
Assembly
Inlet Port
Hose Clamp
Gas Supply Hose
Art # A-07943
Air Connection to Inlet Port
1/4 NPT or ISO-R to 1/4” (6mm) Fitting
Hose Clamp
Gas Supply Hose
Art # A-07944
1/4 NPT to 1/4"
(6mm) Fitting
Optional Single - Stage Filter Installation
Manual 0-5380 INSTALLATION
3-3
ESAB CUTMASTER 120
Regulator/Filter
Installing Optional Two - Stage Air Filter Kit
This optional two - stage air line filter is also for use on compressed air shop systems. Filter removes moisture and contaminants to at least 5 microns.
Connect the air supply as follows:
1. Attach the Two Stage Filter bracket to the back of the power supply per instructions supplied with the filter assembly.
NOTE!
For a secure seal, apply thread sealant to the fitting threads according to manufacturer's instructions. Do Not use Teflon tape as a thread sealer as small particles of the tape may break off and block the small air passages in the torch.
2. Connect the two stage filter outlet hose to the inlet port of the Regulator / Filter Assembly.
3. Use customer - supplied fittings to connect the air line to the Filter. A 1/4 NPT to 1/4" hose barbed fitting is shown as an example.
Assembly
Regulator Input
Hose Clamp
Gas Supply Hose
1/4 NPT to 1/4” (6mm) Fitting
2-Stage Filter Inlet Port (IN)
Outlet Port (OUT)
Two Stage Filter Assembly
Art # A-07945_AC
Optional Two - Stage Filter Installation
Using High Pressure Air Cylinders
When using high pressure air cylinders as the air supply:
1. Refer to the manufacturer’s specifications for installation and maintenance procedures for high pressure regulators.
2. Examine the cylinder valves to be sure they are clean and free of oil, grease or any foreign material. Briefly open each cylinder valve to blow out any dust which may be present.
3. The cylinder must be equipped with an adjustable high - pressure regulator capable of outlet pressures up to 100 psi (6.9 bar) maximum and flows of at least 300 scfh (141.5 lpm).
4. Connect supply hose to the cylinder.
NOTE!
Pressure should be set at 100 psi (6.9 bar) at the high pressure cylinder regulator. Supply hose must be at least 1/4 inch (6 mm) I.D. For a secure seal, apply thread sealant to the fitting threads, according to manufacturer's instructions. Do Not use Teflon tape as a thread sealer, as small particles of the tape may break off and block the small air passages in the torch.
INSTALLATION Manual 0-5380
3-4
ESAB CUTMASTER 120
SECTION 3 TORCH:
INSTALLATION

3T.01 Torch Connections

If necessary, connect the torch to the Power Supply. Connect only the ESAB model SL100 / Manual or SL100 / Mechanical Torch to this power supply. Maximum torch leads length is 100 feet / 30.5 m, including exten­sions.
WARNING
Disconnect primary power at the source
1. Align the ATC male connector (on the torch lead)
2. Secure the connection by turning the locking nut
before connecting the torch.
with the female receptacle. Push the male con­nector into the female receptacle. The connec­tors should push together with a small amount of pressure.
clockwise until it clicks. DO NOT use the locking nut to pull the connection together. Do not use tools to secure the connection.

3T.02 Setting Up Mechanical Torch

NOTE!
An adapter is required to be installed in the power supply if converting a hand torch sys­tem to operate a machine torch.
WARNING
Disconnect primary power at the source be­fore disassembling the torch or torch leads
The mechanical torch includes a positioning tube with rack and pinch block assembly.
1. Mount the torch assembly on the cutting table.
2. To obtain a clean vertical cut, use a square to align the torch perpendicular to the surface of the workpiece.
Pinch Block Assembly
2
Art # A-07885
1
Connecting the Torch to the Power Supply
3. The system is ready for operation.
Check Air Quality
To test the quality of air:
1. Put the ON / OFF switch in the ON (up) position.
2. Put the Function Control switch in the SET position.
Square
Workpiece
A-02585
Mechanical Torch Set - Up
3. The proper torch parts (shield cup, tip, start cartridge, and electrode) must be installed for the type of operation. Refer to Section 4T.07, Torch Parts Selection for details.
3. Place a welding filter lens in front of the torch and turn ON the air. Do not start an arc!
Any oil or moisture in the air will be visible on the
lens.
Manual 0-5380 INSTALLATION
3T-1
ESAB CUTMASTER 120
This Page Intentionally Blank
INSTALLATION Manual 0-5380
3T-2
ESAB CUTMASTER 120
12
3
!
SECTION 4 SYSTEM:
OPERATION

4.01 Front Panel Controls / Features

See Illustration for numbering Identification
1. Output Current Control
Sets the desired output current. Output settings
upto60Ampsmaybeusedfordragcutting(with
the torch tip contacting the workpiece) or higher for standoff cutting.
2. Function Control
Function Control Knob, Used to select between the different operating modes.
SET Used to purge the air through the unit and torch and leads and to adjust gas pressure.
RUN Used for general cutting operations
RAPID AUTO RESTART Allows for faster restarting of the Pilot Arc for uninterrupted cutting.
LATCH Used for longer hand held cuts.
Once a cutting arc is established, the torch switch can be released. The cutting arc will remain ON until the torch is lifted away from the work piece, the torch leaves the edge of the work piece the torch switch is activated again or if one of the system interlocks is activated.
3. ON OFF Power Switch
4
MAX
MIN
A
PSI BAR
MAXMAX
MINMIN
!
5
8
7
6
10
9
6. Temp Indicator
Indicator is normally OFF. Indicator is ON when internal temperature exceeds normal limits. Let the unit cool before continuing operation.
7. Gas Indicator
Indicator is ON when minimum input gas pressure for power supply operation is present. Minimum pressure for power supply operation is not sufficient for torch operation.
8. DC Indicator
Indicator is ON when DC output circuit is active.
+
Art# A-07886
ON / OFF Switch controls input power to the power supply. Up is ON, down is OFF.
4. Air/Gas Pressure Control
The Pressure Control is used in the "SET" mode to adjust the air/gas pressure. Pull the knob out to adjust and push in to lock.
5. AC Indicator
Steady light indicates power supply is ready for operation. Blinking light indicates unit is in protec­tive interlock mode. Shut unit OFF, shut OFF or disconnect input power, correct the fault, and restart the unit. Refer to Section 5 for details.
Manual 0-5380 OPERATION
9.
Fault Error Indicator
Indicator is ON when Fault circuit is active. See section 5 for explanations of fault lights.
10. Pressure Indicators
PSI BAR
MAX MAX
90 6.3
85 5.9
80
5.5
75
5.2
70
4.8
65
4.5
MINMIN
Art # A-08170
The Indicators will illuminate according to the pres­sure set by the Pressure Control Knob (number 4).
4-1
ESAB CUTMASTER 120
Art # A-04509

4.02 Preparations for Operation

At the start of each operating session:
WARNING
Disconnect primary power at the source before assembling or disassembling power supply, torch parts, or torch and leads as­semblies.
Torch Parts Selection
Check the torch for proper assembly and appropri­ate torch parts. The torch parts must correspond with the type of operation, and with the amperage output of this Power Supply (120 amps maximum). Refer to Section 4T.07 and following for torch parts selection.
Torch Connection
Check that the torch is properly connected. Only ESAB model SL100 / Manual or SL100 / Mechanical Torches may be connected to this Power Supply. See Section 3T of this manual.
Power ON
Place the Power Supply ON / OFF switch to the ON (up) position. AC indicator turns ON.
Gas indicator turns ON if there is sufficient gas pressure for power supply operation and the cool­ing fans turn ON.
NOTE!
Minimum pressure for power supply operation is lower than minimum for torch operation. The cooling fans will turn ON as soon as the unit is turned ON. After the unit is idle for ten (10) minutes the fans will turn OFF. The fans will come back ON as soon as the torch switch (Start Signal) is activated or if the unit is turned off, then turned ON again. If an over temperature condition occurs, the fans will continue to run while the condition exists and for a ten (10) minute period once the condition is cleared.
Set Operating Pressure
Check Primary Input Power Source
1. Check the power source for proper input volt­age. Make sure the input power source meets the power requirements for the unit per Section 2, Specifications.
2. Connect the input power cable (or close the main disconnect switch) to supply power to the system.
Air Source
Ensure source meets requirements (refer to Section
2). Check connections and turn air supply ON.
Connect Work Cable
Clamp the work cable to the workpiece or cutting table. The area must be free from oil, paint and rust. Connect only to the main part of the workpiece; do not connect to the part to be cut off.
1. Place the Power Supply Function Control knob
to the SET position. Gas will flow.
2. For Standoff cutting, adjust gas pressure from
70- 85psi/ 4.8-5.9 bar(LED's incenter of
control panel). Refer to the Standoff chart for pressure setting details.
OPERATION Manual 0-5380
4-2
1
2
MIN
MAX
A
PSI BAR
MAXMAX
MINMIN
!
+
Art# A-07946
STANDOFF
ESAB Cutmaster® 120 Gas Pressure Settings
Leads
Length
Up to 50'
(7.6m)
Each additional
25'(7.6m)
SL100
(Hand Torch)
75 psi
5.2 bar
Add 5 psi
0.4 bar
SL100
(Mechanized Torch)
75 psi
5.2 bar
Add 5 psi
0.4 bar
ESAB CUTMASTER 120
2. Set the output current to desired amperage with the Output Current Control Knob.
Cutting Operation
When the torch leaves the workpiece during cut­ting operations with the Function Control Knob in the RUN position, there is a brief delay in restarting the pilot arc. With the knob in the RAPID AUTO RESTART position, when the torch leaves the workpiece the pilot arc restarts instantly, and the cutting arc restarts instantly when the pilot arc con­tacts the workpiece. (Use the 'Rapid Auto Restart' position when cutting expanded metal or gratings, or in gouging or trimming operations when an un­interrupted restart is desired). And with the knob in the LATCH position the main cutting arc will be maintained after the torch switch is released.
Typical Cutting Speeds
Cutting speeds vary according to torch output am­perage, the type of material being cut, and opera­tor skill. Refer to Section 4T.08 and following for greater details.
Output current setting or cutting speeds may be reduced to allow slower cutting when following a line, or using a template or cutting guide while still producing cuts of excellent quality.
3. ForDragcutting(60Ampsorbelow),adjustgas
Postflow
pressurefrom75-95psi/5.2-6.5bar(LED's
in center of control panel). Refer to the Drag Cutting chart for pressure setting details.
Release the trigger to stop the cutting arc. Gas con­tinues to flow for approximately 20 seconds. During post - flow, if the user moves the trigger release to the rear and presses the trigger, the pilot arc starts.
DRAG (60 amps or less)
ESAB Cutmaster® 120 Gas Pressure
Settings
Leads
Length
Up to 25'
(7.6m)
Each additional
25'(7.6m)
SL100
(Hand Torch)
80 psi
5.5 bar
Add 5 psi
0.4 bar
The main arc transfers to the workpiece if the torch tip is within transfer distance to the workpiece.
Shutdown
Turn the ON / OFF switch to OFF (down). All Power Supply indicators shut OFF. Unplug the input power cord or disconnect input power. Power is removed from the system.
Select Current Output Level
1. Place the Function Control Knob in one of the three operating positions available:
RUN ,
RAPID AUTO RESTART
or LATCH . Gas flow stops.
Manual 0-5380 OPERATION
4-3
ESAB CUTMASTER 120
This Page Intentionally Blank
OPERATION Manual 0-5380
4-4
ESAB CUTMASTER 120
Kerf Width
Cut Surface Bevel Angle
Top Edge
Rounding
Cut Surface
Drag Lines
Dross
Build-Up
Top
Spatter
A-00007
SECTION 4 TORCH:
OPERATION

4T.01 Torch Parts Selection

Depending on the type of operation to be done deter­mines the torch parts to be used.
Type of operation:
Drag cutting, standoff cutting or gouging
Torch parts:
Shield Cup, Cutting Tip, Electrode and Starter Cartridge
NOTE!
Refer to Section 4T.07 and following for ad­ditional information on torch parts.
Change the torch parts for a different operation as fol­lows:
WARNING
Disconnect primary power at the source before assembling or disassembling power supply, torch parts, or torch and leads as­semblies.
Torch Parts (Drag Shield Cap & Shield Cup Body
Shown)
3. Install the replacement Electrode by pushing it straight into the torch head until it clicks.
4. Install the starter cartridge and desired tip for
the operation into the torch head.
5. Hand tighten the shield cup assembly until it is seated on the torch head. If resistance is felt when installing the cup, check the threads before proceeding.

4T.02 Cut Quality

NOTE!
Cut quality depends heavily on setup and parameters such as torch standoff, align­ment with the workpiece, cutting speed, gas pressures, and operator ability.
Cut quality requirements differ depending on applica­tion. For instance, nitride build - up and bevel angle may be major factors when the surface will be welded after cutting. Dross - free cutting is important when fin­ish cut quality is desired to avoid a secondary cleaning operation. The following cut quality characteristics are illustrated in the following figure:
NOTE!
The shield cup holds the tip and starter cartridge in place. Position the torch with the shield cup facing upward to keep these parts from falling out when the cup is removed.
1. Unscrew and remove the shield cup assembly from the torch head.
2. Remove the Electrode by pulling it straight out of the Torch Head.
Torch Head
Electrode
Start Cartridge
Tip
Shield Cup
A-03510_AB
Cut Quality Characteristics
Cut Surface
The desired or specified condition (smooth or rough) of the face of the cut.
Nitride Build - Up
Nitride deposits can be left on the surface of the cut when nitrogen is present in the plasma gas stream. These buildups may create difficulties if the material is to be welded after the cutting process.
Manual 0-5380 OPERATION
4T-1
ESAB CUTMASTER 120
Right Side
Cut Angle
Left Side
Cut Angle
A-00512
Bevel Angle
The angle between the surface of the cut edge and a plane perpendicular to the surface of the plate. A perfectly perpendicular cut would result in a 0° bevel angle.
Top - Edge Rounding
Rounding on the top edge of a cut due to wearing from the initial contact of the plasma arc on the workpiece.
Bottom Dross Buildup
Molten material which is not blown out of the cut area and resolidifies on the plate. Excessive dross may require secondary cleanup operations after cutting.
Kerf Width
The width of the cut (or the width of material re­moved during the cut).
Top Spatter (Dross)
Top spatter or dross on the top of the cut caused by slow travel speed, excess cutting height, or cutting tip whose orifice has become elongated.

