6.Do not install near any heat sources such as radiators, heat registers, stoves, or other
apparatus (including amplifiers) that produce heat.
Suspension
Warning!
Suspending any object is potentially dangerous and should only be attempted by individuals
who have a thorough knowledge of the techniques and regulations of suspending objects
overhead. Electro-Voice strongly recommends that loudspeakers be suspended taking into
account all current national, federal, state, and local laws and regulations. It is the
responsibility of the installer to ensure all loudspeakers are safely installed in accordance
with all such requirements. When loudspeakers are suspended, Electro-Voice strongly
recommends the system be inspected at least once per year or as laws and regulations
require. If any sign of weakness or damage is detected, remedial action should be taken
immediately. The user is responsible for making sure the wall, ceiling, or structure is capable
of supporting all objects suspended overhead. Any hardware used to suspend a loudspeaker
not associated with Electro-Voice is the responsibility of others.
Caution!
It is the installer's responsibility to determine and use the proper mounting hardware for
the wall construction type.
Disregarding this caution could result in damage to the product and personal injuries may
occur.
Redundant seismic safety cable
As an added safety measure, when the loudspeaker is suspended or mounted, the user should
connect an unused rigging point to a solid structural point using an appropriate safety cable.
The cable should have a small amount of slack, but no more than ¾ inch.
These Electro-Voice loudspeakers were designed for use in an environment with
ambient temperatures between -20°C (-4°F) and +50°C (122°F).
These Electro-Voice loudspeakers are not rated for continuous outdoor
conditions. However, they may be exposed to occasional short-term rain, water,
or high humidity.
Electro-Voice loudspeakers are easily capable of generating sound pressure
levels sufficient to cause permanent hearing damage to anyone within normal
coverage distance. Caution should be taken to avoid prolonged exposure to
sound pressure levels exceeding 90 dB.
Notices
Old electrical and electronic appliances
Electrical or electronic devices that are no longer serviceable must be collected separately and
sent for environmentally compatible recycling (in accordance with the European Waste
Electrical and Electronic Equipment Directive).
To dispose of old electrical or electronic devices, you should use the return and collection
systems put in place in the country concerned.
Copyright and disclaimer
All rights reserved. No part of this document may be reproduced or transmitted in any form by
any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written permission of the publisher. For information on getting permission for reprints and
excerpts, contact Electro-Voice.
All content including specifications, data, and illustrations in this manual are subject to change
without prior notice.
The EVC-1122-VI Variable Intensity loudspeaker is a two-way design with a unique compound
waveguide that can evenly cover a defined rectangular audience area with almost no variation
in sound quality and minimal change in level. It can be used as a full-range system or as a
mid-/high-frequency enclosure matched to the EVC-1181S subwoofer. EVC loudspeakers are
voiced so that they can be seamlessly used in systems with other EV-Innovation models (EVA,
EVF, and EVH), so the EVC-1122-VI can be used in conjunction with any of these, including the
other two-way systems in the EVC series.
The high frequency section the EVC-1122-VI comprises a single 1¼-inch pure titanium dome
compression driver directly coupled to a specialized waveguide that combines the
functionality of long-throw and short-throw horns in a single acoustic device. The low
frequency section employs a high-output woofer that was developed using state-of-the-art,
computer-aided optimization to provide low distortion, high efficiency, and maximum
intelligibility at high sound pressure levels. The passive crossover implements an enhanced
fourth-order design with slopes of greater than 24 dB per octave for smooth off-axis response
and improved definition through the critical vocal range.
The EVC-1122-VI enclosure is constructed of 15-mm plywood and finished with EVCoat for
enhanced durability. The loudspeaker has been designed with M10 suspension points as well
as attachment points for an optional U-bracket. EVC series loudspeakers accept wire gauges
up to 10 AWG. The input panel also accepts optional covers with NL4-type connectors or
weatherized gland-nuts.
For 70V/100V operation, the input panel has an internal landing pad for mounting EV's highquality TK-150 audio transformer. When the transformer is installed, it engages EV's patented
Automatic Saturation Compensation (ASC), which preserves low frequency performance while
presenting a stable load to the amplifier - regardless of the number of speakers connected in
parallel. As a result, EVC loudspeakers - including the subwoofers - sound virtually identical,
whether they are used with a transformer or without.
