Ericsson PBL38630-2QNS, PBL38630-2QNT, PBL38630-2SHT, PBL38630-2SOS, PBL38630-2SOT Datasheet

Description
The PBL 386 30/2 Subscriber Line Interface Circuit (SLIC) is a 90 V bipolar integrated circuit for use in Digital Loop Carrier, FITL and other telecommunications equipment. The PBL 386 30/2 has been optimized for low total line interface cost and a high degree of flexibility in different applications.
The PBL 386 30/2 emulates resistive loop feed, programmable between 2x50 and 2x900 , with short loop current limiting adjustable to max 45 mA. In the current limited region the loop feed is nearly constant current with a slight slope corresponding to 2x30kΩ.
A second lower battery voltage may be connected to the device to reduce short loop power dissipation. The SLIC automatically switches between the two battery supply voltages without need for external components or external control.
The SLIC incorporates loop current and ring trip detection functions. The PBL 386 30/2 is compatible with loop start signaling.
Two- to four-wire and four- to two-wire voice frequency (VF) signal conversion is accomplished by the SLIC in conjunction with either a conventional CODEC/filter or with a programmable CODEC/filter, e.g. SLAC, SiCoFi, Combo II. The programmable two-wire impendance, complex or real, is set by a simple external network.
Longitudinal voltages are suppressed by a feedback loop in the SLIC and the longitudinal balance specifications meet the DLC requirements.
The PBL 386 30/2 package options are 24-pin SSOP, 24-pin SOIC and 28-pin PLCC.
Figure 1. Block diagram.
March 2000
PBL 386 30/2
Subscriber Line
Interface Circuit
Key Features
• 24-pin SSOP package
• High and low battery supply with automatic switching
• 65 mW on-hook power dissipation in active state
• On-hook transmission
• Long loop battery feed tracks Vbat for maximum line voltage
• Only +5 V feed in addition to battery
• Selectable transmit gain (1x or 0.5x)
• No power-up sequence
• Programmable signal headroom
• 43V open loop voltage @ -48V battery feed
• Constant loop voltage for line leakage <5 mA (RLeak ~ >10 k @ -48V)
• Full longitudinal current capability during on-hook state
• Analog over temperature protection permits transmission while the protection circuit is active
• Integrated Ring Relay Driver
• -40°C to +85°C ambient temperature range
24-pin SOIC, 24-pin SSOP, 28-pin PLCC
1
RRLY
C1
C2
DET
PSG
REF
LP
PLD
PLC
VTX
RSN
PTG
BGND
AGND
VBAT
VBAT2
VCC
HP
RINGX
TIPX
DR
DT
Ring Relay
Driver
Input
Decoder
and
Control
Ring Trip
Comparator
Line Feed Controller
and
Longitudinal
Signal
Suppression
Off-hook Detector
VF Signal
Transmission
Two-wire Interface
POV
PBL 386 30/2
PBL
38630/2
PBL 386 30/2
PBL 386 30/2
2
Maximum Ratings
Parameter Symbol Min Max Unit
Temperature, Humidity
Storage temperature range
T
Stg
-55 +150 °C
Operating temperature range
T
Amb
-40 +110 °C
Operating junction temperature range, Note 1
T
J
-40 +140 °C
Power supply, -40 °C T
Amb
+85 °C
V
CC
with respect to A/BGND V
CC
-0.4 6.5 V
V
Bat2
with respect to A/BGND V
Bat2
V
Bat
0.4 V
V
Bat
with respect to A/BGND, continuous V
Bat
-75 0.4 V
V
Bat
with respect to A/BGND, 10 ms V
Bat
-80 0.4 V
Power dissipation
Continuous power dissipation at T
Amb
+85 °CP
D
1.5 W
Ground
Voltage between AGND and BGND V
G
-0.3 0.3 V
Relay Driver
Ring relay supply voltage BGND+14 V
Ring trip comparator
Input voltage V
DT
, V
DR
V
Bat
AGND V
Input current I
DT
, I
DR
-5 5 mA
Digital inputs, outputs (C1, C2, DET) Input voltage V
ID
-0.4 V
CC
V
Output voltage V
OD
-0.4 V
CC
V
TIPX and RINGX terminals, -40°C < T
Amb
< +85°C, V
Bat
= -50V
Maximum supplied TIPX or RINGX current I
TIPX
, I
RINGX
-100 +100 mA
TIPX or RINGX voltage, continuous (referenced to AGND), Note 2 VTA, V
RA
-80 2 V
TIPX or RINGX, pulse < 10 ms, t
Rep
> 10 s, Note 2 VTA, V
RA
V
Bat
-10 5 V
TIPX or RINGX, pulse < 1 µs, t
Rep
> 10 s, Note 2 VTA, V
RA
V
Bat
-25 10 V
TIPX or RINGX, pulse < 250 ns, t
Rep
> 10 s, Notes 2 & 3 VTA, V
RA
V
Bat
-35 15 V
Recommended Operating Condition
Parameter Symbol Min Max Unit
Ambient temperature T
Amb
-40 +85 °C
V
CC
with respect to AGND V
CC
4.75 5.25 V
V
Bat
with respect to AGND V
Bat
-58 -8 V
AGND with respect to BGND V
G
-100 100 mV
Notes
1. The circuit includes thermal protection. Operation at or above 140°C junction temperature may degrade device reliability.