4T.03 General Cutting Information

WARNING
!
!
Disconnect primary power at the source be­fore disassembling the power supply, torch, or torch leads. Frequently review the Important Safety Pre­cautions at the front of this manual. Be sure the operator is equipped with proper gloves, clothing, eye and ear protection. Make sure no part of the operator’s body comes into contact with the workpiece while the torch is activated.
CAUTION
Sparks from the cutting process can cause damage to coated, painted, and other sur­faces such as glass, plastic and metal.
NOTE!
Handle torch leads with care and protect them from damage.
Piloting
Piloting is harder on parts life than actual cutting because the pilot arc is directed from the electrode to the tip rather than to a workpiece. Whenever possible, avoid excessive pilot arc time to improve parts life.
Torch Standoff
Improper standoff (the distance between the torch tip and workpiece) can adversely affect tip life as well as shield cup life. Standoff may also signifi­cantly affect the bevel angle. Reducing standoff will generally result in a more square cut.
Edge Starting
For edge starts, hold the torch perpendicular to the workpiece with the front of the tip near (not touch­ing) the edge of the workpiece at the point where the cut is to start. When starting at the edge of the plate, do not pause at the edge and force the arc to "reach" for the edge of the metal. Establish the cutting arc as quickly as possible.
Direction of Cut
In the torches, the plasma gas stream swirls as it leaves the torch to maintain a smooth column of gas. This swirl effect results in one side of a cut being more square than the other. Viewed along the direction of travel, the right side of the cut is more square than the left.
Side Characteristics Of Cut
To make a square - edged cut along an inside diameter of a circle, the torch should move coun­terclockwise around the circle. To keep the square edge along an outside diameter cut, the torch should travel in a clockwise direction.
OPERATION Manual 0-5380
4T-2
ESAB CUTMASTER 120
Shield Cup
Torch
Standoff Distance
1/8" - 3/8" (3 - 9mm)
A-02986
Trigger
Trigger Release
Dross
When dross is present on carbon steel, it is com­monly referred to as either “high speed, slow speed, or top dross”. Dross present on top of the plate is normally caused by too great a torch to plate dis­tance. "Top dross" is normally very easy to remove and can often be wiped off with a welding glove. "Slow speed dross" is normally present on the bot­tom edge of the plate. It can vary from a light to heavy bead, but does not adhere tightly to the cut edge, and can be easily scraped off. "High speed dross" usually forms a narrow bead along the bot­tom of the cut edge and is very difficult to remove. When cutting a troublesome steel, it is sometimes useful to reduce the cutting speed to produce "slow speed dross". Any resultant cleanup can be ac­complished by scraping, not grinding.

4T.04 Hand Torch Operation

Standoff Cutting With Hand Torch
NOTE!
For best performance and parts life, always use the correct parts for the type of opera­tion.
1. The torch can be comfortably held in one hand or steadied with two hands. Position the hand to press the Trigger on the torch handle. With the hand torch, the hand may be positioned close to the torch head for maximum control or near the back end for maximum heat protection. Choose the holding technique that feels most comfort­able and allows good control and movement.
b. For standoff cutting, hold the torch 1/8 - 3/8
in (3-9 mm) from the workpiece as shown
below.
Standoff Distance
3. Hold the torch away from your body.
4. Slide the trigger release toward the back of the torch handle while simultaneously squeezing the trigger. The pilot arc will start.
NOTE!
The tip should never come in contact with the workpiece except during drag cutting operations.
2. Depending on the cutting operation, do one of the following:
a. For edge starts, hold the torch perpendicular
to the workpiece with the front of the tip on the edge of the workpiece at the point where the cut is to start.
Manual 0-5380 OPERATION
5. Bring the torch within transfer distance to the work. The main arc will transfer to the work, and the pilot arc will shut OFF.
NOTE!
The gas preflow and postflow are a char­acteristic of the power supply and not a function of the torch.
4T-3
ESAB CUTMASTER 120
3
4
Art # A-03383
Tr igger
2
1
Tr igger Release
Art # A-04034
A-03539
Non-Conductive
Straight Edge Cutting Guide
6. Cutasusual.Simplyreleasethetriggerassem­bly to stop cutting.
Shield Cup With Straight Edge
The drag shield cup can be used with a non conduc­tive straight edge to make straight cuts by hand.
WARNING
The straight edge must be non-conductive.
Using Drag Shield Cup With Straight Edge
7. Follow normal recommended cutting practices
8. For a consistent standoff height from the work-
as provided in the power supply operator's manual.
NOTE!
When the shield cup is properly installed, there is a slight gap between the shield cup and the torch handle. Gas vents through this gap as part of normal operation. Do not attempt to force the shield cup to close this gap. Forcing the shield cup against the torch head or torch handle can damage components.
piece, install the standoff guide by sliding it onto the torch shield cup. Install the guide with the legs at the sides of the shield cup body to maintain good visibility of the cutting arc. During operation, position the legs of the standoff guide against the workpiece.
Shield Cup
Standoff Guide
Torch Tip
Workpiece
The crown shield cup functions best when cutting
3/16inch(4.7mm)solidmetalwithrelativelysmooth
surface.
Drag Cutting With a Hand Torch
Dragcuttingworksbestonmetal1/4"(6mm)thick
or less.
NOTE!
Drag cutting can only be performed at 60 amps or less. For best parts performance and life, always use the correct parts for the type of opera­tion.
1. Install the drag cutting tip and set the output current.
2. The torch can be comfortably held in one hand or steadied with two hands. Position the hand to press the Trigger on the torch handle. With the hand torch, the hand may be positioned close to the torch head for maximum control or near the back end for maximum heat protection. Choose the holding technique that feels most comfort­able and allows good control and movement.
3. Keep the torch in contact with the workpiece during the cutting cycle.
4. Hold the torch away from your body.
OPERATION Manual 0-5380
4T-4
ESAB CUTMASTER 120
A-02986
Trigger
Trigger Release
5. Slide the trigger release toward the back of the torch handle while simultaneously squeezing the trigger. The pilot arc will start.
6. Bringthe torchwithin transferdistance to the
work. The main arc will transfer to the work, and the pilot arc will shut OFF.
NOTE!
The gas preflow and postflow are a char­acteristic of the power supply and not a function of the torch.
Tr igger
Piercing With Hand Torch
1. The torch can be comfortably held in one hand or steadied with two hands. Position the hand to press the Trigger on the torch handle. With the hand torch, the hand may be positioned close to the torch head for maximum control or near the back end for maximum heat protection. Choose the technique that feels most comfortable and allows good control and movement.
NOTE!
The tip should never come in contact with the workpiece except during drag cutting operations.
2. Angle the torch slightly to direct blowback particles away from the torch tip (and operator) rather than directly back into it until the pierce is complete.
3. In a portion of the unwanted metal start the pierce off the cutting line and then continue the cut onto the line. Hold the torch perpendicular to the workpiece after the pierce is complete.
1
2
Tr igger Release
3
4
Art # A-03383
7. Cut as usual. Simply release the trigger assem­bly to stop cutting.
8. Follow normal recommended cutting practices as provided in the power supply operator's manual.
NOTE!
When the shield cup is properly installed, there is a slight gap between the shield cup and the torch handle. Gas vents through this gap as part of normal operation. Do not attempt to force the shield cup to close this gap. Forcing the shield cup against the torch head or torch handle can damage components.
4. Hold the torch away from your body.
5. Slide the trigger release toward the back of the torch handle while simultaneously squeezing the trigger. The pilot arc will start.
Trigger
Trigger Release
A-02986
6. Bringthe torchwithin transferdistance to the
work. The main arc will transfer to the work, and the pilot arc will shut OFF.
NOTE!
The gas preflow and postflow are a char­acteristic of the power supply and not a function of the torch. When the shield cup is properly installed, there is a slight gap between the shield cup and the torch handle. Gas vents through this gap as part of normal operation. Do not attempt to force the shield cup to close this gap. Forcing the shield cup against the torch head or torch handle can damage components.
Manual 0-5380 OPERATION
4T-5
ESAB CUTMASTER 120
35°
Workpiece
Torch Head
Standoff Height
A-00941_AB
7. Clean spatter and scale from the shield cup and the tip as soon as possible. Spraying the shield cup in anti - spatter compound will minimize the amount of scale which adheres to it.
Cutting speed depends on material, thickness, and the operator’s ability to accurately follow the desired cut line. The following factors may have an impact on system performance:
• Torchpartswear
• Airquality
• Linevoltageuctuations
• Torchstandoffheight
• Properworkcableconnection

4T.05 Gouging

WARNING
!
Be sure the operator is equipped with proper gloves, clothing, eye and ear protec­tion and that all safety precautions at the front of this manual have been followed. Make sure no part of the operator’s body comes in contact with the workpiece when the torch is activated. Disconnect primary power to the system before disassembling the torch, leads, or power supply.
Torch Travel Speed
NOTE!
Refer to Appendix Pages for additional information as related to the Power Supply used.
Optimum torch travel speed is dependent on current setting, lead angle, and mode of operation (hand or machine torch).
Current Setting
Current settings depend on torch travel speed, mode of operation (hand or machine torch), and the amount of material to be removed.
Pressure Setting
Even though the setting is within the specified range, if the torch does not pilot well the pressure may need to be reduced.
Lead Angle
The angle between the torch and workpiece de­pends on the output current setting and torch travel speed. The recommended lead angle is 35°. At a lead angle greater than 45° the molten metal will not be blown out of the gouge and may be blown back onto the torch. If the lead angle is too small (less than 35°), less material may be removed, re­quiring more passes. In some applications, such as removing welds or working with light metal, this may be desirable.
CAUTION
!
Sparks from plasma gouging can cause damage to coated, painted or other sur­faces such as glass, plastic, and metal. Check torch parts. The torch parts must correspond with the type of operation. Refer to Section 4T.07, Torch Parts Selection.
Gouging Parameters
Gouging performance depends on parameters such as torch travel speed, current level, lead angle (the angle between the torch and workpiece), and the distance between the torch tip and workpiece (standoff).
CAUTION
!
Touching the torch tip or shield cup to the work surface will cause excessive parts wear.
Gouging Angle and Standoff Distance
Standoff Distance
The tip to work distance affects gouge quality and
depth. Standoff distanceof1/8 - 1/4inch (3-6
mm) allows for smooth, consistent metal removal. Smaller standoff distances may result in a severance cut rather than a gouge. Standoff distances greater
than1/4inch (6 mm) mayresult inminimal metal
removal or loss of transferred main arc.
OPERATION Manual 0-5380
4T-6
ESAB CUTMASTER 120
Slag Buildup
Slag generated by gouging on materials such as carbon and stainless steels, nickels, and alloyed steels, can be removed easily in most cases. Slag does not obstruct the gouging process if it accumulates to the side of the gouge path. However, slag build - up can cause inconsistencies and irregular metal removal if large amounts of material build up in front of the arc. The build - up is most often a result of improper travel speed, lead angle, or standoff height.

4T.06 Mechanized Torch Operation

Cutting With Mechanized Torch
The mechanized torch can be activated by remote control pendant or by a remote interface device such as CNC.
1. To start a cut at the plate edge, position the center of the torch along the edge of the plate.
Travel Speed
Proper travel speed is indicated by the trail of the arc which is seen below the plate. The arc can be one of the following:
1. Straight Arc
A straight arc is perpendicular to the workpiece surface. This arc is generally recommended for the best cut using air plasma on stainless or aluminum.
2. Leading Arc
The leading arc is directed in the same direction as torch travel. A five degree leading arc is generally rec­ommended for air plasma on mild steel.
3. Trailing Arc
The trailing arc is directed in the opposite direction as torch travel.
Manual 0-5380 OPERATION
4T-7
ESAB CUTMASTER 120
Standoff Distance
Straight Arc
Trailing Arc
Leading Arc
Direction of Torch Travel
A-02586
Mechanized Torch Operation
For optimum smooth surface quality, the travel speed should be adjusted so that only the leading edge of the arc column produces the cut. If the travel speed is too slow, a rough cut will be produced as the arc moves from side to side in search of metal for transfer.
Travel speed also affects the bevel angle of a cut. When cutting in a circle or around a corner, slowing down the travel speed will result in a squarer cut. The power source output should be reduced also. Refer to the appropriate Control Module Operating Manual for any Corner Slowdown adjustments that may be required.
Piercing With Machine Torch
To pierce with a machine torch, the arc should be started with the torch positioned as high as possible above the plate while allowing the arc to transfer and pierce. This standoff helps avoid having molten metal blow back onto the front end of the torch.
When operating with a cutting machine, a pierce or dwell time is required. Torch travel should not be enabled until the arc penetrates the bottom of the plate. As motion begins, torch standoff should be reduced to the
recommended1/8-1/4inch(3-6mm)distanceforoptimumspeedandcutquality.Cleanspatterandscale
from the shield cup and the tip as soon as possible. Spraying or dipping the shield cup in anti - spatter com­pound will minimize the amount of scale which adheres to it.
OPERATION Manual 0-5380
4T-8

4T.07 Parts Selection for SL100 Torch Cutting

Ohmic Clip
Manual Torch
9-8259
ESAB CUTMASTER 120
Ohmic Clip
Automation Torch
9-8224
Electrode
Auto 9-8232
Manual 9-8215
Starter
Cartridge
9-8213
20-40A
STANDOFF
CUTTING
50-60A
STANDOFF
CUTTING
Heavy Duty
Starter Cartridge
Non HF Only 9-8277
70-120A
STANDOFF
CUTTING
Tip:
20A 9-8205 30A 9-8206 40A 9-8208
Tips:
50-55A 9-8209
60A 9-8210
Tips:
70A 9-8231
80A 9-8211
90/100A 9-8212
120A Auto 9-8233
120A Manual 9-8253
Shield
Cup Body,
9-8237
Shield Cup
9-8218
Shield
Cup Body,
9-8237
Shield Cup
9-8218
Shield
Cup Body,
9-8237
Shield Cup
9-8218
Shield Cap, Machine 40A 9-8245
Shield Cap, Deflector 9-8243
Drag Shield Cup 9-8235
Shield Cap, Machine 50-60A 9-8238
Shield Cap, Deflector 9-8243
Drag Shield Cup 70-100A 9-8236
Drag Shield Cup 120A 9-8258
Shield Cap, Machine 70-100A 9-8239
Shield Cap, Machine 120A 9-8256
Shield Cap, Deflector 9-8243
40-120A
GOUGING
Tips:
Tip A 9-8225 (40 Amps Max.)
Tip B 9-8226 (50 - 120 Amps)
Tip C 9-8227 (60 - 120 Amps)
Tip D 9-8228 (60 - 120 Amps)
Art # A-08066_AG
Manual 0-5380 OPERATION
Tip E 9-8254 (60 - 120 Amps)
Shield
Cup Body,
9-8237
Shield Cup, Gouging
9-8241
4T-9
ESAB CUTMASTER 120

