ELPIDA EDE2104ABSE, EDE2108ABSE DATA SHEET

PRELIMINARY DATA SHEET
2G bits DDR2 SDRAM

Specifications

Density: 2G bits
Organization 64M words × 4 bits × 8 banks (EDE2104ABSE) 32M words × 8 bits × 8 banks (EDE2108ABSE)
Package 68-ball FBGA Lead-free (RoHS compliant)
Power supply: VDD, VDDQ = 1.8V ± 0.1V
Data rate 800Mbps/667Mbps/533Mbps (max.)
1KB page size Row address: A0 to A14 Column address: A0 to A9, A11 (EDE2104ABSE)
A0 to A9 (EDE2108ABSE)
Eight internal banks for concurrent operation
Interface: SSTL_18
Burst lengths (BL): 4, 8
Burst type (BT): Sequential (4, 8) Interleave (4, 8)
/CAS Latency (CL): 3, 4, 5, 6
Precharge: auto precharge option for each burst
access
Driver strength: normal/weak
Refresh: auto-refresh, self-refresh
Refresh cycles: 8192 cycles/64ms
Average refresh period
7.8μs at 0°C TC ≤ +85°C
3.9μs at +85°C < TC ≤ +95°C
Operating case temperature range TC = 0°C to +95°C

Features

Double-data-rate architecture; two data transfers per clock cycle
The high-speed data transfer is realized by the 4 bits prefetch pipelined architecture
Bi-directional differential data strobe (DQS and /DQS) is transmitted/received with data for capturing data at the receiver
DQS is edge-aligned with data for READs; center­aligned with data for WRITEs
Differential clock inputs (CK and /CK)
DLL aligns DQ and DQS transitions with CK
transitions
Commands entered on each positive CK edge; data and data mask referenced to both edges of DQS
Data mask (DM) for write data
Posted /CAS by programmable additive latency for
better command and data bus efficiency
Off-Chip-Driver Impedance Adjustment and On-Die­Termination for better signal quality
Programmable RDQS, /RDQS output for making × 8 organization compatible to × 4 organization
/DQS, (/RDQS) can be disabled for single-ended Data Strobe operation
Document No. E1196E10 (Ver. 1.0) Date Published November 2007 (K) Japan Printed in Japan URL: http://www.elpida.com
©Elpida Memory, Inc. 2007

Ordering Information

Part number EDE2104ABSE-8G-E
EDE2104ABSE-6E-E EDE2104ABSE-5C-E
EDE2108ABSE-8G-E EDE2108ABSE-6E-E EDE2108ABSE-5C-E

Part Number

Elpida Memory
Type D: Monolithic Device
Product Family E: DDR2
Density / Bank 21: 2Gb / 8-bank
Organization 04: x4 08: x8
Power Supply, Interface A: 1.8V, SSTL_18
Mask version
B 512M × 4 8
256M × 8
EDE2104ABSE, EDE2108ABSE
Organization (words × bits)
Internal Banks
Speed bin (CL-tRCD-tRP)
DDR2-800 (6-6-6) DDR2-667 (5-5-5) DDR2-533 (4-4-4)
DDR2-800 (6-6-6) DDR2-667 (5-5-5) DDR2-533 (4-4-4)
E D E 21 04 A B SE - 8G - E
Speed 8G DDR2-800 (6-6-6) 6E: DDR2-667 (5-5-5) 5C: DDR2-533 (4-4-4)
Package SE: FBGA
Die Rev.
Package
68-ball FBGA
Environment code E: Lead Free (RoHS compliant)
Preliminary Data Sheet E1196E10 (Ver. 1.0)
2

Pin Configurations

/xxx indicates active low signal.
EDE2104ABSE, EDE2108ABSE
68-ball FBGA
(×8, ×4 organization)
2
1
A
NC
B
C
D
3
7
8
9
NC
NCNC
E
F
G
H
J
K
L
M
N
P
R T U V W
Note: ( )* marked pins are for ×4 organization.
VDD
DQ6
(NC)*
VDDQ
DQ4
(NC)*
VDDL
BA2
VSS
VDD
NC
NU/ /RDQS
VSS
(NC)*
DM/RDQS
VSSQ
(DM)*
DQ1
VDDQ
VSSQ
DQ3
VREF
VSS
CKE
/WE
BA0
BA1
A10
A1
A3
A5
A7
A9
A12
A14
NC NC NC
(Top view)
VSSQ
DQS
VDDQ
DQ2
VSSDL
/RAS
/CAS
A2
A6
A11
NC
/DQS
VSSQ
DQ0
VSSQ
CK
/CK
/CS
A0
A4
A8
A13
VDDQ
DQ7
(NC)*
VDDQ
DQ5
(NC)*
VDD
ODT
VDD
VSS
Pin name Function Pin name Function A0 to A14 Address inputs ODT ODT control BA0, BA1, BA2 Bank select VDD Supply voltage for internal circuit DQ0 to DQ7 Data input/output VSS Ground for internal circuit DQS, /DQS Differential data strobe VDDQ Supply voltage for DQ circuit RDQS, /RDQS Differential data strobe for read VSSQ Ground for DQ circuit /CS Chip select VREF Input reference voltage /RAS, /CAS, /WE Command input VDDL Supply voltage for DLL circuit CKE Clock enable VSSDL Ground for DLL circuit CK, /CK Differential clock input NC*1 No connection DM Write data mask NU*2 Not usable
Notes: 1. Not internally connected with die.
2. Don’t connect. Internally connected.
Preliminary Data Sheet E1196E10 (Ver. 1.0)
3
CONTENTS
EDE2104ABSE, EDE2108ABSE
Specifications.................................................................................................................................................1
Features.........................................................................................................................................................1
Ordering Information......................................................................................................................................2
Part Number ..................................................................................................................................................2
Pin Configurations.........................................................................................................................................3
Electrical Specifications.................................................................................................................................5
Block Diagram .............................................................................................................................................29
Pin Function.................................................................................................................................................30
Command Operation...................................................................................................................................32
Simplified State Diagram.............................................................................................................................40
Operation of DDR2 SDRAM........................................................................................................................41
Package Drawing ........................................................................................................................................78
Recommended Soldering Conditions..........................................................................................................79
Preliminary Data Sheet E1196E10 (Ver. 1.0)
4
EDE2104ABSE, EDE2108ABSE

Electrical Specifications

All voltages are referenced to VSS (GND)
Execute power-up and Initialization sequence before proper device oper ation is achieved.