2. With the diodes DVB and D
VB2
included, see figure 11.
3. R
F1
and RF2 20 is also required. Pulse is applied to TIP and RING outside RF1 and RF2.
PBL 386 30/2
3
V
TX
Electrical Characteristics
-40 °C T
Amb
+85 °C, PTG = open (see pin description), VCC = +5V ±5 %, V
Bat
= -58V to -40V, V
Bat2
= -32 V, RLC=32.4 k,
I
L
= 27 mA. RL = 600 , RF1= RF2 = 0, R
Ref
= 49.9 k, CHP = 47 nF, CLP=0.15 µF, RT = 120 k, RSG = 0 k, RRX = 60 kΩ,
R
R
= 52.3 k ROV = , unless otherwise specified. Current definition: current is positive if flowing into a pin.
Ref
Parameter fig Conditions Min Typ Max Unit
Two-wire port
Overload level, V
TRO ,ILdc
> 18mA 2 Active state,
1% THD, R
OV
= 2.7 V
Peak
On-Hook, I
Ldc
< 5mA Note 1 1.1 V
Peak
Input impedance, Z
TR
Note 2 ZT/200
Longitudinal impedance, Z
LOT
, Z
LOR
0 < f < 100 Hz 20 35 /wire
Longitudinal current limit, I
LOT
, I
LOR
active state 28 mA
rms
/wire
Longitudinal to metallic balance, B
LM
IEEE standard 455-1985, Z
TRX
=736
0.2 kHz < f < 1.0 kHz, T
amb
0-70°C63 66 dB
1.0 kHz < f < 3.4 kHz, T
amb
0-70°C60 66 dB
0.2 kHz < f < 1.0 kHz, T
amb
-40-85°C60 66 dB
1.0 kHz < f < 3.4 kHz, T
amb
-40-85°C55 66 dB
Longitudinal to metallic balance, B
LME
3
Longitudinal to four wire balance B
LFE
3 0.2 kHz < f < 1.0 kHz, T
amb
0-70°C63 66 dB
1.0 kHz < f < 3.4 kHz, T
amb
0-70°C60 66 dB
0.2 kHz f 1.0 kHz, T
amb
-40-85°C60 66 dB
1.0 kHz < f < 3.4 kHz, T
amb
-40-85°C55 66 dB
Metallic to longitudinal balance, B
MLE
4 0.2 kHz < f < 3.4 kHz 40 50 dB
VTR
B
MLE
= 20 · Log ; ERX = 0
V
LO
Figure 2. Overload level, V
TRO
, two-wire
port
1 << R
L
, RL= 600
ωC R
T
= 120 kΩ, RRX = 60 k
Figure 3. Longitudinal to metallic (B
LME
)
and Longitudinal to four-wire (B
LFE
)
balance
1
<< 150 , R
LR =RLT
=RL /2=300
ωC R
T
= 120 kΩ, RRX = 60 k
B
LME
= 20 · Log
B
LFE
= 20 · Log
V
TR
E
Lo
E
Lo
PBL 386 30/2
TIPX
RINGX
RSN
VTX
R
T
R
RX
E
RX
R
L
V
TRO
I
LDC
C
PBL 386 30/2
TIPX
RINGX RSN
VTX
R
T
R
RX
V
TX
R
LT
C
V
TR
R
LR
E
Lo
PBL 386 30/2
4
Parameter fig Conditions Min Typ Max Unit
Four-wire to longitudinal balance, B
FLE
4 0.2 kHz < f < 3.4 kHz 40 50 dB
E
RX
B
FLE
= 20 · Log
V
Lo
Two-wire return loss, r |ZTR + ZL|
r = 20 · Log
|Z
TR
- ZL|
0.2 kHz < f < 1.0 kHz 30 35 dB
1.0 kHz < f < 3.4 kHz, Note 3 20 22 dB
TIPX idle voltage, V
Ti
active, IL < 5 mA - 1.3 V
RINGX idle voltage, V
Ri
active, IL < 5 mA V
Bat
+3.0 V
V
TR
active, IL < 5 mA V
Bat
+4.3 V
Four-wire transmit port (VTX) Overload level, V
TXO
, IL > 18mA 5 Load impedance > 20 kΩ, 2.7 V