4T.08 Recommended Cutting Speeds for SL100 Torch With Exposed Tip

Type Torch: SL100 With Exposed Tip Type Material: Mild Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.036 0.9 9-8208 104 40 340 8.64 0.19 4.8 65 4.5 55 170 0.00 0.2 5.1
0.06 1.5 9-8208 108 40 250 6.35 0.19 4.8 65 4.5 55 170 0.10 0.2 5.1
0.075 1.9 9-8208 108 40 190 4.83 0.19 4.8 65 4.5 55 170 0.30 0.2 5.1
0.135 3.4 9-8208 110 40 105 2.67 0.19 4.8 65 4.5 55 170 0.40 0.2 5.1
0.188 4.8 9-8208 113 40 60 1.52 0.19 4.8 65 4.5 55 170 0.60 0.2 5.1
0.25 6.4 9-8208 111 40 40 1.02 0.19 4.8 65 4.5 55 170 1.00 0.2 5.1
0.375 9.5 9-8208 124 40 21 0.53 0.19 4.8 65 4.5 55 170 NR NR NR
0.500 12.7 9-8208 123 40 11 0.28 0.19 4.8 65 4.5 55 170 NR NR NR
0.625 15.9 9-8208 137 40 7 0.18 0.19 4.8 65 4.5 55 170 NR NR NR
Type Torch: SL100 With Exposed Tip Type Material: Stainless Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.036 0.9 9-8208 103 40 355 9.02 0.125 3.2 65 4.5 55 170 0.00 0.2 5.1
0.05 1.3 9-8208 98 40 310 7.87 0.125 3.2 65 4.5 55 170 0.00 0.2 5.1
0.06 1.5 9-8208 98 40 240 6.10 0.125 3.2 65 4.5 55 170 0.10 0.2 5.1
0.078 2.0 9-8208 100 40 125 3.18 0.125 3.2 65 4.5 55 170 0.30 0.2 5.1
0.135 3.4 9-8208 120 40 30 0.76 0.187 4.8 65 4.5 55 170 0.40 0.2 5.1
0.188 4.8 9-8208 124 40 20 0.51 0.187 4.8 65 4.5 55 170 0.60 0.2 5.1
0.25 6.4 9-8208 122 40 15 0.38 0.187 4.8 65 4.5 55 170 1.00 0.2 5.1
0.375 9.5 9-8208 126 40 10 0.25 0.187 4.8 65 4.5 55 170 NR NR NR
Type Torch: SL100 With Exposed Tip Type Material: Aluminum
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.032 0.8 9-8208 110 40 440 11.18 0.187 4.8 65 4.5 55 170 0.00 0.2 5.1
0.051 1.3 9-8208 109 40 350 8.89 0.187 4.8 65 4.5 55 170 0.10 0.2 5.1
0.064 1.6 9-8208 112 40 250 6.35 0.187 4.8 65 4.5 55 170 0.10 0.2 5.1
0.079 2.0 9-8208 112 40 200 5.08 0.19 4.8 65 4.5 55 170 0.30 0.2 5.1
0.125 3.2 9-8208 118 40 100 2.54 0.19 4.8 65 4.5 55 170 0.40 0.2 5.1
0.188 4.8 9-8208 120 40 98 2.49 0.187 4.8 65 4.5 55 170 0.60 0.2 5.1
0.250 6.4 9-8208 123 40 50 1.27 0.187 4.8 65 4.5 55 170 1.00 0.2 5.1
0.375 9.5 9-8208 134 40 16 0.41 0.187 4.8 65 4.5 55 170 NR NR NR
OPERATION Manual 0-5380
4T-10
ESAB CUTMASTER 120
Type Torch: SL100 With Exposed Tip Type Material: Mild Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.060 1.5 9-8210 110 60 290 7.37 0.19 4.8 70 4.8 90 245 0.00 0.19 4.8
0.075 1.9 9-8210 120 60 285 7.24 0.19 4.8 70 4.8 90 245 0.10 0.19 4.8
0.120 3.0 9-8210 120 60 180 4.57 0.19 4.8 70 4.8 90 245 0.10 0.19 4.8
0.135 3.4 9-8210 119 60 170 4.32 0.19 4.8 70 4.8 90 245 0.10 0.19 4.8
0.188 4.8 9-8210 121 60 100 2.54 0.19 4.8 70 4.8 90 245 0.20 0.19 4.8
0.250 6.4 9-8210 119 60 80 2.03 0.19 4.8 70 4.8 90 245 0.30 0.19 4.8
0.375 9.5 9-8210 124 60 50 1.27 0.19 4.8 70 4.8 90 245 0.50 0.19 4.8
0.500 12.7 9-8210 126 60 26 0.66 0.19 4.8 70 4.8 90 245 0.75 0.19 4.8
0.625 15.9 9-8210 127 60 19 0.48 0.19 4.8 70 4.8 90 245 NR NR NR
0.750 19.1 9-8210 134 60 14 0.36 0.19 4.8 70 4.8 90 245 NR NR NR
1.000 25.4 9-8210 140 60 6 0.15 0.19 4.8 70 4.8 90 245 NR NR NR
Type Torch: SL100 With Exposed Tip Type Material: Stainless Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.06 1.5 9-8210 119 60 350 8.91 0.19 4.8 70 4.8 90 245 0.00 0.20 5.1
0.075 1.9 9-8210 116 60 300 7.64 0.19 4.8 70 4.8 90 245 0.10 0.20 5.1
0.120 3.0 9-8210 123 60 150 3.82 0.19 4.8 70 4.8 90 245 0.10 0.20 5.1
0.135 3.4 9-8210 118 60 125 3.18 0.19 4.8 70 4.8 90 245 0.10 0.20 5.1
0.188 4.8 9-8210 122 60 90 2.29 0.19 4.8 70 4.8 90 245 0.20 0.20 5.1
0.250 6.4 9-8210 120 60 65 1.65 0.19 4.8 70 4.8 90 245 0.30 0.20 5.1
0.375 9.5 9-8210 130 60 30 0.76 0.19 4.8 70 4.8 90 245 0.50 0.20 5.1
0.500 12.7 9-8210 132 60 21 0.53 0.19 4.8 70 4.8 90 245 0.75 0.20 5.1
0.625 15.9 9-8210 130 60 15 0.38 0.19 4.8 70 4.8 90 245 NR NR NR
0.750 19.1 9-8210 142 60 12 0.31 0.25 6.4 70 4.8 90 245 NR NR NR
Type Torch: SL100 With Exposed Tip Type Material: Aluminum
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.060 1.5 9-8210 110 60 440 11.18 0.25 6.4 70 4.8 90 245 0.00 0.25 6.4
0.075 1.9 9-8210 110 60 440 11.18 0.25 6.4 70 4.8 90 245 0.10 0.25 6.4
0.120 3.0 9-8210 116 60 250 6.35 0.25 6.4 70 4.8 90 245 0.10 0.25 6.4
0.188 3.4 9-8210 116 60 170 4.32 0.25 6.4 70 4.8 90 245 0.20 0.25 6.4
0.250 6.4 9-8210 132 60 85 2.16 0.25 6.4 70 4.8 90 245 0.30 0.25 6.4
0.375 9.5 9-8210 140 60 45 1.14 0.25 6.4 70 4.8 90 245 0.50 0.25 6.4
0.500 12.7 9-8210 143 60 30 0.76 0.25 6.4 70 4.8 90 245 0.80 0.25 6.4
0.625 15.9 9-8210 145 60 20 0.51 0.25 6.4 70 4.8 90 245 NR NR NR
0.750 19.1 9-8210 145 60 18 0.46 0.25 6.4 70 4.8 90 245 NR NR NR
Manual 0-5380 OPERATION
4T-11
ESAB CUTMASTER 120
Type Torch: SL100 With Exposed Tip
Type Material: Mild Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.060 1.5 9-8211 113 80 320 8.13 0.19 4.8 65 4.5 115 340 0.00 0.19 4.8
0.120 3.0 9-8211 113 80 230 5.84 0.19 4.8 65 4.5 115 340 0.10 0.19 4.8
0.135 3.4 9-8211 115 80 180 4.57 0.19 4.8 65 4.5 115 340 0.10 0.19 4.8
0.188 4.8 9-8211 114 80 140 3.56 0.19 4.8 65 4.5 115 340 0.20 0.19 4.8
0.250 6.4 9-8211 114 80 100 2.54 0.19 4.8 65 4.5 115 340 0.30 0.19 4.8
0.375 9.5 9-8211 117 80 42 1.07 0.19 4.8 65 4.5 115 340 0.40 0.19 4.8
0.500 12.7 9-8211 120 80 33 0.84 0.19 4.8 65 4.5 115 340 0.60 0.19 4.8
0.625 15.9 9-8211 133 80 22 0.56 0.19 4.8 65 4.5 115 340 0.75 0.19 4.8
0.750 19.1 9-8211 128 80 18 0.46 0.19 4.8 65 4.5 115 340 NR NR NR
0.875 22.2 9-8211 133 80 10 0.25 0.19 4.8 65 4.5 115 340 NR NR NR
1.000 25.4 9-8211 132 80 9 0.23 0.19 4.8 65 4.5 115 340 NR NR NR
Type Torch: SL100 With Exposed Tip Type Material: Stainless Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.060 1.5 9-8211 120 80 340 8.64 0.25 6.4 65 4.5 115 340 0.00 0.25 6.4
0.120 3.0 9-8211 120 80 300 7.62 0.25 6.4 65 4.5 115 340 0.10 0.25 6.4
0.135 3.4 9-8211 120 80 280 7.11 0.25 6.4 65 4.5 115 340 0.10 0.25 6.4
0.188 4.8 9-8211 120 80 140 3.56 0.25 6.4 65 4.5 115 340 0.20 0.25 6.4
0.250 6.4 9-8211 120 80 100 2.54 0.25 6.4 65 4.5 115 340 0.30 0.25 6.4
0.375 9.5 9-8211 126 80 50 1.27 0.25 6.4 65 4.5 115 340 0.40 0.25 6.4
0.500 12.7 9-8211 129 80 28 0.71 0.25 6.4 65 4.5 115 340 0.80 0.25 6.4
0.625 15.9 9-8211 135 80 20 0.51 0.25 6.4 65 4.5 115 340 1.00 0.25 6.4
0.750 19.1 9-8211 143 80 10 0.25 0.25 6.4 65 4.5 115 340 NR NR NR
0.875 22.2 9-8211 143 80 9 0.23 0.25 6.4 65 4.5 115 340 NR NR NR
1.000 25.4 9-8211 146 80 8 0.20 0.25 6.4 65 4.5 115 340 NR NR NR
Type Torch: SL100 with Exposed Tip Type Material: Aluminum
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.06 1.5 9-8211 120 80 350 8.89 0.25 6.4 65 4.5 115 340 0.00 0.25 6.4
0.12 3.0 9-8211 124 80 300 7.62 0.25 6.4 65 4.5 115 340 0.10 0.25 6.4
0.188 4.8 9-8211 124 80 180 4.57 0.25 6.4 65 4.5 115 340 0.20 0.25 6.4
0.250 6.4 9-8211 128 80 110 2.79 0.25 6.4 65 4.5 115 340 0.30 0.25 6.4
0.375 9.5 9-8211 136 80 55 1.40 0.25 6.4 65 4.5 115 340 0.40 0.25 6.4
0.500 12.7 9-8211 139 80 38 0.97 0.25 6.4 65 4.5 115 340 0.60 0.25 6.4
0.625 15.9 9-8211 142 80 26 0.66 0.25 6.4 65 4.5 115 340 0.75 0.25 6.4
0.750 19.1 9-8211 145 80 24 0.61 0.25 6.4 65 4.5 115 340 NR NR NR
0.875 22.2 9-8211 153 80 10 0.25 0.25 6.4 65 4.5 115 340 NR NR NR
1.000 25.4 9-8211 162 80 6 0.15 0.25 6.4 65 4.5 115 340 NR NR NR
OPERATION Manual 0-5380
4T-12
ESAB CUTMASTER 120
Type Torch: SL100 With Exposed Tip
Type Material: Mild Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.250 6.4
0.375 9.5
0.500 12.7
0.625 15.9
0.750 19.0
1.000 25.4
9-8212 110 100 105 2.65 0.190 4.8 75 5.2 130 390
9-8212 117 100 70 1.75 0.190 4.8 75 5.2 130 390
9-8212 120 100 50 1.25 0.190 4.8 75 5.2 130 390
9-8212 125 100 35 0.90 0.190 4.8 75 5.2 130 390
9-8212 131 100 18 0.45 0.190 4.8 75 5.2 130 390
9-8212
135
100
10
0.25
0.190
4.8 75 5.2 130 390
0.200 5.1
0.4
0.200 5.1
0.5
0.200 5.1
0.6
1.0 0.200
2.0 0.250
NR NR NR
5.1
6.4
Type Torch: SL100 With Exposed Tip Type Material: Stainless Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.250
0.375
0.500
0.625
0.750
1.000
6.4 9-8212
9.5 9-8212
12.7 9-8212
15.9 9-8212
19.0 9-8212
25.4 9-8212
118
122
126
133
138
139
100
100
100
100
100
100
90
55
30
20
15
10
2.30
1.40
0.75
0.50
0.40
0.25
4.8 75 5.2 130 390
0.190
4.8 75 5.2 130 390
0.190
4.8 75 5.2 130 390
0.190
4.8 75 5.2 130 390
0.190
4.8 75 5.2 130 390
0.190
4.8 75 5.2 130 390
0.190
0.5 0.250
0.8 0.250
1.0 0.250
1.5 0.250
NR NR
NR NR
6.4
6.4
6.4
6.4
NR
NR
Type Torch: SL100 with Exposed Tip Type Material: Aluminum
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.250 6.4 9-8212 108 100 120 3.05 0.190 4.8 65 4.5 120 360 0.2 0.225 5.7
0.375 9.5 9-8212 117 100 65 1.65 0.190 4.8 65 4.5 120 360 0.4 0.225 5.7
0.500 12.7 9-8212 120 100 45 1.15 0.190 4.8 65 4.5 120 360 0.5 0.225 5.7
0.625 15.9 9-8212 125 100 30 0.75 0.190 4.8 65 4.5 120 360 0.8 0.225 5.7
0.750 19.0 9-8212 131 100 25 0.65 0.190 4.8 65 4.5 120 360 1.0 0.225 5.7
1.000
25.4 9-8212
140
Type Torch: SL100 With Exposed Tip
100
10
0.25
0.190
4.8 65 4.5 120 360
Type Material: Mild Steel
NR NR
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.250 6.4
0.375 9.5
0.500 12.7
0.625 15.9
0.750 19.0
0.875 22.2
1.000 25.4
1.250 31.8
1.500 38.1
9-8253 138 120 150 3.81 0.19 4.8 75 5.2 180 360
9-8253 140 120 85 2.16 0.19 4.8 75 5.2 180 360
9-8253 144 120 70 1.78 0.19 4.8 75 5.2 180 360
9-8253 152 120 45 1.14 0.19 4.8 75 5.2 180 360
9-8253 155 120 30 0.76 0.19 4.8 75 5.2 180 360
9-8253 160 120 25 0.64 0.25 6.4 75 5.2 180 360
9-8253 164 120 20 0.51 0.25 6.4 75 5.2 180 360
9-8253 170 120 12 0.30 0.25 6.4 75 5.2 180 360
9-8253 180 120 8 0.20 0.25 6.4 75 5.2 180 360
0.10
0.30
0.50
0.70
0.90
NR NR NR
NR NR NR
NR NR NR
NR NR NR
0.25 6.4
0.25 6.4
0.25 6.4
0.25 6.4
0.25 6.4
NR
Manual 0-5380 OPERATION
4T-13
ESAB CUTMASTER 120
Type Torch: SL100 With Exposed Tip Type Material: Stainless Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
6.4 9-8253
0.250
0.375
0.500
0.625
0.750
1.000
1.250
9.5 9-8253
12.7 9-8253
15.9 9-8253
19.0 9-8253
25.4 9-8253
31.8 9-8253
135
144
146
155
164
164
170
Type Torch: SL100 with Exposed Tip Type Material: Aluminum
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.250 6.4 9-8253 142 120 190 4.83 0.19 4.8 75 5.2 180 360 0.30 0.25 6.4
0.375 9.5 9-8253 145 120 120 3.05 0.19 4.8 75 5.2 180 360 0.50 0.25 6.4
0.500 12.7 9-8253 151 120 70 1.78 0.19 4.8 75 5.2 180 360 0.80 0.25 6.4
0.625 15.9 9-8253 162 120 50 1.27 0.25 6.4 75 5.2 180 360 1.00 0.28 7.0
0.750 19.0 9-8253 164 120 34 0.86 0.25 6.4 75 5.2 180 360 NR NR NR
1.000 25.4 9-8253 170 120 20 0.51 0.25 6.4 75 5.2 180 360 NR NR NR
120
120
120
120
120
120
120
180
100
60
40
26
18
9
4.57
2.54
1.52
1.02
0.66
0.46
0.23
4.8 75 5.2 180 360
0.19
4.8 75 5.2 180 360
0.19
4.8 75 5.2 180 360
0.19
6.4 75 5.2 180 360
0.25
6.4 75 5.2 180 360
0.25
6.4 75 5.2 180 360
0.25
6.4 75 5.2 180 360
0.25
0.20 0.25
0.40 0.25
0.80 0.25
1.20 0.28
NR NR
NR NR
NR NR
6.4
6.4
6.4
7.0
NR
NR
NR
NOTE!
* Gas pressure shown is for torches with leads up to 25’ / 7.6 m long. For 50’ / 15.2 m leads, set gas pres­sure to 70 psi / 4.8 bar. ** Total flow rate includes plasma and secondary gas flow.