Absolute Maximum Ratings

Parameter Symbol Rating Unit Notes Power supply voltage VDD 1.0 to +2.3 V 1 Power supply voltage for output VDDQ 0.5 to +2.3 V 1 Input voltage VIN 0.5 to +2.3 V 1 Output voltage VOUT 0.5 to +2.3 V 1 Storage temperature Tstg −55 to +100 °C 1, 2 Power dissipation PD 1.0 W 1 Short circuit output current IOUT 50 mA 1
Notes: 1. Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to
the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this spec ification is not implied. E xposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Storage temperature is the case surface temperature on the center/top side of the DRAM.
Caution
Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Operating Temperature Condition

Parameter Symbol Rating Unit Notes Operating case temperature TC 0 to +95 °C 1, 2
Notes: 1. Operating temperature is the case surface temperature on the center/top side of the DRAM.
2. Supporting 0°C to +85°C with full AC and DC specifications. Supporting 0°C to +85°C and being able to extend to +95°C with doubling auto-refresh commands in
frequency to a 32ms period (tREFI = 3.9µs) and higher temperature Self-Refresh entry via A7 "1" on EMRS (2).
Preliminary Data Sheet E1196E10 (Ver. 1.0)
5
EDE2104ABSE, EDE2108ABSE
Recommended DC Operating Conditions (SSTL_18)
Parameter Symbol min. typ. max. Unit Notes Supply voltage VDD 1.7 1.8 1.9 V 4
Supply voltage for output VDDQ 1.7 1.8 1.9 V 4 Input reference voltage VREF 0.49 × VDDQ 0.50 × VDDQ 0.51 × VDDQ V 1, 2 Termination voltage VTT VREF 0.04 VREF VREF + 0.04 V 3 DC input logic high VIH (DC) VREF + 0.125 VDDQ + 0.3 V DC input low VIL (DC) 0.3 VREF – 0.125 V
AC input logic high
-8G, -6E
-5C VIH (AC) VREF + 0.250 V AC input low
-8G, -6E
-5C VIL (AC) VREF − 0.250 V
Notes: 1. The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically
the value of VREF is expected to be about 0.5 × VDDQ of the transmitting device and VREF are expected to track variations in VDDQ.
2. Peak to peak AC noise on VREF may not exceed ±2% VREF (DC).
3. VTT of transmitting device must track VREF of receiving device.
4. VDDQ tracks with VDD, VDDL tracks with VDD. AC parameters are measured with VDD, VDDQ and VDDL tied together.
VIH (AC) VREF + 0.200 ⎯ ⎯ V
VIL (AC) ⎯ ⎯ VREF – 0.200 V
Preliminary Data Sheet E1196E10 (Ver. 1.0)
6
EDE2104ABSE, EDE2108ABSE

AC Overshoot/Undershoot Specification

Parameter Pins Specification Unit Maximum peak amplitude allowed for overshoot
Maximum peak amplitude allowed for undershoot 0.5 V Maximum overshoot area above VDD
DDR2-800 DDR2-667 0.8 V-ns
DDR2-533 1.0 V-ns Maximum undershoot area below VSS
DDR2-800 DDR2-667 0.8 V-ns
DDR2-533 1.0 V-ns Maximum peak amplitude allowed for overshoot CK, /CK 0.5 V Maximum peak amplitude allowed for undershoot 0.5 V
Maximum overshoot area above VDD DDR2-800, 667
DDR2-533 0.28 V-ns Maximum undershoot area below VSS
DDR2-800, 667 DDR2-533 0.28 V-ns
Maximum peak amplitude allowed for overshoot DQ, DQS, /DQS, 0.5 V Maximum peak amplitude allowed for undershoot RDQS, /RDQS, DM 0.5 V
Maximum overshoot area above VDDQ DDR2-800, 667
DDR2-533 0.28 V-ns Maximum undershoot area below VSSQ
DDR2-800, 667 DDR2-533 0.28 V-ns
Command, Address, CKE, ODT
0.66 V-ns
0.66 V-ns
0.23 V-ns
0.23 V-ns
0.23 V-ns
0.23 V-ns
0.5 V
Volts (V)
VDD, VDDQ VSS, VSSQ
Overshoot/Undershoot Definition
Time (ns)
Maximum amplitude
Overshoot area
Undershoot area
Preliminary Data Sheet E1196E10 (Ver. 1.0)
7
EDE2104ABSE, EDE2108ABSE
DC Characteristics 1 (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V)
max.
Parameter Symbol Grade
Operating current (ACT-PRE)
Operating current (ACT-READ-PRE)
Precharge power­down standby current
Precharge quiet standby current
Idle standby current IDD2N
Active power-down standby current
Active standby current IDD3N
Operating current (Burst read operating)
Operating current (Burst write operating)
IDD0
IDD1
IDD2P
IDD2Q
IDD3P-F
IDD3P-S
IDD4R
IDD4W
-8G
-6E
-5C
-8G
-6E
-5C
-8G
-6E
-5C
-8G
-6E
-5C
-8G
-6E
-5C
-8G
-6E
-5C
-8G
-6E
-5C
-8G
-6E
-5C
-8G
-6E
-5C
-8G
-6E
-5C
× 4 × 8
TBD TBD TBD
TBD TBD TBD
TBD TBD TBD
TBD TBD TBD
TBD TBD TBD
TBD TBD TBD
TBD TBD TBD
TBD TBD TBD
TBD TBD TBD
TBD TBD TBD
TBD TBD TBD
TBD TBD TBD
TBD TBD TBD
TBD TBD TBD
TBD TBD TBD
TBD TBD TBD
TBD TBD TBD
TBD TBD TBD
TBD TBD TBD
TBD TBD TBD
Unit Test condition
one bank; tCK = tCK (IDD), tRC = tRC (IDD), tRAS = tRAS min.(IDD);
mA
CKE is H, /CS is H between valid commands; Address bus inputs are SWITCHING; Data bus inputs are SWITCHING
one bank; IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK (IDD), tRC = tRC (IDD),
mA
tRAS = tRAS min.(IDD); tRCD = tRCD (IDD); CKE is H, /CS is H between valid commands; Address bus inputs are SWITCHING; Data pattern is same as IDD4W
all banks idle; tCK = tCK (IDD);
mA
CKE is L; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING
all banks idle; tCK = tCK (IDD);
mA
CKE is H, /CS is H; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING
all banks idle; tCK = tCK (IDD);
mA
CKE is H, /CS is H; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING
all banks open; tCK = tCK (IDD);
mA
CKE is L; Other control and address bus inputs are STABLE;
mA
Data bus inputs are FLOATING
all banks open; tCK = tCK (IDD), tRAS = tRAS max.(IDD), tRP = tRP (IDD);
mA
CKE is H, /CS is H between valid commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING
all banks open, continuous burst reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK (IDD), tRAS = tRAS max.(IDD), tRP = tRP (IDD);
mA
CKE is H, /CS is H between valid commands; Address bus inputs are SWITCHING; Data pattern is same as IDD4W
all banks open, continuous burst writes; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK (IDD), tRAS = tRAS max.(IDD), tRP = tRP (IDD);
mA
CKE is H, /CS is H between valid commands; Address bus inputs are SWITCHING; Data bus inputs are SWITCHING
Fast PDN Exit MRS (12) = 0
Slow PDN Exit MRS (12) = 1
Preliminary Data Sheet E1196E10 (Ver. 1.0)
8
EDE2104ABSE, EDE2108ABSE
max.
Parameter Symbol Grade
-8G
Auto-refresh current IDD5
Self-refresh current IDD6 TBD TBD mA
Operating current (Bank interleaving)
IDD7
-6E
-5C
-8G
-6E
-5C
× 4 × 8
TBD TBD TBD
TBD TBD TBD
Notes: 1. IDD specifications are tested after the device is properly initialized.
2. Input slew rate is specified by AC Input Test Condition.
3. IDD parameters are specified with ODT disabled.
4. Data bus consists of DQ, DM, DQS, /DQS, RDQS and /RDQS. IDD values must be met with all combinations of EMRS bits 10 and 11.
5. Definitions for IDD
L is defined as VIN VIL (AC) (max.) H is defined as VIN VIH (AC) (min.) STABLE is defined as inputs stable at an H or L level FLOATING is defined as inputs at VREF = VDDQ/2 SWITCHING is defined as: inputs changing between H and L every other clock cycle (once per two clocks) for address and control
signals, and inputs changing between H and L every other data transfer (once per clock) for DQ sign als not including masks or strobes.
6. Refer to AC Timing for IDD Test Conditions.
TBD TBD TBD
TBD TBD TBD
Unit Test condition
tCK = tCK (IDD); Refresh command at every tRFC (IDD) interval;
mA
CKE is H, /CS is H between valid commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING
Self-Refresh Mode; CK and /CK at 0V; CKE 0.2V; Other control and address bus inputs are FLOATING; Data bus inputs are FLOATING
all bank interleaving reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = tRCD (IDD) −1 tCK = tCK (IDD), tRC = tRC (IDD), tRRD = tRRD (IDD), tFAW = tFAW (IDD), tRCD = 1
mA
CKE is H, /CS is H between valid commands; Address bus inputs are STABLE during DESELECTs; Data pattern is same as IDD4W;
× tCK (IDD);
× tCK (IDD);
Preliminary Data Sheet E1196E10 (Ver. 1.0)
9
EDE2104ABSE, EDE2108ABSE