Peak
1% THD, Note 4
On-hook, I
L
< 5mA 1.1 V
Peak
Output offset voltage, ∆V
TX
-100 0 100 mV
Output impedance, z
TX
0.2 kHz < f < 3.4 kHz 15 50
Four-wire receive port (RSN) Receive summing node (RSN) DC voltage I
RSN
= -55 µA 1.15 1.25 1.35 V Receive summing node (RSN) impedance 0.2 kHz < f < 3.4 kHz 8 20 Receive summing node (RSN) 0.3 kHz < f < 3.4 kHz current (I
RSN
) to metallic loop current (IL) 200 ratio
gain,α
RSN
Frequency response
Two-wire to four-wire, g
2-4
6 relative to 0 dBm, 1.0 kHz. ERX = 0 V
0.3 kHz < f < 3.4 kHz -0.20 0.10 dB f = 8.0 kHz, 12 kHz, 16 kHz -1.0 0.1 dB
Figure 4. Metallic to longitudinal and four­wire to longitudinal balance
1 << 150 , R
LT
= RLR = RL /2 =300
ωC R
T
= 120 kΩ, RRX = 60 k
Figure 5. Overload level, V
TXO
, four-wire
transmit port
1 << R
L
, RL = 600
ωC R
T
= 120 kΩ, RRX = 60 k
Ref
PBL 386 30/2
TIPX
RINGX RSN
VTX
R
T
R
RX
R
L
I
LDC
C
E
L
V
TXO
PBL 386 30/2
TIPX
RINGX RSN
VTX
R
T
R
RX
E
RX
R
LT
C
V
TR
R
LR
V
Lo
PBL 386 30/2
5
Four-wire to two-wire, g
4-2
6 relative to 0 dBm, 1.0 kHz. EL=0 V
0.3 kHz < f < 3.4 kHz -0.2 0.1 dB f = 8 kHz, 12 kHz, -1.0 0 dB 16 kHz -2.0 0 dB
Four-wire to four-wire, g
4-4
6 relative to 0 dBm, 1.0 kHz, EL=0 V
0.3 kHz < f < 3.4 kHz -0.2 0.1 dB
Insertion loss
Two-wire to four-wire, G
2-4
6 0 dBm, 1.0 kHz, Note 5
V
TX
G
2-4
= 20 · Log ; ERX = 0 -0.2 0.2 dB
V
TR
PTG = AGND -6.22 -6.02 -5.82 dB
Four-wire to two-wire, G
4-2
6 0 dBm, 1.0 kHz, Note 6
V
TR
G
4-2
= 20 · Log ; EL = 0 -0.2 0.2 dB
E
RX
Gain tracking
Two-wire to four-wire 6 Ref. -10 dBm, 1.0 kHz, Note 7
-40 dBm to +3 dBm -0.1 0.1 dB
-55 dBm to -40 dBm -0.2 0.2 dB
Four-wire to two-wire 6 Ref. -10 dBm , 1.0 kHz
-40 dBm to +3 dBm -0.1 0.1 dB
-55 dBm to -40 dBm -0.2 0.2 dB
Noise
Idle channel noise at two-wire C-message weighting 12 dBrnC (TIPX-RINGX) or four-wire (VTX) output Psophometrical weighting -78 dBmp
Note 8
Harmonic distortion
Two-wire to four-wire 6 0 dBm -67 -50 dB Four-wire to two-wire 0.3 kHz < f < 3.4 kHz -67 -50 dB
Battery feed characteristics
Loop current, I
L
, in the current 12 18mA ≤ IL 45 mA 0.92 I
L
I
L
1.08 ILmA
limited region, reference A, B & C Open circuit state loop current, I
LOC
RL = 0 -100 0 100 µA
Ref
Parameter fig Conditions Min Typ Max Unit
Figure 6. Frequency response, insertion loss, gain tracking.
1 << R
L
, RL = 600 k
ωC
R
T
= 120 kΩ, RRX = 60 k
PBL 386 30/2
TIPX
RINGX RSN
VTX
R
T
R
RX
E
RX
R
L
V
TR
I
LDC
C
E
L
V
TX
Loading...
+ 11 hidden pages