4T.09 Recommended Cutting Speeds for SL100 Torch With Shielded Tip

Type Torch: SL100 With Shielded Tip Type Material: Mild Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts (VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.036 0.9 9-8208 114 40 170 4.32 0.19 4.8 65 4.5 55 170 0.00 0.2 5.1
0.06 1.5 9-8208 120 40 90 2.29 0.19 4.8 65 4.5 55 170 0.10 0.2 5.1
0.075 1.9 9-8208 121 40 80 2.03 0.19 4.8 65 4.5 55 170 0.30 0.2 5.1
0.135 3.4 9-8208 122 40 75 1.91 0.19 4.8 65 4.5 55 170 0.40 0.2 5.1
0.188 4.8 9-8208 123 40 30 0.76 0.19 4.8 65 4.5 55 170 0.60 0.2 5.1
0.25 6.4 9-8208 125 40 25 0.64 0.19 4.8 65 4.5 55 170 1.00 0.2 5.1
0.375 9.5 9-8208 138 40 11 0.28 0.19 4.8 65 4.5 55 170 NR NR NR
0.500 12.7 9-8208 142 40 7 0.18 0.19 4.8 65 4.5 55 170 NR NR NR
0.625 15.9 9-8208 152 40 3 0.08 0.19 4.8 65 4.5 55 170 NR NR NR
OPERATION Manual 0-5380
4T-14
ESAB CUTMASTER 120
Type Torch: SL100 With Shielded Tip Type Material: Stainless Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.036 0.9 9-8208 109 40 180 4.57 0.125 3.2 65 4.5 55 170 0.00 0.2 5.1
0.05 1.3 9-8208 105 40 165 4.19 0.125 3.2 65 4.5 55 170 0.00 0.2 5.1
0.06 1.5 9-8208 115 40 120 3.05 0.125 3.2 65 4.5 55 170 0.10 0.2 5.1
0.078 2.0 9-8208 120 40 65 1.65 0.187 4.8 65 4.5 55 170 0.30 0.2 5.1
0.135 3.4 9-8208 125 40 25 0.64 0.187 4.8 65 4.5 55 170 0.40 0.2 5.1
0.188 4.8 9-8208 132 40 20 0.51 0.187 4.8 65 4.5 55 170 0.60 0.2 5.1
0.25 6.4 9-8208 130 40 15 0.38 0.187 4.8 65 4.5 55 170 1.00 0.2 5.1
0.375 9.5 9-8208 130 40 10 0.25 0.187 4.8 65 4.5 55 170 NR NR NR
Type Torch: SL100 With Shielded Tip Type Material: Aluminum
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.032 0.8 9-8208 116 40 220 5.59 0.187 4.8 65 4.5 55 170 0.00 0.2 5.1
0.051 1.3 9-8208 116 40 210 5.33 0.187 4.8 65 4.5 55 170 0.00 0.2 5.1
0.064 1.6 9-8208 118 40 180 4.57 0.187 4.8 65 4.5 55 170 0.10 0.2 5.1
0.079 2.0 9-8208 116 40 150 3.81 0.19 4.8 65 4.5 55 170 0.30 0.2 5.1
0.125 3.2 9-8208 130 40 75 1.91 0.19 4.8 65 4.5 55 170 0.40 0.2 5.1
0.188 4.8 9-8208 132 40 60 1.52 0.187 4.8 65 4.5 55 170 0.60 0.2 5.1
0.250 6.4 9-8208 134 40 28 0.71 0.187 4.8 65 4.5 55 170 1.00 0.2 5.1
0.375 9.5 9-8208 143 40 11 0.28 0.187 4.8 65 4.5 55 170 NR NR NR
Type Torch: SL100 With Shielded Tip Type Material: Mild Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.060 1.5 9-8210 124 60 250 6.35 0.19 4.8 70 4.8 90 245 0.00 0.2 5.1
0.075 1.9 9-8210 126 60 237 6.02 0.19 4.8 70 4.8 90 245 0.10 0.2 5.1
0.120 3.0 9-8210 126 60 230 5.84 0.19 4.8 70 4.8 90 245 0.10 0.2 5.1
0.135 3.4 9-8210 128 60 142 3.61 0.19 4.8 70 4.8 90 245 0.10 0.2 5.1
0.188 4.8 9-8210 128 60 125 3.18 0.19 4.8 70 4.8 90 245 0.20 0.2 5.1
0.250 6.4 9-8210 123 60 80 2.03 0.19 4.8 70 4.8 90 245 0.30 0.2 5.1
0.375 9.5 9-8210 132 60 34 0.86 0.19 4.8 70 4.8 90 245 0.50 0.2 5.1
0.500 12.7 9-8210 137 60 23 0.58 0.19 4.8 70 4.8 90 245 0.75 0.2 5.1
0.625 15.9 9-8210 139 60 14 0.36 0.19 4.8 70 4.8 90 245 NR NR NR
0.750 19.1 9-8210 145 60 14 0.36 0.19 4.8 70 4.8 90 245 NR NR NR
1.000 25.4 9-8210 156 60 4 0.10 0.19 4.8 70 4.8 90 245 NR NR NR
Manual 0-5380 OPERATION
4T-15
ESAB CUTMASTER 120
Type Torch: SL100 With Shielded Tip Type Material: Stainless Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.06 1.5 9-8210 110 60 165 4.19 0.13 3.2 70 4.8 90 245 0.00 0.20 5.1
0.075 1.9 9-8210 116 60 155 3.94 0.13 3.2 70 4.8 90 245 0.10 0.20 5.1
0.120 3.0 9-8210 115 60 125 3.18 0.13 3.2 70 4.8 90 245 0.10 0.20 5.1
0.135 3.4 9-8210 118 60 80 2.03 0.13 3.2 70 4.8 90 245 0.10 0.20 5.1
0.188 4.8 9-8210 120 60 75 1.91 0.13 3.2 70 4.8 90 245 0.20 0.20 5.1
0.250 6.4 9-8210 121 60 60 1.52 0.13 3.2 70 4.8 90 245 0.30 0.20 5.1
0.375 9.5 9-8210 129 60 28 0.71 0.13 3.2 70 4.8 90 245 0.50 0.20 5.1
0.500 12.7 9-8210 135 60 17 0.43 0.19 4.8 70 4.8 90 245 0.75 0.20 5.1
0.625 15.9 9-8210 135 60 14 0.36 0.19 4.8 70 4.8 90 245 NR NR NR
0.750 19.1 9-8210 142 60 10 0.25 0.19 4.8 70 4.8 90 245 NR NR NR
Type Torch: SL100 With Shielded Tip Type Material: Aluminum
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.060 1.5 9-8210 105 60 350 8.89 0.13 3.2 70 4.8 90 245 0.00 0.20 5.1
0.075 1.9 9-8210 110 60 350 8.89 0.13 3.2 70 4.8 90 245 0.10 0.20 5.1
0.120 3.0 9-8210 110 60 275 6.99 0.13 3.2 70 4.8 90 245 0.10 0.20 5.1
0.188 3.4 9-8210 122 60 140 3.56 0.13 3.2 70 4.8 90 245 0.20 0.20 5.1
0.250 6.4 9-8210 134 60 80 2.03 0.19 4.8 70 4.8 90 245 0.30 0.20 5.1
0.375 9.5 9-8210 140 60 45 1.14 0.19 4.8 70 4.8 90 245 0.50 0.20 5.1
0.500 12.7 9-8210 144 60 26 0.66 0.19 4.8 70 4.8 90 245 0.80 0.20 5.1
0.625 15.9 9-8210 145 60 19 0.48 0.19 4.8 70 4.8 90 245 NR NR NR
0.750 19.1 9-8210 150 60 15 0.38 0.19 4.8 70 4.8 90 245 NR NR NR
Type Torch: SL100 With Shielded Tip Type Material: Mild Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.060 1.5 9-8211 128 80 280 7.11 0.19 4.8 65 4.5 115 340 0.00 0.2 5.1
0.120 3.0 9-8211 126 80 203 5.16 0.19 4.8 65 4.5 115 340 0.10 0.2 5.1
0.135 3.4 9-8211 128 80 182 4.62 0.19 4.8 65 4.5 115 340 0.10 0.2 5.1
0.188 4.8 9-8211 128 80 137 3.48 0.19 4.8 65 4.5 115 340 0.20 0.2 5.1
0.250 6.4 9-8211 131 80 100 2.54 0.19 4.8 65 4.5 115 340 0.30 0.2 5.1
0.375 9.5 9-8211 134 80 40 1.02 0.19 4.8 65 4.5 115 340 0.50 0.2 5.1
0.500 12.7 9-8211 136 80 36 0.91 0.19 4.8 65 4.5 115 340 0.60 0.2 5.1
0.625 15.9 9-8211 145 80 21 0.53 0.19 4.8 65 4.5 115 340 0.75 0.2 5.1
0.750 19.1 9-8211 144 80 14 0.36 0.19 4.8 65 4.5 115 340 NR NR NR
0.875 22.2 9-8211 149 80 11 0.28 0.19 4.8 65 4.5 115 340 NR NR NR
1.000 25.4 9-8211 162 80 8 0.20 0.19 4.8 65 4.5 115 340 NR NR NR
OPERATION Manual 0-5380
4T-16
ESAB CUTMASTER 120
Type Torch: SL100 With Shielded Tip Type Material: Stainless Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.060 1.5 9-8211 110 80 340 8.50 0.125 3.2 65 4.5 115 340 0.00 0.2 5.1
0.120 3.0 9-8211 115 80 260 6.50 0.125 3.2 65 4.5 115 340 0.10 0.2 5.1
0.135 3.4 9-8211 113 80 250 6.25 0.125 3.2 65 4.5 115 340 0.10 0.2 5.1
0.188 4.8 9-8211 114 80 170 4.25 0.125 3.2 65 4.5 115 340 0.20 0.2 5.1
0.250 6.4 9-8211 116 80 85 2.13 0.125 3.2 65 4.5 115 340 0.30 0.2 5.1
0.375 9.5 9-8211 123 80 45 1.13 0.125 3.2 65 4.5 115 340 0.40 0.25 6.4
0.500 12.7 9-8211 133 80 18 0.45 0.125 3.2 65 4.5 115 340 0.75 0.25 6.4
0.625 15.9 9-8211 135 80 16 0.40 0.125 3.2 65 4.5 115 340 1.00 0.25 6.4
0.750 19.1 9-8211 144 80 8 0.20 0.125 3.2 65 4.5 115 340 NR NR NR
0.875 22.2 9-8211 137 80 8 0.20 0.125 3.2 65 4.5 115 340 NR NR NR
1.000 25.4 9-8211 140 80 8 0.20 0.125 3.2 65 4.5 115 340 NR NR NR
Type Torch: SL100 With Shielded Tip
Type Material: Aluminum
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.06 1.5 9-8211 115 80 320 8.13 0.13 3.2 65 4.5 115 340 0.00 0.25 6.4
0.12 3.0 9-8211 120 80 240 6.10 0.13 3.2 65 4.5 115 340 0.10 0.25 6.4
0.188 4.8 9-8211 120 80 165 4.19 0.13 3.2 65 4.5 115 340 0.20 0.25 6.4
0.250 6.4 9-8211 124 80 100 2.54 0.13 3.2 65 4.5 115 340 0.30 0.25 6.4
0.375 9.5 9-8211 138 80 60 1.52 0.19 4.8 65 4.5 115 340 0.40 0.25 6.4
0.500 12.7 9-8211 141 80 36 0.91 0.19 4.8 65 4.5 115 340 0.60 0.25 6.4
0.625 15.9 9-8211 142 80 26 0.66 0.19 4.8 65 4.5 115 340 0.75 0.25 6.4
0.750 19.1 9-8211 150 80 18 0.46 0.19 4.8 65 4.5 115 340 NR NR NR
0.875 22.2 9-8211 156 80 8 0.20 0.19 4.8 65 4.5 115 340 NR NR NR
1.000 25.4 9-8211 164 80 6 0.15 0.19 4.8 65 4.5 115 340 NR NR NR
Type Torch: SL100 With Shielded Tip Type Material: Mild Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.250 6.4
0.375 9.5
0.500 12.7
0.625 15.9
0.750 19.0
1.000 25.4
9-8212
9-8212
9-8212
9-8212
9-8212
9-8212
124
127
132
136
140
147
100
100
100
100
100
100
110
75
50
30
18
10
2.80
1.90
1.30
0.75
0.45
0.25
0.180
0.180
0.180
0.180
0.190
0.190
4.6 75 5.2 130 390
4.6 75 5.2 130 390
4.6 75 5.2 130 390
4.6 75 5.2 130 390
4.8 75 5.2 130 390
4.8 75 5.2
130
390
0.4 0.200
0.5 0.200
0.6 0.200
0.8 0.200
2.0 0.225
NR NR
5.1
5.1
5.1
5.1
5.7
NR
Manual 0-5380 OPERATION
4T-17
ESAB CUTMASTER 120
Type Torch: SL100 With Shielded Tip Type Material: Stainless Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.250
0.375
0.500
0.625
0.750
1.000
6.4 9-8212
9.5 9-8212
12.7 9-8212
15.9 9-8212
19.0 9-8212
25.4 9-8212
121 100 110
125 100 60
132 100 35
137 100 20
144 100 15
154 100 8
2.80
1.50
0.90
0.50
0.40
0.20
0.125
0.150
0.150
0.150
0.190
0.190
3.2 75 5.2 130 390
3.8 75 5.2 130 390
3.8 75 5.2 130 390
3.8 75 5.2 130 390
4.8 75 5.2 130 390
4.8 75 5.2 130 390
0.5 0.200
0.8 0.200
1.0 0.200
2.0 0.225
NR NR
NR NR
5.1
5.1
5.1
5.7
NR
NR
Type Torch: SL100 With Shielded Tip
Type Material: Aluminum
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.250
0.375
0.500
0.625
0.750
1.000
6.4 9-8212
9.5 9-8212
12.7 9-8212
15.9 9-8212
19.0 9-8212
25.4 9-8212
120
128
130
135
140
148
100
100
100
100
100
100
120
65
45
30
25
10
3.05
1.65
1.15
0.75
0.65
0.25
0.180
0.180
0.180
0.180
0.180
0.190
65 4.5 105 360
65 4.5 105 360
65 4.5 105 360
65 4.5 105 360
65 4.5 105 360
65 4.5
105 360 NR NR
0.2 0.225
0.4 0.225
0.5 0.225
0.8 0.225
1.0 0.225
Type Torch: SL100 With Shielded Tip Type Material: Mild Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.250 6.4
0.375 9.5
0.500 12.7
0.625 15.9
0.750 19.0
0.875 22.2
1.000 25.4
1.250 31.8
1.500 38.1
9-8253
9-8253
9-8253
9-8253
9-8253
9-8253
9-8253
9-8253
9-8253
140
142
144
150
154
158
160
170
176
120
120
120
120
120
120
120
120
120
165
85
75
50
30
25
20
13
8
4.19
2.16
1.91
1.27
0.76
0.64
0.51
0.33
0.20
0.125
0.125
0.125
0.125
0.150
0.150
0.150
0.175
0.175
3.2
3.2
3.2
3.2
3.8
3.8
3.8
4.4
4.4
75
75
75
75
75
75
75
75
75
5.2
5.2
5.2
5.2
5.2
5.2
5.2
5.2
5.2
180
360 0.20
180
360 0.50
180
360 0.70
180
360 0.80
180
360 1.50
180
360 NR NR
180
360 NR NR
180
360 NR NR
180
360 NR NR
0.20
0.20
0.20
0.20
0.20
5.7
5.7
5.7
5.7
5.7
NR
5.1
5.1
5.1
5.1
5.1
NR
NR
NR
NR
OPERATION Manual 0-5380
4T-18
ESAB CUTMASTER 120
Type Torch: SL100 With Shielded Tip Type Material: Stainless Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.250
0.375
0.500
0.625
0.750
1.000
1.250
6.4 9-8253
9.5 9-8253
12.7 9-8253
15.9 9-8253
19.1 9-8253
25.4 9-8253
31.8 9-8253
136 120 180
144 120 100
149 120 60
153 120 40
157 120 30
162 120 20
165 120 10
4.57
2.54
1.52
1.02
0.76
0.51
0.25
0.13
0.13
0.13
0.15
0.15
0.15
0.15
3.2
3.2
3.2
3.8
3.8
3.8
3.8
75
75
75
75
75
75
75
5.2 180 360
5.2 180 360
5.2 180 360
5.2 180 360
5.2 180 360
5.2 180 360
5.2 180 360
0.20 0.20
0.40 0.20
0.80 0.20
1.20 0.20
NR NR
NR NR
NR NR
5.1
5.1
5.1
5.1
NR
NR
NR
Type Torch: SL100 With Shielded Tip
Type Material: Aluminum
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.250
0.375
0.500
0.625
0.750
1.000
6.4 9-8253
9.5 9-8253
12.7 9-8253
15.9 9-8253
19.1 9-8253
25.4 9-8253
144
148
152
162
163
168
120
120
120
120
120
120
190
120
75
45
35
20
4.83
3.05
1.91
1.14
0.89
0.51
0.13
0.13
0.15
0.15
0.15
0.15
3.2
3.2
3.8
3.8
3.8
3.8
75
75
75
75
75
75
5.2 180 360
5.2 180 360
5.2 180 360
5.2 180 360
5.2 180 360
5.2 180 360
0.20 0.20
0.50 0.20
0.70 0.20
1.00 0.20
NR NR
NR NR
5.1
5.1
5.1
5.1
NR
NR
NOTE!
* Gas pressure shown is for torches with leads up to 25’ / 7.6 m long. For 50’ / 15.2 m leads, set gas pres­sure to 70 psi / 4.8 bar. ** Total flow rate includes plasma and secondary gas flow.
Manual 0-5380 OPERATION
4T-19
ESAB CUTMASTER 120