AC Timing for IDD Test Conditions

For purposes of IDD testing, the following parameters are to be utilized.
Parameter 6-6-6 5-5-5 4-4-4 CL (IDD) 6 5 4 tCK tRCD (IDD) 15 15 15 ns tRC (IDD) 60 60 60 ns tRRD (IDD) 7.5 7.5 7.5 ns tFAW (IDD) 35 37.5 37.5 ns tCK (IDD) 2.5 3 3.75 ns tRAS (min.)(IDD) 45 45 45 ns tRAS (max.)(IDD) 70000 70000 70000 ns tRP (IDD) 15 15 15 ns tRFC (IDD) 195 195 195 ns

IDD7 Timing Patterns for 8 Banks

The detailed timings are shown in the IDD7 Timing Patterns for 8 Banks tables.
Speed bins Timing Patterns DDR2-533 A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D A4 RA4 A5 RA5 A6 RA6 A7 RA7 D D DDR2-667 A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D A4 RA4 D A5 RA5 D A6 RA6 D A7 RA7 D D DDR2-800 A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D A4 RA4 D A5 RA5 D A6 RA6 D A7 RA7 D D D
Remark: A = Active. RA = Read with auto precharge. D = Deselect Notes: 1. All banks are being interleaved at minimum tRC (IDD) without violating tRRD (IDD) and tFAW (IDD) using
a Burst length = 4.
2. Control and address bus inputs are STABLE during DESELECTs.
3. IOUT = 0mA.
DDR2-800 DDR2-667 DDR2-533
Unit
Preliminary Data Sheet E1196E10 (Ver. 1.0)
10
EDE2104ABSE, EDE2108ABSE
DC Characteristics 2 (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V)
Parameter Symbol Value Unit Notes Input leakage current ⏐ILI⏐ 2 μA VDD ≥ VIN ≥ VSS
Output leakage current ⏐ILO⏐ 5 μA VDDQ ≥ VOUT ≥ VSS Minimum required output pull-up under AC
test load Maximum required output pull-down under
AC test load Output timing measurement reference level VOTR 0.5 × VDDQ V 1
Output minimum sink DC current IOL +13.4 mA 3, 4, 5 Output minimum source DC current IOH 13.4 mA 2, 4, 5
Notes: 1. The VDDQ of the device under test is referenced.
2. VDDQ = 1.7V; VOUT = 1.42V.
3. VDDQ = 1.7V; VOUT = 0.28V.
4. The DC value of VREF applied to the receiving device is expected to be set to VTT.
5. After OCD calibration to 18Ω at TC = 25°C, VDD = VDDQ = 1.8V.
DC Characteristics 3 (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V)
VOH VTT + 0.603 V 5
VOL VTT − 0.603 V 5
Parameter Symbol min. max. Unit Notes AC differential input voltage VID (AC) 0.5 VDDQ + 0.6 V 1, 2
AC differential cross point voltage VIX (AC) 0.5 × VDDQ 0.175 0.5 × VDDQ + 0.175 V 2 AC differential cross point voltage VOX (AC) 0.5 × VDDQ 0.125 0.5 × VDDQ + 0.125 V 3
Notes: 1. VID (AC) specifies the input differential voltage |VTR -VCP | required for switching, where VT R is the true
input signal (such as CK, DQS, RDQS) and VCP is the complementary input signal (such as /CK, /DQS, /RDQS). The minimum value is equal to VIH (AC) VIL (AC).
2. T he typical value of VIX (A C) is expected to be about 0.5 × VDDQ of the transmitting device and VIX (AC) is expected to track variations in VDDQ. VIX (AC) indicates the voltage at which differential input sig nals must cross.
3. The typical value of VOX (AC) is expected to be about 0.5 × VDDQ of the transmitting device and VOX (AC) is expected to track variations in VDDQ. VOX (AC) indicates the voltage at which differential output signals must cross.
VDDQ
VTR
VID
VCP
VSSQ
Differential Signal Levels*
VIX or VOX
1, 2
Crossing point
Preliminary Data Sheet E1196E10 (Ver. 1.0)
11
EDE2104ABSE, EDE2108ABSE
ODT DC Electrical Characteristics (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V)
Parameter Symbol min. typ. max. Unit Note Rtt effective impedance value for EMRS (A6, A2) = 0, 1; 75 Ω Rtt1 (eff) 60 75 90 Ω 1 Rtt effective impedance value for EMRS (A6, A2) = 1, 0; 150 Ω Rtt2 (eff) 120 150 180 Ω 1 Rtt effective impedance value for EMRS (A6, A2) = 1, 1; 50 Ω Rtt3 (eff) 40 50 60 Ω 1 Deviation of VM with respect to VDDQ/2 ΔVM −6 +6 % 1
Note: 1. Test condition for Rtt measurements.
Measurement Definition for Rtt (eff)
Apply VIH (AC) and VIL (AC) to test pin separately, then measure current I(VIH(AC)) and I(VIL(AC)) respectively. VIH(AC), and VDDQ values defined in SSTL_18.
)()(
ACVILACVIH
)(
effRtt
=
Measurement Definition for ΔVM
Measure voltage (VM) at test pin (midpoint) with no load.
=Δ
VM
VDDQ
×
VM
1001 - 2×
⎟ ⎠
))(())((
ACVILIACVIHI
OCD Default Characteristics (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V)
Parameter min. typ. max. Unit Notes Output impedance 12.6 18 23.4 Ω 1, 5
Pull-up and pull-down mismatch 0 4 Ω 1, 2 Output slew rate 1.5 5 V/ns 3, 4
Notes: 1. Impedance measurement condition for output source DC current: VDDQ = 1.7V; VOUT = 1420mV;
(VOUTVDDQ)/IOH must be less than 23.4Ω for values of VOUT between VDDQ and VDDQ 280mV. Impedance measurement condition for output sink DC current: VDDQ = 1.7V; VOUT = 280mV; VOUT/IOL must be less than 23.4Ω for values of VOUT between 0V and 280mV.
2. Mismatch is absolute value between pull up and pull down, both are measured at same temperature and voltage.
3. Slew rate measured from VIL(AC) to VIH(AC).
4. The absolute value of the slew rate as measured from DC to DC is equal to or greater than the slew rate as measured from AC to AC. This is guaranteed by design and characterization.
5. DRAM I/O specifications for timing, voltage, and slew rate are no longer applicable if OCD is changed from default settings.
Preliminary Data Sheet E1196E10 (Ver. 1.0)
12
EDE2104ABSE, EDE2108ABSE
Pin Capacitance (TA = 25°C, VDD, VDDQ = 1.8V ± 0.1V)
Parameter Symbol Pins min. max. Unit Notes CLK input pin capacitance CCK CK, /CK 1.0 2.0 pF 1 Input pin capacitance
-8G
-6E, -5C
Input/output pin capacitance
-8G, -6E
-5C
CIN
CI/O
Notes: 1. Matching within 0.25pF.
2. Matching within 0.50pF.
/RAS, /CAS, /WE, /CS, CKE, ODT, Address
DQ, DQS, /DQS, RDQS, /RDQS, DM