PATENT INFORMATION

Plasma Cutting Torch Patents
The following parts are covered under U.S. and Foreign Patents as follows:
Catalog # Description Patent(s)
9-8215 Electrode USPatNo(s)6163008;6987238
Other Pat(s) Pending
9-8213 Cartridge USPatNo(s)6903301;6717096;6936786;  6703581;D496842;D511280;D492709;  D499620;D504142OtherPat(s)Pending  9-8205 Tip USPatNo(s)6774336;7145099;6933461
Other Pat(s) Pending
9-8206 Tip USPatNo(s)6774336;7145099;6933461
Other Pat(s) Pending
9-8207 Tip USPatNo(s)6774336;7145099;6933461
Other Pat(s) Pending
9-8252 Tip USPatNo(s)6774336;7145099;6933461
Other Pat(s) Pending
9-8208 Tip USPatNo(s)6774336;7145099;6933461
Other Pat(s) Pending
9-8209 Tip USPatNo(s)6774336;7145099;6933461
Other Pat(s) Pending
9-8210 Tip USPatNo(s)6774336;7145099;6933461
Other Pat(s) Pending
9-8231 Tip USPatNo(s)6774336;7145099;6933461
Other Pat(s) Pending
9-8211 Tip USPatNo(s)6774336;7145099;6933461
Other Pat(s) Pending
9-8212 Tip USPatNo(s)6774336;7145099;6933461
Other Pat(s) Pending
9-8253 Tip USPatNo(s)6774336;7145099;6933461
Other Pat(s) Pending
9-8225 Tip USPatNo(s)6774336;7145099;6933461
Other Pat(s) Pending
9-8226 Tip USPatNo(s)6774336;7145099;6933461
Other Pat(s) Pending
9-8227 Tip USPatNo(s)6774336;7145099;6933461
Other Pat(s) Pending
9-8228 Tip USPatNo(s)6774336;7145099;6933461
Other Pat(s) Pending
9-8241 ShieldCap USPatNo(s)6914211;D505309
Other Pat(s) Pending
9-8243 ShieldCap USPatNo(s)6914211;D493183
Other Pat(s) Pending
9-8235 ShieldCap USPatNo(s)6914211;D505309
Other Pat(s) Pending
9-8236 ShieldCap USPatNo(s)6914211;D505309
Other Pat(s) Pending
9-8237 ShieldCup USPatNo(s)6914211;D501632;D511633
Other Pat(s) Pending
9-8238 ShieldCap USPatNo(s)6914211;D496951
Other Pat(s) Pending
9-8239 ShieldCap USPatNo(s)6914211;D496951
Other Pat(s) Pending
9-8244 ShieldCap USPatNo(s)6914211;D505309
Other Pat(s) Pending
OPERATION Manual 0-5380
4T-20
ESAB CUTMASTER 120
Catalog # Description Patent(s)
9-8245 ShieldCap USPatNo(s)6914211;D496951
Other Pat(s) Pending
The following parts are also licensed under U.S. Patent No. 5, 120, 930 and 5, 132, 512:
Catalog # Description
9-8235 ShieldCap 9-8236 ShieldCap 9-8237 ShieldCup 9-8238 ShieldCap 9-8239 ShieldCap 9-8244 ShieldCap 9-8245 ShieldCap
Manual 0-5380 OPERATION
4T-21
ESAB CUTMASTER 120
This Page Intentionally Blank
OPERATION Manual 0-5380
4T-22

5.01 General Maintenance

ESAB CUTMASTER 120
SECTION 5 SYSTEM:
SERVICE
Warning! Disconnect input power before maintaining.
Visual check of torch tip and electrode
Visually inspect the torch body tip, electrode, start cartridge and shield cup
Maintain more often if used under severe conditions
Each Use
Weekly
Visually inspect the cables and leads. Replace as needed
Replace all broken parts
3 Months
Clean exterior of power supply
6 Months
Visually check and Carefully clean the interior
Art # A-07938_AB
Manual 0-5380 SERVICE
5-1
ESAB CUTMASTER 120

5.02 Maintenance Schedule

NOTE!
The actual frequency of maintenance may need to be adjusted according to the oper­ating environment.
Daily Operational Checks or Every Six Cutting
Hours:
1. Check torch consumable parts, replace if dam­aged or worn.
2. Check plasma and secondary supply and pres­sure/flow.
3. Purge plasma gas line to remove any moisture build-up.
Weekly or Every 30 Cutting Hours:
1. Check fan for proper operation and adequate air flow.
2. Inspect torch for any cracks or exposed wires, replace if necessary.
3. Inspect input power cable for damage or ex­posed wires, replace if necessary.
Six Months or Every 720 Cutting Hours:

5.03 Common Faults

Problem - Symptom Common Cause
Insufficient Penetration 1. Cutting speed too fast.
2. Torch tilted too much.
3. Metal too thick.
4. Worn torch parts
5. Cutting current too low.
6. Non - Genuine ESAB parts used
7. Incorrect gas pressure
Main Arc Extinguishes 1. Cutting speed too slow.
2. Torch standoff too high from workpiece.
3. Cutting current too high.
4. Work cable disconnected.
5. Worn torch parts.
6. Non - Genuine ESAB parts used
Excessive Dross
Formation
1. Cutting speed too slow.
2. Torch standoff too high from workpiece.
3. Worn torch parts.
4. Improper cutting current.
5. Non - Genuine ESAB parts used
6. Incorrect gas pressure
1. Check the in-line air filter(s), clean or replace as required.
2. Check cables and hoses for leaks or cracks, replace if necessary.
3. Check all contactor points for severe arcing or pits, replace if necessary.
4. Vacuum dust and dirt out of the entire machine.
CAUTION
!
Do not blow air into the power supply during cleaning. Blowing air into the unit can cause metal particles to interfere with sensitive electrical components and cause damage to the unit.
Short Torch Parts Life 1. Oil or moisture in air source.
2. Exceeding system capability (material too thick).
3. Excessive pilot arc time
4. Gas pressure too low.
5. Improperly assembled torch.
6. Non - Genuine ESAB parts used
Difficult Starting 1. Worn torch parts.
2. Non - Genuine ESAB parts used.
3. Incorrect gas pressure.
SERVICE Manual 0-5380
5-2
ESAB CUTMASTER 120

5.04 Fault Indicator

At initial power up, two lights will temporarily illuminate for 2-3 seconds to show the version of software used.
To determine the first digit, count the function indicators left to right, 1 through 5. To determine the second digit count the pressure indicators, reading from bottom to top, 0 through 7. In the example below the Temp indicator and 75 psi indicators are ON indicating the version would be 2.3.
7 6
5
4 3 2
1
0
MAX
MIN
A
PSI BAR
MAXMAX
MINMIN
!
+
5
3
1
4
2
Art# A-07988
When the ! "Fault" indicator is ON or blinking it will be accompanied by one of the pressure indicator lights depending on what the Fault is. The following table explains each of those Faults.
Pressure
Fault
Indicator
Max Over Pressure
90 Internal Error
85 Check Consumables
80 Consumables Missing
75 Start Error
70 Parts in Place
65 Input Power
Min Under Pressure
NOTE!
Fault explanations are covered in the following tables.
Manual 0-5380 SERVICE
5-3
ESAB CUTMASTER 120

5.05 Basic Troubleshooting Guide

WARNING
There are extremely dangerous voltage and power levels present inside this unit. Do not attempt to diagnose or repair unless you have had training in power electronics measurement and troubleshooting techniques.
Problem - Symptom Possible Cause Recommended Action
ON / OFF Switch is ON but the A/C Indicator does not light
Fault indicator flashing, 65 PSI indicator flashing
1. Primary power disconnect is in OFF position.
2. Primary fuses / breakers are blown or tripped.
3. Units internal fuse blown.
4. Faulty components in unit.
1. INPUT VOLTAGE SELECTION SWITCH set for incorrect voltage.
2. Primary input voltage problem.
3. Faulty components in unit.
1. Turn primary power disconnect switch to ON position.
2. a) Have qualified person check primary fuses / breakers. b) Connect unit to known good primary power receptacle
3. a) Replace fuse. b) If fuse blows again, return to authorized service center for repair or replacement.
4. Return to authorized service center for repair or replacement.
1. Set INPUT VOLTAGE SELECTION SWITCH to match primary input voltage.
2. Have qualified person check primary voltage to insure it meets unit requirements see section 2.05.
3. Return to authorized service center for repair or replacement.
TEMPERATURE indicator ON. FAULT indicator flashing.
GAS LED OFF, FAULT and MIN pressure indicators flashing.
FAULT and 70 PSI indicators flashing.
FAULT and 75 PSI indicators flashing.
1. Air flow through or around the unit is obstructed.
2. Duty cycle of the unit has been exceeded
3. Failed components in unit
1. Gas supply not connected to unit.
2. Gas supply not turned ON.
3. Gas supply pressure too low.
4. AIR PRESSURE CONTROL regulator set too low.
5. Failed components in unit.
1. Shield Cup loose.
2. Torch not properly connected to power supply.
3. Problem in torch and leads PIP circuit.
4. Failed components in unit.
1. Start signal is active when ON/OFF SWITCH is turned to ON position.
2. Problem in the torch and leads switch circuit.
3. Failed components in unit.
1. Refer to clearance information – section 2.04
2. Allow unit to cool.
3. Return to authorized service center for repair or replacement.
1. Connect gas supply to unit.
2. Turn gas supply ON.
3. Set air supply inlet pressure to unit to 120 psi.
4. Adjust regulator to set air pressure - see section 4.02.
5. Return to authorized service center for repair or replacement.
1. Hand tighten the shield cup until it is snug.
2. Insure torch ATC is securely fastened to unit.
3. Replace torch and leads or return to authorized service center for repair or replacement.
4. Return to authorized service center for repair or replacement.
1. Start can be active for one of the following:
•Handtorchswitchheldclosed •Handpendantswitchheldclosed •CNCSTARTsignalisactivelow
Release the START signal source
2. Replace torch and leads or return to authorized service center for repair or replacement.
3. Return to authorized service center for repair or replacement.
SERVICE Manual 0-5380
5-4
Problem - Symptom Possible Cause Recommended Action
FAULT & 80 PSI indicators flashing. Gas flow is cycling ON and OFF.
Nothing happens when torch switch or remote switch is closed (Or CNC START signal is active) No gas flow, DC LED OFF.
1. Torch shield cup is loose.
2. Torch tip, electrode or starter cartridge missing.
3. Torch starter cartridge is stuck.
4. Open conductor in torch leads.
5. Problem in the torch and leads switch circuit.
6. Failed components in unit.
1. Problem in the torch and leads switch circuit (Remote pendant switch circuit).
2. CNC Controller device not providing Start signal.
3. Failed components in unit.
1. Tighten shield cup by hand. Do not overtighten.
2. Turn OFF power supply. Remove shield cup. Install missing parts.
3. Turn OFF power supply. Bleed down system pressure. Remove shield cup, tip and starter cartridge. Check starter cartridge lower end fitting for free movement. Replace if fitting does not move freely.
4. Replace torch and leads or return to authorized service center for repair or replacement.
5. Replace torch and leads or return to authorized service center for repair or replacement.
6. Return to authorized service center for repair or replacement.
1. Take Torch and Leads (Remote Pendant) to Authorized Repair Facility.
2. Contact Controller manufacturer.
3. Return to authorized service center for repair or replacement.
ESAB CUTMASTER 120
FAULT and 85 PSI indicators flashing.
No Fault lights ON, no arc in torch.
Fault and 90 PSI indicators flashing
Pilot arc is ON but cutting arc will not establish
Torch cutting is diminished
1. Upper O-Ring on torch head is in wrong position.
2. Torch starter cartridge is stuck.
3. Worn or faulty torch parts.
4. Shorted Torch.
5. Temporary Short indicated by 5 blinks per second.
6. Power Supply Failure (Standard rate of blinking)
1. Failed components in unit. 1. Return to an authorized service center for repair.
1. Internal Error 1. Turn the ON / OFF switch OFF then back ON again. If that does not
1. Work cable not connected to work piece.
2. Work cable/connector broken.
3. Failed components in unit.
1. Incorrect current setting.
2. Worn torch consumables.
3. Poor work cable connection to work piece.
4. Torch being moved too fast.
5. Excessive oil or water in torch.
6. Failed components in unit.
1. Remove shield cup from torch; check upper O-Ring position; correct if necessary.
2. Turn OFF power supply. Bleed down system pressure. Remove shield cup, tip and starter cartridge. Check starter cartridge lower end fitting for free movement. Replace if fitting does not move freely.
3. Inspect torch consumable parts. Replace if necessary.
4. Replace torch and leads or return to an authorized service center for repair.
5. Release torch switch and reactivate.
6. Return to authorized service center for repair or replacement.
clear the fault, return to an authorized service center for repair.
1. Connect work cable.
2. Replace work cable.
3. Return to an authorized service center for repair.
1. Check and adjust to proper setting.
2. Check torch consumables and replace as needed.
3. Check the connection of the Work Lead to the work piece.
4. Reduce cutting speed.
5. Refer to "Check air quality" in section 3 Torch.
6. Return to an authorized service center for repair.
Manual 0-5380 SERVICE
5-5
ESAB CUTMASTER 120

5.06 Power Supply Basic Parts Replacement

WARNING
!
This section describes procedures for basic parts replacement. For more detailed parts replacement procedures, refer to the Power Supply Service Manual.
A. Cover Removal
1. Remove the upper and lower screws which
Disconnect primary power to the system before disassembling the torch, leads, or power supply.
secure the cover to the main assembly. Do not loosen the lower screws inside the cut out slots in the bottom of the cover.
Upper Screws
Lower Screws
C. Filter Element Assembly Replacement
The Filter Element Assembly is in the rear panel. For better system performance, the filter element should be checked per the Maintenance Schedule (Subsection
5.02), and either cleaned or replaced.
1. Remove power from the power supply; turn OFF the gas supply and bleed down the system.
2. Remove the system cover. See "A Cover Re­moval" in this section.
3. Locate the internal air line and the fitting from the filter assembly. Number 1 in the following illustration.
4. Hold a wrench or similar tool against the locking ring on the filter assembly fitting, then pull on the hose to release it. (Numbers 2 and 3 in the following illustration).
1
Slots
Lower Screws
Art # A-08429
2. Carefully pull the Cover up and away from the unit.
B. Cover Installation
1. Reconnect the ground wire, if necessary.
2. Place the cover onto the power supply so that slots in the bottom edges of the cover engage the lower screws.
Art # A-07989
2
3
4
5
6mm
3. Tighten lower screws.
4. Reinstall and tighten the upper screws.
SERVICE Manual 0-5380
5-6
ESAB CUTMASTER 120
Art # A-02476
Filter
Element
(Cat. No. 9-7741)
Housing
Cover
Barbed
Fitting
Spring
Assembled Filter
O-ring
(Cat. No. 9-7743)
5. Remove the fitting from the filter element as-
sembly by inserting a6 mm hex wrench into
the internal hex fitting and turning it counter clock-wise (left). Numbers 4 and 5 in the previ­ous illustration.
6. Disconnecttheinputlinefromthelterelement
assembly.
7. Remove the filter element assembly through the rear opening.
NOTE!
If replacing or cleaning just the filter ele­ment refer to the following illustration for disassembly.
Filter Element
Optional Single-Stage Filter Element Replacement
These instructions apply to power supplies where the optional Single-Stage Filter has been installed.
The Power Supply shuts down automatically when the Filter Element becomes completely saturated. The Filter Element can be removed from its housing, dried, and reused. Allow 24 hours for Element to dry. Refer
toSection6,PartsList,forreplacementlterelement
catalog number.
1. Remove power from power supply.
2. Shut OFF air supply and bleed down system before disassembling Filter to change Filter Ele­ment.
3. Disconnect gas supply hose.
4. Turn the Filter Housing Cover counter-clockwise and remove it. The Filter Element is located inside the Housing.
Art # A-07990
8. Install the new or cleaned assembly by reversing these procedures.
9. TurnONtheairsupplyandcheckforleaksbefore
reinstalling the cover.
Optional Single-Stage Filter Element Replacement
5. Remove the Filter Element from the Housing and set Element aside to dry.
6. Wipe inside of housingclean, then insert the
replacement Filter Element open side first.
7. Replace Housing on Cover.
8. Reattach gas supply.
NOTE!
If unit leaks between housing and cover, inspect the O-ring for cuts or other damage.
Manual 0-5380 SERVICE
5-7
ESAB CUTMASTER 120
First & Second Stage Cartridges (as marked)
Art # A-02942
Optional Two-Stage Filter Element Replacement
The Two-Stage Air Filter has two Filter Elements. When the Filter Elements become dirty the Power Supply will
continueto operate but cutqualitymaybecomeunacceptable.RefertoSection 6, PartsList,forreplacement
filter element catalog number.
1. Shut OFF primary input power.
2. Shut OFF air supply and bleed down system.
WARNING
!
3. Loosen the two bolts on the top of the Filter Assembly enough to allow the Filter Elements to move freely.
4. Note the location and orientation of the old Filter Elements.
5. Slide out the old Filter Elements.
Always turn OFF the air supply and bleed the system before disassembling the Filter Assembly as injury could result.
Optional Two-Stage Filter Replacement
6. SlidethereplacementFilterElementsintotheFilterAssembly,withthesameorientationasnotedinStep
4 above.
7. Hand tighten the two bolts evenly, then torque each bolt to 20 - 30 in-lbs (2.3 - 3.4 Nm). Improper torque may damage the gasket.
8. Slowly apply air pressure to the assembly, checking for leaks.
NOTE!
A small amount of air leakage from the bottom fitting is normal.
This completes the parts replacement procedures.
SERVICE Manual 0-5380
5-8
SECTION 5 TORCH:
ATC Male Connector
Art #A-03791
Gas Fitting
O-Ring
SERVICE
ESAB CUTMASTER 120

5T.01 General Maintenance

NOTE!
Refer to Previous "Section 5: System" for common and fault indicator descriptions.
Cleaning Torch
Even if precautions are taken to use only clean air with a torch, eventually the inside of the torch be­comes coated with residue. This buildup can affect the pilot arc initiation and the overall cut quality of the torch.
WARNING
Disconnect primary power to the system before disassembling the torch or torch leads. DO NOT touch any internal torch parts while the AC indicator light of the Power Supply is ON.
The inside of the torch should be cleaned with elec­trical contact cleaner using a cotton swab or soft wet rag. In severe cases, the torch can be removed from the leads and cleaned more thoroughly by pouring electrical contact cleaner into the torch and blowing it through with compressed air.
Upper Groove with Vent Holes Must Remain Open
Upper O-Ring in Correct Groove
Threads
Lower O-Ring
Torch Head O-Ring
Art # A-03725
CAUTION
!
O-Ring Lubrication
An o-ring on the Torch Head and ATC Male Con­nector requires lubrication on a scheduled basis. This will allow the o-rings to remain pliable and provide a proper seal. The o-rings will dry out, becoming hard and cracked if the lubricant is not used on a regular basis. This can lead to potential performance problems.
It is recommended to apply a very light film of o­ring lubricant (Catalog # 8-4025) to the o-rings on a weekly basis.
Dry the torch thoroughly before reinstalling.
ATC O-Ring
NOTE!
DO NOT use other lubricants or grease, they may not be designed to operate within high temperatures or may contain “unknown elements” that may react with the atmosphere. This reaction can leave contaminants inside the torch. Either of these conditions can lead to inconsistent performance or poor parts life.
Manual 0-5380 SERVICE
5T-1
ESAB CUTMASTER 120
Drag Shield Cap
Shield
Cup Body
O-Ring No. 8-3488
Art # A-03878
Good Tip
Worn Tip
A-03406
Spring-Loaded
Worn Electrode
New Electrode
Art # A-03284
5T.02 Inspection and Replacement of
Consumable Torch Parts
WARNING
Disconnect primary power to the system
Remove the consumable torch parts as follows:
1. Unscrew and remove the shield cup from the
before disassembling the torch or torch leads. DO NOT touch any internal torch parts while the AC indicator light of the Power Supply is ON.
NOTE!
The shield cup holds the tip and starter cartridge in place. Position the torch with the shield cup facing upward to prevent these parts from falling out when the cup is removed.
torch.
4. Remove the tip. Check for excessive wear (indicated by an elongated or oversized orifice). Clean or replace the tip if necessary.
Example of Tip Wear
5. Remove the starter cartridge. Check for exces­sive wear, plugged gas holes, or discoloration. Check the lower end fitting for free motion. Replace if necessary.
Lower End Fitting Full Compression
Spring-Loaded Lower End Fitting at Reset / Full Extension
NOTE!
Slag built up on the shield cup that cannot be removed may effect the performance of the system.
2. Inspect the cup for damage. Wipe it clean or replace if damaged.
Art # A-08067
Shield Cups
3. On torches with a shield cup body and a shield cap or deflector, ensure that the cap or deflector is threaded snugly against the shield cup body. In shielded drag cutting operations (only), there may be an O-ring between the shield cup body and drag shield cap. Do not lubricate the O-ring.
Art # A-08064_AC
6. PulltheElectrodestraightoutoftheTorchHead.
Check the face of the electrode for excessive wear. Refer to the following figure.
Electrode Wear
7. Reinstall the Electrode by pushing it straight into
the torch head until it clicks.
8. Reinstall the desired starter cartridge and tip into
the torch head.
9. Handtightentheshieldcupuntilitisseatedon
the torch head. If resistance is felt when install­ing the cup, check the threads before proceed­ing.
This completes the parts replacement procedures.
SERVICE Manual 0-5380
5T-2
ESAB CUTMASTER 120

SECTION 6: PARTS LISTS

6.01 Introduction

A. Parts List Breakdown
The parts list provide a breakdown of all replaceable components. The parts lists are arranged as follows:
Section "6.03 Power Supply Replacement"
Section "6.04 Replacement Power Supply Parts"
Section "6.05 Options and Accessories"
Section "6.06 Replacement Parts for Hand Torch"
Section "6.07 Replacement Parts - for Machine Torches with Unshielded Leads"
Section "6.08 Replacement Shielded Machine Torch Leads Assemblies"
Section "6.09 Torch Consumable Parts (SL100)"
NOTE!
Parts listed without item numbers are not shown, but may be ordered by the catalog number shown.
B. Returns
If a product must be returned for service, contact your distributor. Materials returned without proper authorization will not be accepted.

6.02 Ordering Information

Order replacement parts by catalog number and complete description of the part or assembly, as listed in the parts list for each type item. Also include the model and serial number of the power supply. Address all inquiries to your authorized distributor.