1.0 1.75 pF 1
1.0 2.0 pF 1
2.5 3.5 pF 2
2.5 4.0 pF 2
Preliminary Data Sheet E1196E10 (Ver. 1.0)
13
EDE2104ABSE, EDE2108ABSE
AC Characteristics (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V, VSS, VSSQ = 0V) [DDR2-800, 667]
New units tCK(avg) and nCK, are introduced in DDR2-800 and DDR2-667
tCK(avg): actual tCK(avg) of the input clock under operation. nCK: one clock cycle of the input clock, counting the actual clock edges.
-8G -6E
Speed bin DDR2-800 (6-6-6) DDR2-667 (5-5-5) Parameter Symbol min. max. min. max. Unit Notes
Active to read or write command delay
Precharge command period tRP 15 15 ns Active to active/auto-refresh
command time DQ output access time from CK, /CK tAC −400 +400450 +450 ps 10 DQS output access time from CK,
/CK CK high-level width tCH (avg) 0.48 0.52 0.48 0.52
CK low-level width tCL(avg) 0.48 0.52 0.48 0.52
CK half period tHP Clock cycle time
(CL = 6) (CL = 5) tCK (avg) 3000 8000 3000 8000 ps 13
(CL = 4) tCK (avg) 3750 8000 3750 8000 ps 13 (CL = 3) tCK (avg) 5000 8000 5000 8000 ps 13 DQ and DM input hold time tDH (base) 125 175 ps 5 DQ and DM input setup time tDS (base) 50 100 ps 4
Control and Address input pulse width for each input
DQ and DM input pulse width for each input
Data-out high-impedance time from CK,/CK
DQS, /DQS low-impedance time from CK,/CK
DQ low-impedance time from CK,/CK tLZ (DQ) 2 × tAC min. tAC max. 2 × tAC min. tAC max. ps 10 DQS-DQ skew for DQS and
associated DQ signals DQ hold skew factor tQHS 300 340 ps 7
DQ/DQS output hold time from DQS tQH tHP – tQHS tHP – tQHS ps 8 DQS latching rising transitions to
associated clock edges DQS input high pulse width tDQSH 0.35 0.35
DQS input low pulse width tDQSL 0.35 0.35
DQS falling edge to CK setup time tDSS 0.2 0.2
DQS falling edge hold time from CK tDSH 0.2 0.2 Mode register set command cycle
time Write postamble tWPST 0.4 0.6 0.4 0.6
tRCD 15 15 ns
tRC 60 60 ns
tDQSCK 350 +350400 +400 ps 10
tCK
13
(avg) tCK
13
(avg)
Min. (tCL(abs), tCH(abs))
tCK (avg) 2500 8000 3000 8000 ps 13
tIPW 0.6 0.6
tDIPW 0.35 0.35
tHZ tAC max. tAC max. ps 10
tLZ (DQS) tAC min. tAC max. tAC min. tAC max. ps 10
tDQSQ 200 240 ps
tDQSS 0.25 +0.25 0.25 +0.25
tMRD 2 2 nCK
Min.(tCL(abs), tCH(abs))
ps 6, 13
tCK (avg)
tCK (avg)
tCK (avg)
tCK (avg)
tCK (avg)
tCK (avg)
tCK (avg)
tCK (avg)
Preliminary Data Sheet E1196E10 (Ver. 1.0)
14
EDE2104ABSE, EDE2108ABSE
-8G -6E
Speed bin DDR2-800 (6-6-6) DDR2-667 (5-5-5) Parameter Symbol min. max. min. max. Unit Notes
Write preamble tWPRE 0.35 0.35 Address and control input hold time tIH (base) 250 275 ps 5
Address and control input setup time tIS (base) 175 200 ps 4 Read preamble tRPRE 0.9 1.1 0.9 1.1
Read postamble tRPST 0.4 0.6 0.4 0.6 Active to precharge command tRAS 45 70000 45 70000 ns
Active to auto precharge delay tRAP tRCD min. tRCD min. ⎯ ns Active bank A to active bank B
command period Four active window period tFAW 35 37.5 ns /CAS to /CAS command delay tCCD 2 2 nCK Write recovery time tWR 15 15 ns
Auto precharge write recovery + precharge time
Internal write to read command delay tWTR 7.5 7.5 ns Internal read to precharge command
delay Exit self-refresh to a non-read
command Exit self-refresh to a read command tXSRD 200 200 nCK Exit precharge power-down to any
non-read command Exit active power-down to read
command Exit active power-down to read
command (slow exit/low power mode) CKE minimum pulse width (high and low pulse width)
Output impedance test driver delay tOIT 0 12 0 12 ns MRS command to ODT update delay tMOD 0 12 0 12 ns
Auto-refresh to active/auto-refresh command time
Average periodic refresh interval (0°C ≤ TC +85°C)
(+85°C < TC +95°C) tREFI ⎯ 3.9 ⎯ 3.9 μs Minimum time clocks remains ON
after CKE asynchronously drops low
tRRD 7.5 7.5 ns
tDAL
tRTP 7.5 7.5 ns
tXSNR tRFC + 10 tRFC + 10 ⎯ ns
tXP 2 2 nCK
tXARD 2 2 nCK 3
tXARDS 8 − AL ⎯ 7 − AL ⎯ nCK 2, 3
tCKE 3 3 nCK
tRFC 195 195 ns
tREFI 7.8 7.8 μs
tDELAY
WR + RU(tRP/tCK(avg))
tIS + tCK(avg) + tIH
WR + RU(tRP/tCK(avg))
tIS + tCK(avg) + tIH
nCK 1, 9
ns
tCK (avg)
tCK (avg)
tCK (avg)
11
12
Preliminary Data Sheet E1196E10 (Ver. 1.0)
15
EDE2104ABSE, EDE2108ABSE
AC Characteristics (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V, VSS, VSSQ = 0V) [DDR2-533]
-5C
Speed bin DDR2-533 (4-4-4) Parameter Symbol min. max. Unit Notes Active to read or write command delay tRCD 15 ns
Precharge command period tRP 15 ns Active to active/auto-refresh command time tRC 60 ns DQ output access time from CK, /CK tAC 500 +500 ps DQS output access time from CK, /CK tDQSCK 450 +450 ps CK high-level width tCH 0.45 0.55 tCK CK low-level width tCL 0.45 0.55 tCK
CK half period tHP Clock cycle time
(CL = 6) (CL = 5) tCK 3750 8000 ps
(CL = 4) tCK 3750 8000 ps (CL = 3) tCK 5000 8000 ps
DQ and DM input hold time (differential strobe)
DQ and DM input hold time (single-ended strobe)
DQ and DM input setup time (differential strobe)
DQ and DM input setup time (single-ended strobe)
Control and Address input pulse width for each input tIPW 0.6 tCK DQ and DM input pulse width for each input tDIPW 0.35 tCK Data-out high-impedance time from CK,/CK tHZ tAC max. ps Data-out low-impedance time from CK,/CK tLZ tAC min. tAC max. ps DQS-DQ skew for DQS and associated DQ signals tDQSQ 300 ps DQ hold skew factor tQHS 400 ps DQ/DQS output hold time from DQS tQH tHP – tQHS ps DQS latching rising transitions to associated clock edges tDQSS −0.25 +0.25 tCK DQS input high pulse width tDQSH 0.35 tCK DQS input low pulse width tDQSL 0.35 tCK DQS falling edge to CK setup time tDSS 0.2 tCK DQS falling edge hold time from CK tDSH 0.2 tCK Mode register set command cycle time tMRD 2 tCK Write postamble tWPST 0.4 0.6 tCK Write preamble tWPRE 0.35 tCK Address and control input hold time tIH (base) 375 ps 5 Address and control input setup time tIS (base) 250 ps 4 Read preamble tRPRE 0.9 1.1 tCK Read postamble tRPST 0.4 0.6 tCK Active to precharge command tRAS 45 70000 ns Active to auto-precharge delay tRAP tRCD min. ns