6.03 Power Supply Replacement

The following items are included with the replacement power supply: work cable & clamp, input power cable, gas pressure regulator / filter, and operating manual.
Qty Description Catalog #
1 ESAB Cutmaster® 120 Power Supply with 400VAC, 3 phase input power cable 0559317302
Manual 0-5380 PARTS LIST
6-1
ESAB CUTMASTER 120

6.04 Replacement Power Supply Parts

Qty Description Catalog #
1 Regulator 9-0115 1 Filter Assembly Replacement Element 9-0116 1 Input Power Cord for 208 / 230 V Power Supply 9-0191 1 460/600V Power Supply 9-0209

6.05 Options and Accessories

Qty Description Catalog #
1 Single - Stage Filter Kit (includes Filter & Hose) 7-7507 1 Replacement Filter Body 9-7740 1 Replacement Filter Hose (not shown) 9-7742 2 Replacement Filter Element 9-7741 1 Two - Stage Filter Kit (includes Hose & Mounting Screws 9-9387 Bracket, Filter Mounting (not shown) 9-9386 1 Two - Stage Air Filter Assembly 9-7527 1 First Stage Cartridge 9-1021 1 Second Stage Cartridge 9-1022 1 Extended Work Cable (50 ft / 15.2 m) with Clamp 9-8529 1 Automation Interface Kit 9-8311 1 Automation Harness 9-9385 1 25' / 7.6 m CNC Cable for Automation Interface Kit 9-1008 1 35' / 10.7 m CNC Cable for Automation Interface Kit 9-1010 1 50' /15.2 m CNC Cable for Automation Interface Kit 9-1011
Housing
Filter
Element
(Cat. No. 9-7741)
Spring
O-ring
(Cat. No. 9-7743)
Cover
Barbed
Fitting
Assembled Filter
Art # A-02476
First & Second Stage Cartridges (as marked)
Art # A-02942
Optional Single - Stage Filter Kit Optional Two - Stage Filter Kit
PARTS LIST Manual 0-5380
6-2
ESAB CUTMASTER 120

6.06 Replacement Parts for Hand Torch

Item # Qty Description Catalog #
1 1 Torch Handle Replacement Kit (includes items No. 2 & 3) 9-7030 2 1 Trigger Assembly Replacement Kit 9-7034 3 1 Handle Screw Kit (5 each, 6-32 x 1/2” cap screw, and wrench) 9-8062 4 1 Torch Head Assembly Replacement Kit (includes items No. 5 & 6) 9-8219 5 1 Large O-ring 8-3487 6 1 Small O-ring 8-3486 7 Leads Assemblies with ATC connectors (includes switch assemblies) 1 SL100, 20 - foot Leads Assembly with ATC connector 4-7836 1 SL100, 50 - foot Leads Assembly with ATC connector 4-7837 8 1 Switch Kit 9-7031 10 1 Torch Control Cable Adapter (includes item # 11) 7-3447 11 1 Through - Hole Protector 9-8103
1
8
2
4
5 6
3
7
Manual 0-5380 PARTS LIST
Art # A-07993_AB
6-3
ESAB CUTMASTER 120

6.07 Replacement Parts - for Machine Torches with Unshielded Leads

Item No. Qty Description Catalog No.
1 1 Torch Head Assembly without leads (includes items 2, 3, and 14) 9-8220 2 1 Large O-ring 8-3487 3 1 Small O-ring 8-3486 4 1 PIP Switch Kit 9-7036 5 Unshielded Automated Leads Assemblies with ATC connectors 1 5 - foot / 1.5 m Leads Assembly with ATC connector 4-7850 1 10 - foot / 3.05 m Leads Assembly with ATC connector 4-7851 1 25 - foot / 7.6 m Leads Assembly with ATC connector 4-7852 1 50 - foot / 15.2 m Leads Assembly with ATC connector 4-7853 6 Unshielded Mechanized Leads Assemblies with ATC connectors 1 5 - foot / 1.5 m Leads Assembly with ATC connector 4-7842 1 10 - foot / 3.05 m Leads Assembly with ATC connector 4-7843 1 25 - foot / 7.6 m Leads Assembly with ATC connector 4-7844 1 50 - foot / 15.2 m Leads Assembly with ATC connector 4-7845 7 1 11” / 279 mm Rack 9-7041 8 1 11” / 279 mm Mounting Tube 9-7043 9 1 End Cap Assembly 9-7044 10 2 Body, Mounting, Pinch Block 9-4513 11 1 Pin, Mounting, Pinch Block 9-4521 12 1 Torch Holder Sleeve 7-2896 13 1 PIP Plunger and Return Spring Kit 9-7045 1 Pinion Assembly (Not shown) 7-2827 1 5” / 126 mm Positioning Tube (Not shown) 9-7042
NOTE!
* Does not include Control Cable Adapter or Through - Hole Protector.
Refer to Section 6.09 for Replacement Shielded Leads Assemblies.
PARTS LIST Manual 0-5380
6-4
ESAB CUTMASTER 120
9
7
10
8
10
1
2
11
13
3
4
12
5 & 6
A-07994_AB
Manual 0-5380 PARTS LIST
6-5
ESAB CUTMASTER 120

6.08 Replacement Shielded Machine Torch Leads Assemblies

Item No. Qty Description Catalog No.
1 Mechanized Shielded Leads Assemblies with ATC Connectors 1 5 - foot / 1.5 m Leads Assembly with ATC Connector 4-7846 1 10 - foot / 3.05 m Leads Assembly with ATC Connector 4-7847 1 25 - foot / 7.6 m Leads Assembly with ATC Connector 4-7848 1 50 - foot / 15.2 m Leads Assembly with ATC Connector 4-7849
1
Remote Pendant Adapter is present on Mechanized leads only.
Torch Continuity ('PIP') Switch
A-03684
PARTS LIST Manual 0-5380
6-6

6.09 Torch Consumable Parts (SL100)

Ohmic Clip
Manual Torch
9-8259
ESAB CUTMASTER 120
Ohmic Clip
Automation Torch
9-8224
Electrode
Auto 9-8232
Manual 9-8215
Starter
Cartridge
9-8213
20-40A
STANDOFF
CUTTING
50-60A
STANDOFF
CUTTING
Heavy Duty
Starter Cartridge
Non HF Only 9-8277
70-120A
STANDOFF
CUTTING
Tip:
20A 9-8205 30A 9-8206 40A 9-8208
Tips:
50-55A 9-8209
60A 9-8210
Tips:
70A 9-8231
80A 9-8211
90/100A 9-8212
120A Auto 9-8233
120A Manual 9-8253
Shield
Cup Body,
9-8237
Shield Cup
9-8218
Shield
Cup Body,
9-8237
Shield Cup
9-8218
Shield
Cup Body,
9-8237
Shield Cup
9-8218
Shield Cap, Machine 40A 9-8245
Shield Cap, Deflector 9-8243
Drag Shield Cup 9-8235
Shield Cap, Machine 50-60A 9-8238
Shield Cap, Deflector 9-8243
Drag Shield Cup 70-100A 9-8236
Drag Shield Cup 120A 9-8258
Shield Cap, Machine 70-100A 9-8239
Shield Cap, Machine 120A 9-8256
Shield Cap, Deflector 9-8243
40-120A
GOUGING
Tips:
Tip A 9-8225 (40 Amps Max.)
Tip B 9-8226 (50 - 120 Amps)
Tip C 9-8227 (60 - 120 Amps)
Tip D 9-8228 (60 - 120 Amps)
Art # A-08066_AG
Manual 0-5380 PARTS LIST
Tip E 9-8254 (60 - 120 Amps)
Shield
Cup Body,
9-8237
Shield Cup, Gouging
9-8241
6-7
ESAB CUTMASTER 120
This Page Intentionally Blank
PARTS LIST Manual 0-5380
6-8
ESAB CUTMASTER 120
APPENDIX 1: SEQUENCE OF OPERATION
(BLOCK DIAGRAM)
ACTION:
Close external
disconnect switch.
RESULT:
Power to system.
Connect work cable to workpiece.
Set output amperage.
System is ready
for operation.
ON / OFF switch to ON
AC indicator ON.
GAS indicator ON
pressure is adequate
for power supply operation.
ACTION:
RESULT:
ACTION:
RESULT:
when input
Power circuit ready.
ACTION:
RUN /
Rapid Auto Restart /
SET / LATCH switch
to SET
RESULT:
Gas flows to set
pressure.
Torch moved away from work (while
ACTION:
RUN / Rapid Auto Restart /
SET / LATCH
switch to RUN
(for most applications)
or to
Rapid Auto Restart
(for gouging, trimming,
or expanded metal
applications)
or to
LATCH
is used for specific applications
(torch switch can be released
after main arc transfer).
RESULT: Gas flow stops.
ACTION:
still activated).
RESULT:
ACTION:
Protect eyes and activate
Torch switch (START)
RESULT:
Fans turn on. Gas flows briefly,
then stops.Gas restarts.
DC indicator ON
Pilot arc established.
ACTION:
Release Torch switch.
RESULT:
Main arc stops.
Gas flow stops after post - flow.
(Fans will continue to run for
10 minutes after the Torch switch
[START] is removed)
PILOT ARC
ACTION:
ON / OFF switch
to OFF
RESULT:
All indicators off.
Power supply fans shut off.
Main arc stops.
Pilot arc automatically
restarts.
ACTION:
Torch moved within
transfer distance of workpiece.
RESULT:
Main arc transfers.
Pilot arc off.
ACTION:
Unplug input
power cord or
open external
disconnect.
RESULT:
No power to system.
Art #A-07979_AB
Manual 0-5380 APPENDIX
A-1
ESAB CUTMASTER 120
1/ 3
f
f
1
2
Mo de l:
U
1
1
1
1max 1eff
I
I
U
2
S/N
U
0
=
X
Standard Symbols
Ø
AC
DC
Phase
NOTES:
1. Symbol shown indicates single- or three-phase AC input, static frequency converter-transformer-rectifier, DC output.
2. Indicates input voltages for this power supply. Most power supplies carry a label at the input power cord showing input voltage requirements for the power supply as built.
3. Top row: Duty cycle values. IEC duty cycle value is calculated as specified by the International ElectroTechnical Commission. Duty cycle value is determined under the power supply manufacturer's test procedures. Second row: Rated cutting current values. Third row: Conventional load voltage values.
4. Sections of the Data Tag may be applied to separate areas of the power supply.
I
Art # A-12765_AA
Da te of Mf r:
Output Range (Amperage/ Voltage)
Type of Power Supply (Note 1)
Output Current Type
Rated No­Load Voltage
Plasma Cutting Symbol
Manufacturer's Name and/or Logo, Location, Model and Revision Level, Serial Number and Production Code
Conventional Load Voltage
Regulatory Standard Covering This Type of Power Supply
Duty Cycle Data (Note 3)
Duty Cycle Factor
Input Power Specifications (Phase, AC or DC Hertz Rating)
Input Power Symbol
Rated Supply Voltage (Note 2)
Rated Maximum Supply Current
Maximum Effective Supply Current
Degree of Protection
Manufacturer's Electrical Schematic File Number and Revision Level

APPENDIX 2: DATA TAG INFORMATION

APPENDIX Manual 0-5380
A-2

APPENDIX 3: TORCH PIN - OUT DIAGRAMS

1
2
3
4
5
6
7
8
5
6
7
8
1
2
3
4
ATC Female Receptacle
Front View
Pilot
Pilot
6 - Open
7 - Open
8 - Open
5 - Open
Negative / Plasma
6 - Open
7 - Open
5 - Open
2 - PIP
3 - Switch
4 - Switch
1 - PIP
4 - Green / Switch
2- Orange / PIP
3 - White / Switch
1 - Black / PIP
Negative / Plasma
8 - Ground
ATC Male Connector
Front View
A-03701
ATC Female Receptacle
Front View
ATC Male Connector
Front View
Negative / Plasma
3 - White ­Pendant Connector
4- Black ­Pendant Connector
2 - Orange / PIP
1 - Black / PIP
Pilot
2 - PIP
1 - PIP
6 - Open
7 - Open
5 - Open
8 - Ground
8 - Green ­Pendant Connector Ground
5 - White / Not Used
7 - Green / Not Used
6 - Open
UNSHIELDED MACHINE TORCH
3 - Switch
4 - Switch
Art # A-03799
Negative / Plasma
Pilot
1
2
3
4
5
6
7
8
5
6
8
1
2
3
4
7
A. Hand Torch Pin - Out Diagram
B. Mechanized (Machine) Torch Pin - Out Diagram
ESAB CUTMASTER 120
Manual 0-5380 APPENDIX
A-3
ESAB CUTMASTER 120
To rch: SL60 / SL100 Hand Torch Leads: To rch Leads with ATC Connector Power Supply: with ATC Receptacle
Pilot
Negative / Plasma
Power Supply
PIP
Switch
Male
ATC Leads
Connector
AT C Female
Receptacle
Pilot
Negative / Plasma
Black
Orange
Torch Leads
Torch
Head
To Power Supply
Circuitry
Art # A-03797
1
2
5
6
4
3
8
7
1
2
5
6
4
3
8
7
Torch
Switch
Green
White
To Power Supply
Circuitry
To rch: Unshielded Mechanized SL100 Machine Torch Leads: Leads with ATC Connector and Remote Pendant Connector Power Supply: with ATC Female Receptacle
Pilot
Negative / Plasma
Power Supply
To Remote Control
Remote
Pendant
Connector
PIP
Switch
Not
Used
Male
AT C Leads
Connector
AT C Female
Receptacle
Pilot Lead
Negative / Plasma Lead
Torch Leads
Torch
Head
Art # A-03798
1
2
5
6
4
3
8
7
To Power Supply
Circuitry
Green
To Power Supply
Circuitry
1
2
5
6
4
3
8
7
Black
White
Green
Black
Orange
White

APPENDIX 4: TORCH CONNECTION DIAGRAMS

A. Hand Torch Connection Diagram
B. Mechanized Torch Connection Diagram
APPENDIX Manual 0-5380
A-4
ESAB CUTMASTER 120
This Page Intentionally Blank
Manual 0-5380 APPENDIX
A-5
ESAB CUTMASTER 120