tCK 3750 8000 ps
tDH (base) 225 ps 5
tDH1 (base) –25 ps
tDS (base) 100 ps 4
tDS1 (base) –25 ps
Min. (tCL, tCH)
ps
Preliminary Data Sheet E1196E10 (Ver. 1.0)
16
EDE2104ABSE, EDE2108ABSE
-5C
Speed bin DDR2-533 (4-4-4) Parameter Symbol min. max. Unit Notes Active bank A to active bank B command period tRRD 7.5 ns
Four active window period tFAW 37.5 ns /CAS to /CAS command delay tCCD 2 tCK Write recovery time tWR 15 ns
CK
/CK
WR + RU(tRP/tCK)
tCK 1, 9
Auto precharge write recovery + precharge time tDAL Internal write to read command delay tWTR 7.5 ns
Internal read to precharge command delay tRTP 7.5 ns Exit self-refresh to a non-read command tXSNR tRFC + 10 ns Exit self-refresh to a read command tXSRD 200 tCK Exit precharge power-down to any non-read command tXP 2 tCK Exit active power-down to read command tXARD 2 tCK 3
Exit active power-down to read command (slow exit/low power mode)
tXARDS 6 − AL ⎯ tCK 2, 3
CKE minimum pulse width (high and low pulse width) tCKE 3 tCK Output impedance test driver delay tOIT 0 12 ns MRS command to ODT update delay tMOD 0 12 ns Auto-refresh to active/auto-refresh command time tRFC 195 ns
Average periodic refresh interval (0°C ≤ TC +85°C)
tREFI 7.8 μs
(+85°C < TC +95°C) tREFI ⎯ 3.9 μs Minimum time clocks remains ON after CKE
asynchronously drops low
tDELAY tIS + tCK + tIH ⎯ ns
Notes: 1. For each of the terms above, if not already an integer, round to the next higher integer.
2. AL: Additive Latency.
3. MRS A12 bit defines which active power-down exit timing to be applied.
4. The figures of Input Waveform Timing 1 and 2 are referenced from the input signal crossing at the VIH(AC) level for a rising signal and VIL(AC) for a falling signal applied to the device under test.
5. The figures of Input Waveform Timing 1 and 2 are referenced from the input signal crossing at the VIL(DC) level for a rising signal and VIH(DC) for a falling signal applied to the device under test.
DQS
/DQS
tDS tDH
Input Waveform Timing 1 (tDS, tDH) Input Waveform Timing 2 (tIS, tIH)
Preliminary Data Sheet E1196E10 (Ver. 1.0)
tDS tDH
VDDQ VIH (AC)(min.) VIH (DC)(min.) VREF VIL (DC)(max.) VIL (AC)(max.) VSS
tIS tIH
tIS tIH
VDDQ VIH (AC)(min.) VIH (DC)(min.) VREF VIL (DC)(max.) VIL (AC)(max.) VSS
17
EDE2104ABSE, EDE2108ABSE
6. tHP is the minimum of the absolute half period of the actua l input clock. tHP is an input parameter but not an input specification parameter. It is used in conjunction with tQHS to derive the DRAM output timing tQH.
The value to be used for tQH calculation is determined by the following equation; tHP = min ( tCH(abs), tCL(abs) ), where, tCH(abs) is the minimum of the actual instantaneous clock high time; tCL(abs) is the minimum of the actual instantaneous clock low time;
7. tQHS accounts for:
a. The pulse duration distortion of on-chip clock ci rcuits, which represents ho w well the actual tHP at the
input is transferred to the output; and
b. The worst case push-out of DQS on one transition followed by the worst case pull-i n of DQ on the
next transition, both of which are independent of each other, due to data pin ske w, output pattern effects, and p-channel to n-channel variation of the output drivers.
8. tQH = tHP – tQHS, where:
tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification
value under the max column.
{The less half-pulse width distortion pr esent, the larger the tQH value is; a nd the larger the valid data e ye
will be.}
Examples: a. If the system provides tHP of 1315ps into a DDR2-667 SDRAM, the DRAM provides tQH of 975ps
(min.)
b. If the system provides tHP of 1420ps into a DDR2-667 SDRAM, the DRAM provides tQH of 1080ps
(min.)
9. RU stands for round up. WR refers to the tWR parameter stored in the MRS.
10. When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output deratings are relative to the SDRAM input clock.)
For example, if the measured jitter into a DDR2-667 SDRAM has tERR(6-10per) min. = 272ps and
tERR(6-10per) max. = +293ps, then tDQSCK min.(derated) = tDQSCK min. tERR(6-10per) max. =
400ps 293ps = 693ps and tDQSCK max.(derated) = tDQSCK max. tERR(6-10per) min. = 400ps + 272ps = +672ps. Similarly, tLZ(DQ) for DDR2-667 derates to tLZ(DQ) min.(derated) = −900ps − 293ps =
1193ps and tLZ(DQ) max.(derated)= 450ps + 272ps = +722ps.
11. When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per) of the input clock. (output deratings are relative to the SDRAM input clock.)
For example, if the measured jitter into a DDR2-667 SDRAM has tJIT(per) min. = 72ps and
tJIT(per) max. = +93ps, then tRPRE min.(derated) = tRPRE min. + tJIT(per) min. = 0.9 × tCK(avg) 72ps = +2178ps and tRPRE max.(derated) = tRPRE max. + tJIT(per) max. = 1.1 × tCK(avg) + 93ps = +2843ps.
12. When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(duty) of the input clock. (output deratings are relative to the SDRAM input clock.)
For example, if the measured jitter into a DDR2-667 SDRAM has tJIT(duty) min. = 72ps and
tJIT(duty) max. = +93ps, then tRPST min.(derated) = tRPST min. + tJIT(duty) min. = 0.4 × tCK(avg) 72ps = +928ps and tRPST max.(derated) = tRPST max. + tJIT(duty) max. = 0.6 × tCK(avg) + 93ps = +1592ps.
13. Refer to the Clock Jitter table.
Preliminary Data Sheet E1196E10 (Ver. 1.0)
18
EDE2104ABSE, EDE2108ABSE

ODT AC Electrical Characteristics

Parameter Symbol min. max. Unit Notes ODT turn-on delay tAOND 2 2 tCK
ODT turn-on
-8G, -6E
-5C tAON tAC (min) tAC (max) + 1000 ps 1
ODT turn-on (power-down mode) tAONPD tAC(min) + 2000 2tCK + tAC(max) + 1000 ps ODT turn-off delay tAOFD 2.5 2.5 tCK 5, 6 ODT turn-off tAOF tAC(min) tAC(max) + 600 ps 2, 4, 5, 6 ODT turn-off (power-down mode) tAOFPD tAC(min) + 2000 2.5tCK + tAC(max) + 1000 ps ODT to power-down entry latency tANPD 3 3 tCK ODT power-down exit latency tAXPD 8 8 tCK
Notes: 1. ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND.
2. ODT turn off time min is when the device starts to turn off ODT resistance.
ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD.
3. When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output deratings are relative to the SDRAM input clock.)
4. When the device is operated with input clock jitter, this parameter needs to be derated by {tJIT(duty) max. tERR(6-10per) max. } and { tJIT(duty) min. tERR(6-10per) min. } of the actual input clock.(output deratings are relative to the SDRAM input clock.)
For example, if the measured jitter into a DDR2-667 SDRAM has tERR(6-10per) min. = −272ps,
tERR(6-10per) max. = +293ps, tJIT(duty) min. = 106ps and tJIT(duty) max. = +94ps, then tAOF min.(derated) = tAOF min. + { tJIT(duty) max. tERR(6-10per) max. } = 450ps + { −94ps − 293ps} = 837ps and tAOF max.(derated) = tAOF max. + { tJIT(duty) min. tERR(6-10per) min. } = 1050ps + { 106ps + 272ps} = +1428ps.
5. For tAOFD of DDR2-533, the 1/2 clock of tCK in the 2.5 × tCK assumes a tCH, input clock high pulse width of 0.5 relative to tCK. tAOF min. and tAOF max. should each be derated by t he same amount as the actual amount of tCH offset present at the DRAM input with respect to 0.5. For example, if an input clock has a worst case tCH of 0.45, the tAOF min. should be derated by subtracting 0.05 × tCK from it, whereas if an input clock has a worst case tCH of 0.55, the tAOF max. should be derated by adding 0.05 × tCK to it. Therefore, we have;
tAOF min.(derated) = tAC min. [0.5 Min.(0.5, tCH min.)] × tCK tAOF max.(derated) = tAC max. + 0.6 + [Max.(0.5, tCH max.) 0.5] × tCK or tAOF min.(derated) = Min.(tAC min., tAC min. [0.5 − tCH min.] × tCK)
tAOF max.(derated) = 0.6 + Max.(tAC max., tAC max. + [tCH max. 0.5] × tCK)
where tCH min. and tCH max. are the m inimum and maximum of tCH actually measured at the DRAM
input balls.
6. For tAOFD of DDR2-667/800, the 1/2 clock of nCK in the 2.5 × clock high pulse width of 0.5 relative to tCK(avg). tAOF min. and tAOF max. should each be d erated by the same amount as the actual amount of tCH(avg) offset present at the DRAM input with respect to 0.5. For example, if an input clock has a worst case tCH(avg) of 0.48, the tAOF min. should be derated by subtracting 0.02 × tCK(avg) from it, whereas if an input clock has a worst case tCH(avg) of 0.52, the tAOF max. should be derated by adding 0.02 × tCK(avg) to it. Therefore, we have;
tAOF min.(derated) = tAC min. [0.5 Min.(0.5, tCH(avg) min.)] × tCK(avg) tAOF max.(derated) = tAC max. + 0.6 + [Max.(0.5, tCH(avg) max.) 0.5] × tCK(avg) or tAOF min.(derated) = Min.(tAC min., tAC min. [0.5 tCH(avg) min.] × tCK(avg)) tAOF max.(derated) = 0.6 + Max.(tAC max., tAC max. + [tCH(avg) max. 0.5] × tCK(avg)) where tCH(avg) min. and tCH(avg) max. are the minimum and ma ximum of tCH(avg) actually measured
at the DRAM input balls.
tAON tAC (min) tAC (max) + 700 ps 1, 3
nCK assumes a tCH(avg), average input
Preliminary Data Sheet E1196E10 (Ver. 1.0)
19
EDE2104ABSE, EDE2108ABSE