APPENDIX 5: SYSTEM SCHEMATIC, 208/460V UNITS

D
L1
L2
L3
GND
380/400/415V OR 600V 3 PH AC INPUT
PRIMARY POWER CONNECTIONS: USE L1, L2, L3 & GND
C
*
CE UNITS ONLY
*
5
J1J1
SW1SW1
1 3
1 2 3 4
2 4
5
+12VDC
K1K1
EMI
*
CHOKE
EMI FILTER
1
1
2
2
3
3
4
4
MOT1MOT1
FAN
+ -
SOL 1SOL 1
W1W1
SERIAL PORT
/INRUSH
W1W1
7
L1
T1
8
L2
T2
9
L3
T3
7A
L4
T4
+12VDC
J7J7
1 2
J5J5
1 2 3
5
6
24VAC
J6J6
1
24VAC RET
2
J4J4
3.3VDC
1
TXD
2
RXD
3 4
D
5
J13J13
/FAN
/SOLENOID
1 /OVERTEMP 2 /FAN_ON 3 /CSR 4 CUR_SET 5 MAIN_PCB_ID 6 COMMON
12345
INRUSH RESISTORS
6
BIAS SUPPLY
TP2TP2
+
D1
_
J14J14
SYNC
MTH1MTH1
+12VDC BIAS SUPPLY
MTH7MTH7
TP8TP8
AC1AC1
80A_AC180A_AC1
80A_AC280A_AC2
AC2AC2
AC3AC3
80A_AC380A_AC3
4
PRI 3PRI 3
B
PRI 2PRI 2
PRI 2PRI 2
A
PRI 1PRI 1
C3,C4,C7,C8*+C3,C4,C7,C8*
+
C5,C6,C9,C10*+C5,C6,C9,C10*
+
PRI 1PRI 1
MTH2MTH2
TP1TP1
MTH4MTH4
TP5TP5
MTH8MTH8
TP4TP4
TP3TP3
MTH6MTH6
+
Q1
Q2
T1T1
PRI 4 PRI 4
C
D
_
MAIN PCB ASSY
PCB1
T2T2
FERRITE
B
MOT2MOT2
FAN
MOT3MOT3
FAN
FILTER
J4J4
123456789
10
+12VDC
+-
J1J1
1
/FAN
2
+-
J2J2
1 2
+12VDC
J9J9
SYNC
+
D1
A
_
40/50 AMP PCB
PCB5
A-09130_AD
5
+12VDC
J2J2
1 2
J3J3
1
2
PRI 1 PRI 1
A
PRI 3PRI 3
PRI 2 PRI 2
B
PRI 4PRI 4
C
D
+
AC1AC1
PMTH1PMTH1
PMTH4PMTH4
40A_AC140A_AC1
AC2AC2
40A_AC240A_AC2
AC3AC3
40A_AC340A_AC3
PMTH1PMTH1
PMTH4PMTH4
PCB2
INPUT CAPACITOR PCB
C16-17+C16-17
+
C12-13+C12-13
PMTH2PMTH2
PMTH3PMTH3
+
PMTH2PMTH2
PMTH3PMTH3
Q1
Q2
_
4
APPENDIX Manual 0-5380
A-6
ESAB CUTMASTER 120
3
TS1TS1
/START
/PIP
PILOT IGBTQ5PILOT IGBT
+12VDC
L1L1
L2L2
-V OUT 1-V OUT 1
ELECTRODE1ELECTRODE1
WORK1WORK1
TIP1TIP1
J10J10
1 2 3 4 5 6 7 8
J2
J11J11
1
D59 PCRD59 PCR
D78 CSRD78 CSR
+12VDC
2
TEMP
/OVERTEMP
CIRCUIT
NTCNTC
D3
TEST POINTS
GND1
COMMON
GND2
COMMON
+12V1
+12 VDC SUPPLY
48V1
+48 VDC SUPPLY
I_DMD_1
CURRENT DEMAND
TIP_SEN
TIP DRAG SENSE
SEC1SEC1
SEC2SEC2
CHOKE1CHOKE1
Q5
24VAC RETURN
24VAC SUPPLY
OK-TO-MOVE
(5A @ 250VAC / 30VDC)
2
ATC CONNECTOR
J1J1
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
E64
E35
J9J9
78
1
79
2
80
3
81
4
82
5 6
83
7
P10P10
1 2 3 4 5 6 7 8
40 PIN RIBBON CABLE SIGNALS
1
FERRITE FILTER
-V_OUT_SIGNAL
2
/TIP_VOLTS
3
/TIP_SENSE
4
/460V_IN
5
/230V_IN
6
CUR_SET
7
/RAR (RAPID AUTO RESTART)
8
/INRUSH
9
/W1_ON
10
SHDN
11
/TORCH_SOLENOID
12
/SOLENOID_ON
13
/OK_TO_MOVE
14
/FAN_ON
15
/LATCH_ACTIVE
16
/TORCH_SWITCH
17
/PIP
18
AC_ON
19
CSR
20
/TORCH_SOLENOID_DETECT
21
/OVERTEMP
22
V_IN
23
+12VDC
24
+12VDC
25
COMMON
26
COMMON
29
MAIN_PCB_ID
34
460_IN
35
+3.3VDC
36
TXD
37
RXD
38
COMMON
39
D
M-L M-L M-L L-M L-M L-M L-M L-M L-M L-M L-M L-M L-M L-M L-M M-L M-L M-L M-L M-L M-L M-L M-L M-L M-L M-L M-L M-L L-M M-L M-L L-M M-L
-
+
FULL FEATURED AUTOMATION INTERFACE PCB OPTION
To -V OUT 1 on PCB1
E1E1
P2P2
P10P10
1 2 3 4 5 6 7 8
+12VDC
1
1
2
2 3
3 4
4
5
5
6
6
7
7
8
8
AUTOMATION INTERFACE PCB
K1K1
J2J2
14 13 12 11 10 9 8 7 6 5 4 3 2 1
PCB4
P1P1
1TORCH
PIP SWITCHPIP SWITCH
TORCH SWITCHTORCH SWITCH
AUTOMATION TORCH SOLENOID
OK TO MOVE
}
/START / STOP
}
*
123
K1
1
WORKWORK
CNC PINOUT
13
47
811
1214
*
To configure DIVIDED ARC VOLTS signal output No jumper installed for ARC VOLTS / 16.67 Jumper pins 1 & 2 for ARC VOLTS / 30 Jumper pins 2 & 3 for ARC VOLTS / 50
J1J1
1 2 3
/START / STOP
}
4
(-)
*
5
DIVIDED ARC VOLTS
}
(+)
6
(-)
7
ARC VOLTS
8
}
(W/ 100K IN SERIES (2))
(+)
9 10 11 12
OK-TO-MOVE
13
}
14
D
C
B
Current ControlCurrent Control
LATCH
SET
RUN
RAR
ACAC
OVERTEMPOVERTEMP
GASGAS
DCDC
ERRORERROR
J1
FAULT
ERROR IND
MAX 90 85 80 75 70 65 MIN
TEST POINTS
TP1 TP2 TP3 TP4 TP5 TP6 TP7
+12VDC
OVER PRESSURE INTERNAL ERROR SHORTED TORCH CONSUMABLES MISSING START ERROR PARTS IN PLACE INPUT POWER UNDER PRESSURE
GND +12 VDC +5 VDC
3.3 VDC
0.v - 5.0 VDC / 0-100PSI
1.8 VDC CURRENT DEMAND
D1D1
LOGIC PCB
PCB3
SEE A-09130
INTRO ECO B1357
AA
ECO B1399RWH
AB
ECO B1611 RWH
AB
Last Modified:
Last Modified:
Last Modified:
Friday, December 11, 20091109:02:19
0-100PSI / 0-4.5VDC
MAXMAX
9090
8585
8080
7575
7070
6565
MINMIN
+5VDC
RWH
FILTER AIR INLET
J3J3
3 2 1
DateByRevisionsRev
DateByRevisionsRev
DateByRevisionsRev
03/31/09
05/05/09
05/05/09
Information Proprietary to ESAB
Not For Release, Reproduction, or Distribution without Written Consent.
Not For Release, Reproduction, or Distribution without Written Consent.
Not For Release, Reproduction, or Distribution without Written Consent.
NOTE:
NOTE:
NOTE:
Unless Otherwise Specified, Resistors are in Ohms 1/4W 5%.
Unless Otherwise Specified, Resistors are in Ohms 1/4W 5%.
Unless Otherwise Specified, Resistors are in Ohms 1/4W 5%.
Capacitors are in Microfarads (UF)
Capacitors are in Microfarads (UF)
Capacitors are in Microfarads (UF)
TITLE:
TITLE:
TITLE:
09:02:19
09:02:19
CM102/152/35mm/40mm/A80/A120 380/400/415/600V
GAS CONTROL
REGULATOR
PRESSURE TRANSDUCER
SCHEMATIC,
SCHEMATIC,
SCHEMATIC,
1
SOLENOID VALVE
123
ATC
A-12771_AB
PCB No:
PCB No:
PCB No:
Assy No:
Assy No:
Assy No:
SupersedesScale
SupersedesScale
SupersedesScale
Date:
Date:
Date:
MARCH 30, 2009
Drawn: References
Drawn: References
Drawn: References
RWH
Chk: App:
Chk: App:
Chk: App:
11
11
DWG No:
Size
DWG No:
Size
DWG No:
Size
D
D
D
42X1330
42X1330
42X1330
A
Sheet
Sheet
Sheet
of
of
of
SEC1SEC1
SEC2SEC2
CHOKE1CHOKE1
D2
NTCNTC
3
TEMP CIRCUIT
/OVERTEMP
+OUT_1+OUT_1
2
Manual 0-5380 APPENDIX
A-7
ESAB CUTMASTER 120

Revision History

Date Rev Description
01/15/2015 AA Manual release
05/22/2015 AB Miscellaneous corrections and updates
APPENDIX Manual 0-5380
A-8
This Page Intentionally Blank
ESAB subsidiaries and representative offices
Europe
AUSTRIA
ESAB Ges.m.b.H Vienna-Liesing Tel: +43 1 888 25 11 Fax: +43 1 888 25 11 85
BELGIUM
S.A. ESAB N.V. Heist-op-den-Berg Tel: +32 70 233 075 Fax: +32 15 257 944
BULGARIA
ESAB Kft Representative Office Sofia Tel/Fax: +359 2 974 42 88
THE CZECH REPUBLIC
ESAB VAMBERK s.r.o. Vamberk Tel: +420 2 819 40 885 Fax: +420 2 819 40 120
DENMARK
Aktieselskabet ESAB Herlev Tel: +45 36 30 01 11 Fax: +45 36 30 40 03
FINLAND
ESAB Oy Helsinki Tel: +358 9 547 761 Fax: +358 9 547 77 71
FRANCE
ESAB France S.A. Cergy Pontoise Tel: +33 1 30 75 55 00 Fax: +33 1 30 75 55 24
GERMANY
ESAB GmbH Solingen Tel: +49 212 298 0 Fax: +49 212 298 218
GREAT BRITAIN
ESAB Group (UK) Ltd Waltham Cross Tel: +44 1992 76 85 15 Fax: +44 1992 71 58 03 ESAB Automation Ltd Andover Tel: +44 1264 33 22 33 Fax: +44 1264 33 20 74
HUNGARY
ESAB Kft Budapest Tel: +36 1 20 44 182 Fax: +36 1 20 44 186
ITALY
ESAB Saldatura S.p.A. Bareggio (Mi) Tel: +39 02 97 96 8.1 Fax: +39 02 97 96 87 01
THE NETHERLANDS
ESAB Nederland B.V. Amersfoort Tel: +31 33 422 35 55 Fax: +31 33 422 35 44
NORWAY
AS ESAB Larvik Tel: +47 33 12 10 00 Fax: +47 33 11 52 03
POLAND
ESAB Sp.zo.o. Katowice Tel: +48 32 351 11 00 Fax: +48 32 351 11 20
PORTUGAL
ESAB Lda Lisbon Tel: +351 8 310 960 Fax: +351 1 859 1277
ROMANIA
ESAB Romania Trading SRL Bucharest Tel: +40 316 900 600 Fax: +40 316 900 601
RUSSIA
LLC ESAB Moscow Tel: +7 (495) 663 20 08 Fax: +7 (495) 663 20 09
SLOVAKIA
ESAB Slovakia s.r.o. Bratislava Tel: +421 7 44 88 24 26 Fax: +421 7 44 88 87 41
SPAIN
ESAB Ibérica S.A. Alcalá de Henares (MADRID) Tel: +34 91 878 3600 Fax: +34 91 802 3461
SWEDEN
ESAB Sverige AB Gothenburg Tel: +46 31 50 95 00 Fax: +46 31 50 92 22 ESAB international AB Gothenburg Tel: +46 31 50 90 00 Fax: +46 31 50 93 60
SWITZERLAND
ESAB AG Dietikon Tel: +41 1 741 25 25 Fax: +41 1 740 30 55
UKRAINE
ESAB Ukraine LLC Kiev Tel: +38 (044) 501 23 24 Fax: +38 (044) 575 21 88
North and South America
ARGENTINA
CONARCO Buenos Aires Tel: +54 11 4 753 4039 Fax: +54 11 4 753 6313
BRAZIL
ESAB S.A. Contagem-MG Tel: +55 31 2191 4333 Fax: +55 31 2191 4440
CANADA
ESAB Group Canada Inc. Missisauga, Ontario Tel: +1 905 670 02 20 Fax: +1 905 670 48 79
MEXICO
ESAB Mexico S.A. Monterrey Tel: +52 8 350 5959 Fax: +52 8 350 7554
USA
ESAB Welding & Cutting Products Florence, SC Tel: +1 843 669 44 11 Fax: +1 843 664 57 48
Asia/Pacific
AUSTRALIA
ESAB South Pacific Archerfield BC QLD 4108 Tel: +61 1300 372 228 Fax: +61 7 3711 2328
CHINA
Shanghai ESAB A/P Shanghai Tel: +86 21 2326 3000 Fax: +86 21 6566 6622
INDIA
ESAB India Ltd Calcutta Tel: +91 33 478 45 17 Fax: +91 33 468 18 80
INDONESIA
P.T. ESABindo Pratama
Jakarta
Tel: +62 21 460 0188 Fax: +62 21 461 2929
JAPAN
ESABJapan
Tokyo Tel: +81 45 670 7073 Fax: +81 45 670 7001
MALAYSIA
ESAB (Malaysia) Snd Bhd
USJ
Tel: +603 8023 7835 Fax: +603 8023 0225
SINGAPORE
ESAB Asia/Pacific Pte Ltd Singapore Tel: +65 6861 43 22 Fax: +65 6861 31 95
SOUTH KOREA
ESAB SeAH Corporation Kyungnam Tel: +82 55 269 8170 Fax: +82 55 289 8864
UNITED ARAB EMIRATES
ESAB Middle East FZE Dubai Tel: +971 4 887 21 11 Fax: +971 4 887 22 63
Africa
EGYPT
ESAB Egypt Dokki-Cairo Tel: +20 2 390 96 69 Fax: +20 2 393 32 13
SOUTH AFRICA
ESAB Africa Welding & Cutting Ltd Durbanvill 7570 - Cape Town Tel: +27 (0)21 975 8924
Distributors For addresses and phone numbers to our distributors in other countries, please visit our home page www.esab.eu
www.esab.eu
©2015 ESAB Welding and Cutting Products
Printed in Mexico
Loading...