AC Input Test Conditions

Parameter Symbol Value Unit Notes Input reference voltage VREF 0.5 × VDDQ V 1 Input signal maximum peak to peak swing VSWING (max.) 1.0 V 1 Input signal minimum slew rate SLEW 1.0 V/ns 2, 3
Notes: 1. Input waveform timing is referenced to the input signal crossing through the VIH/IL (AC) level applied to
the device under test.
2. The input signal minimum sle w rate is to be maintained over the range from VREF to VIH (AC) min. for rising edges and the range from VREF to VIL (AC) max. for falling edges as shown in the below figure.
3. AC timings are referenced with input waveforms switching from VIL (AC) to VIH (AC) on the positive transitions and VIH (AC) to VIL (AC) on the negative transitions.
VDDQ VIH (AC)(min.)
VIH (DC)(min.)
VSWING(max.)
VREF VIL (DC)(max.)
VIL (AC)(max.)
Falling slew =
ΔTF
VREF
ΔTR
VIL (AC)(max.)
ΔTF
Rising slew =
AC Input Test Signal Wave forms
Measurement point
DQ
RT =25 Ω
Output Load
VTT
VIH (AC) min. − VREF
VSS
ΔTR
Preliminary Data Sheet E1196E10 (Ver. 1.0)
20
EDE2104ABSE, EDE2108ABSE

Clock Jitter [DDR2-800, 667]

-8G -6E
Frequency (Mbps) 800 667 Parameter Symbol min. max. min. max. Unit Notes Average clock period tCK (avg) 2500 8000 3000 8000 ps 1
Clock period jitter tJIT (per) 100 100 125 125 ps 5 Clock period jitter during
DLL locking period Cycle to cycle period jitter tJIT (cc) 200 ⎯ 250 ps 6 Cycle to cycle clock period jitter
during DLL locking period Cumulative error across 2 cycles tERR (2per) 150 150 175 175 ps 7
Cumulative error across 3 cycles tERR (3per) 175 175 225 225 ps 7 Cumulative error across 4 cycles tERR (4per) 200 200 250 250 ps 7 Cumulative error across 5 cycles tERR (5per) 200 200 250 250 ps 7
Cumulative error across n=6,7,8,9,10 cycles
Cumulative error across n=11, 12,…49,50 cycles
Average high pulse width tCH (avg) 0.48 0.52 0.48 0.52 tCK (avg) 2 Average low pulse width tCL (avg) 0.48 0.52 0.48 0.52 tCK (avg) 3 Duty cycle jitter tJIT (duty) 100 100 125 125 ps 4
Notes: 1. tCK (avg) is calculated as the average clock period across any consecutive 200cycle window.
tJIT (per, lck)
tJIT (cc, lck) 160 ⎯ 200 ps 6
tERR (6-10per)
tERR (11-50per)
80 80 100 100 ps 5
300 300 350 350 ps 7
450 450 450 450 ps 7
N
=
)(
=1
j
N = 200
2. tCH (avg) is defined as the average high pulse width, as calculated across any consecutive 200 high pulses.
N
=
j
=
3. tCL (avg) is defined as the average low pulse width, as calculated across a ny consecutive 200 low pulses.
N
=
j
=
4. tJIT (duty) is defined as the cumulative set of tCH jitter and tCL jitter. tCH jitter is the largest deviation of any single tCH from tCH (avg). tCL jitter is the largest deviation of any single tCL from tCL (avg). tJIT (duty) is not subject to production test.
tJIT (duty) = Min./Max. of {tJIT (CH), tJIT (CL)}, where: tJIT (CH) = {tCH tJIT (CL) = {tCL
5. tJIT (per) is defined as the largest deviation of any single tCK from tCK (avg).
tJIT (per) = Min./Max. of { tCK tJIT (per) defines the single period jitter when the DLL is already locked. tJIT (per, lck) uses the same
definition for single period jitter, during the DLL locking period only. tJIT (per) and tJIT (per, lck) are not subject to production test.
- tCH (avg) where j = 1 to 200}
j
tCL (avg) where j = 1 to 200}
j
tCK (avg) where j = 1 to 200}
j
1
N = 200
1
N = 200
⎫ ⎬ ⎭
⎫ ⎬ ⎭
NtCKjavgtCK
⎬ ⎭
))(()(
×
×
avgtCKNtCHjavgtCH
))(()(
avgtCKNtCLjavgtCL
Preliminary Data Sheet E1196E10 (Ver. 1.0)
21
EDE2104ABSE, EDE2108ABSE
6. tJIT (cc) is defined as the absolute difference in clock period between two consec utive clock cycles:
tJIT (cc) = Max. of |tCK tJIT (cc) is defines the cycle to cycle jitter when the DLL is already locked. tJIT (cc, lck) uses the same
definition for cycle to cycle jitter, during the DLL locking period only. tJIT (cc) and tJIT (cc, lck) are not subject to production test.
7. tERR (nper) is defined as the cumulative error across multiple consecutive cycles from tCK (avg).
tERR (nper) is not subject to production test.
8. These parameters are specified per their average values, however it is understood that the following relationship between the average timing and the absolute instantaneous timing hold at all times.
(minimum and maximum of spec values are to be used for calculations in the table below.)
Parameter Symbol min. max. Unit Absolute clock period tCK (abs) tCK (avg) min. + tJIT (per) min. tCK (avg) max. + tJIT (per) max. ps
Absolute clock high pulse width
Absolute clock low pulse width
Example: For DDR2-667, tCH(abs) min. = ( 0.48 × 3000 ps ) - 125ps = 1315ps
tCKj|
j+1
tCH (abs)
tCL (abs)
n
=
=
j
2 n 50 for tERR (nper)
tCH (avg) min. × tCK (avg) min. + tJIT (duty) min.
tCL (avg) min. × tCK (avg) min. + tJIT (duty) min.
×
1
))()(
avgtCKntCKjnpertERR
tCH (avg) max. × tCK (avg) max. + tJIT (duty) max.
tCL (avg) max. × tCK (avg) max. + tJIT (duty) max.
ps
ps
Preliminary Data Sheet E1196E10 (Ver. 1.0)
22
EDE2104ABSE, EDE2108ABSE

Input Slew Rate Derating

For all input signals the total tIS, tDS (setup time) and tIH, tDH (hold time) required is calculated by adding the data sheet tIS (base), tDS (base) and tIH (base), tDH (base) value to the ΔtIS, ΔtDS and ΔtIH, ΔtDH derating value respectively.
Example: tDS (total setup time) = tDS (base) + ΔtDS.
Setup (tIS, tDS) nominal slew rate for a rising signal is defined as the slew rate bet ween the last crossing of VREF (DC) and the first crossing of VIH (AC) min. Setup (tIS, tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VREF (DC) and the first crossing of VIL (AC) max. If the actual signal is always earlier than the nominal slew rate line between shaded ‘VREF (DC) to AC region’, use nominal slew rate for derating value (See the figure of Slew Rate Definition Nominal).
If the actual signal is later than the nominal slew rate line anywhere between shaded ‘VREF (DC) to AC region’, the slew rate of a tangent line to the actual signal from the AC level to DC level is used for derating value (see the figure of Slew Rate Definition Tangent).
Hold (tIH, tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL (DC) max. and the first crossing of VREF (DC). Hold (tIH, tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH (DC) min. and the first crossing of VRE F (DC). If the actual signal is always later than the nominal slew rate line between shaded ‘DC lev el to VREF (DC) region’, use nominal slew rate for derating value (See the figure of Slew Rate Definition Nominal).
If the actual signal is earlier than the nominal slew rate line anywhere between shaded ‘DC to VREF (DC) region’, the slew rate of a tangent line to the actual signal from the DC level to VREF (DC) level is used for derating value (see the figure of Slew Rate Definition Tangent).
Although for slow slew rates the total setup time might be negative (i.e. a valid i nput signal will not have reached VIH/IL (AC) at the time of the rising clock transition) a valid input signal is still required to complete the transition and reach VIH/IL (AC).
For slew rates in between the values listed in the tables below, the derating values may obtained by linear interpolation.
These values are typically not subject to production test. They are verified by design and characterization.
[Derating Values of tDS/tDH with Differential DQS (DDR2-533)]
DQS, /DQS differential slew rate
4.0 V/ns 3.0 V/ns 2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4 V/ns 1.2 V/ns 1.0 V/ns 0.8 V/ns
ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH Unit
2.0 +125 +45 +125 +45 +125 +45 ⎯ ps
1.5 +83 +21 +83 +21 +83 +21 +95 +33 ps
1.0 0 0 0 0 0 0 +12 +12 +24 +24 ⎯ ps
DQ slew rate (V/ns)
0.9 11 14 11 14 +1 2 +13 +10 +25 +22 ps
0.8 25 31 13 19 1 7 11 +5 +23 +17 ⎯ ps
0.7 31 42 19 30 7 18 +5 6 +17 +6 ps
0.6 43 59 31 47 19 35 7 23 +5 11 ps
0.5 74 89 62 77 50 65 38 53 ps
0.4 127 140 115 128 103 116 ps
Preliminary Data Sheet E1196E10 (Ver. 1.0)
23
EDE2104ABSE, EDE2108ABSE
[Derating Values of tDS/tDH with Differential DQS (DDR2-667, 800)
DQS, /DQS differential slew rate
4.0 V/ns 3.0 V/ns 2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4 V/ns 1.2 V/ns 1.0 V/ns 0.8 V/ns
ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH Unit
2.0 +100 +45 +100 +45 +100 +45 ⎯ ps
1.5 +67 +21 +67 +21 +67 +21 +79 +33 ps
1.0 0 0 0 0 0 0 +12 +12 +24 +24 ⎯ ps
DQ slew rate
(V/ns)
0.9 5 14 5 14 +7 2 +19 +10 +31 +22 ps
0.8 13 31 1 19 +11 7 +23 +5 +35 +17 ps
0.7 10 42 +2 30 +14 18 +26 −6 +38 +6 ps
0.6 10 59 +2 47 +14 −35 +26 −23 +38 −11 ps
0.5 24 89 12 77 0 65 +12 53 ps
0.4 52 140 40 128 28 116 ps
[Derating Values of tDS1/tDH1 with Single-Ended DQS (DDR2-533)]
DQS, /DQS single-ended slew rate
2.0 V/ns 1.5 V/ns 1.0V/ns 0.9V/ns 0.8V/ns 0.7 V/ns 0.6 V/ns 0.5 V/ns 0.4 V/ns
DQ slew rate (V/ns)
Δ tDS1 Δ tDH1 Δ tDS1Δ tDH1 Δ tDS1 Δ tDH1Δ tDS1Δ tDH1Δ tDS1Δ tDH1Δ tDS1Δ tDH1Δ tDS1Δ tDH1 Δ tDS1 Δ tDH1 Δ tDS1 Δ tDH1
2.0 +188 +188 +167 +146 +125 +63 ps
1.5 +146 +167 +125 +125 +83 +42 +81 +43 ps
1.0 +63 +125 +42 +83 0 0 2 +1 −7 −13 ⎯ ps
0.9 +31 +69 −11 −14 −13 −13 −18 −27 −29 −45 ⎯ ⎯ ps
0.8 25 31 27 30 32 44 43 62 60 86 ps
0.7 45 53 50 67 61 85 78 109 108 152 ps
0.6 74 96 85 114 102 138 132 181 183 246 ps
0.5 128 156 145 180 175 223 226 288 ps
0.4 210 243 240 286 291 351 ps
Unit
Preliminary Data Sheet E1196E10 (Ver. 1.0)
24
EDE2104ABSE, EDE2108ABSE
[Derating Values of tIS/tIH (DDR2-533)]
CK, /CK Differential Slew Rate
2.0 V/ns 1.5 V/ns 1.0 V/ns
ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH Unit Notes
4.0 +187 +94 +217 +124 +247 +154 ps
3.5 +179 +89 +209 +119 +239 +149 ps
3.0 +167 +83 +197 +113 +227 +143 ps
2.5 +150 +75 +180 +105 +210 +135 ps
2.0 +125 +45 +155 +75 +185 +105 ps
1.5 +83 +21 +113 +51 +143 +81 ps
1.0 0 0 +30 +30 +60 60 ps
0.9 11 14 +19 +16 +49 +46 ps
Command/address slew rate (V/ns)
0.8 25 31 +5 1 +35 +29 ps
0.7 43 54 13 24 +17 +6 ps
0.6 67 83 37 53 7 23 ps
0.5 110 125 80 95 50 65 ps
0.4 175 188 145 158 115 128 ps
0.3 285 292 255 262 225 232 ps
0.25 350 375 320 345 290 315 ps
0.2 525 500 495 470 465 440 ps
0.15 800 708 770 678 740 648 ps
0.1 1450 1125 1420 1095 1390 1065 ps
Preliminary Data Sheet E1196E10 (Ver. 1.0)
25
Loading...
+ 56 hidden pages