Constant directivity vs variable intensity
Most modern loudspeaker systems designed for installation are based on a constantdirectivity approach. They are designed to provide a consistent, smooth transition from the
low-frequency woofer to the high-frequency section. Constant-directivity systems typically
have symmetrical vertical coverage patterns and constant horizontal coverage. Systems built
around single or multiple constant-directivity loudspeakers are widely used in high quality
installed sound reinforcement systems. While many implementations deliver excellent
performance, one key drawback is that SPL can vary significantly over the audience area - from
front-to-back and left-to-right. The front-to-back variation can be minimized by tilting the horn
further back or by adding appropriately delayed fill speakers, but these remedies often result
in noticeable slap echo, decreased dynamic range, and poor intelligibility because of excessive
excitation of the reverberant field.
The EVC-1122-VI attacks these shortcomings by producing a wide near-field coverage angle
and a narrow far-field angle from a single loudspeaker system. The 12-inch woofer is installed
in the enclosure at an angle so that its central axis is directed toward the last row of the
audience, using the natural off-axis roll-off the driver to deliver more consistent level to every
seat. And the unique, asymmetrical waveguide replaces a short-throw/long-throw horn
combination to evenly cover the audience area with a single device. The resulting coverage
characteristic ensures a well-defined rectangular listening area, and the more gradual intensity
change compensates for the drop in SPL over the longer distance to the back of the room. The
size of the coverage area is determined by the height at which the loudspeaker is mounted, as
well as the vertical angle at which the system is aimed. This single-box solution reduces
material costs and labor time while increasing performance with higher intelligibility and more
uniform coverage.
In summary, the major advantages of the EVC-1122-VI are:
▪Rectangular coverage pattern. Traditional waveguides deliver an elliptical pattern to the
floor. VI horns deliver a rectangular pattern, which helps to fill in the corners of the room.
No more costly delay lines.
▪Even SPL front-to-back. The unique, patented throat and flare structure of the VI
waveguide delivers more consistent sound levels throughout the room, eliminating ear
strain at the back of the seating area and painful ears at the front.
▪Greater Intelligibility. VI waveguides deliver sound to fill only the floor plan, providing
uniform direct-field SPL and an order of magnitude less energy into the reverberant field.
This provides an increase in mid- to high-frequency intelligibility of 6 dB in most
applications.
▪One horn replaces two. With VI technology we’ve eliminated the destructive interference
which occurs between long- and short-throw loudspeakers. We’ve also eliminated the
cost of a properly designed two-box system, which needs to include another power
amplifier channel for proper power control and impedance matching.
▪Labor savings in the box. Variable Intensity systems will fly more conveniently and in less
time than many competitive products. In addition, less time is spent on aiming and
repositioning. This will save you additional money.
Numbering scheme
The numbering scheme for EVC models is similar to that of other EV-Innovation loudspeakers.
It denotes the number and diameter of the woofers, the number of passbands, the coverage
pattern, and the enclosure color. For example, the EVC-1122-VIB employs a single 12-inch
woofer in a two-way configuration with our unique, compound, Variable Intensity waveguide,
and is finished in black EVCoat. Similarly, the EVC-1181S-W uses a single 18” woofer to cover
a single passband. In other words, it is a subwoofer or low-frequency system in a white
enclosure.
Finishes and colors available
EVC-1122-VI loudspeakers are finished in tough EVCoat. Unlike other EVC models, there are no
weatherized versions of the variable-intensity speaker. Like all EVC systems, the EVC-1122-VI
is available in black or white.
To find current user documentation visit our product related information at
www.electrovoice.com.
Planning the installation and aiming of the EVC-1122-VI
loudspeaker
The remarkably even coverage of the EVC-1122-VI is due not only to the unique, compound
waveguide, but is also the result of the woofer mounting angle, the spacing between woofer
and horn, and the enclosure configuration. The speaker is designed to be mounted with the
waveguide on the bottom and the woofer facing forward. This means that when installed in
the proper orientation, the grille will cover the bottom and the angled front baffle. Another
visual indicator for confirming that the loudspeaker is oriented correctly is that the EV logo is
attached to the grille in front of the woofer, and should therefore be on the front face of the
loudspeaker when viewed head on. The largest rectangular surface of the speaker should face
upward. Note that the waveguide cannot be rotated, and the loudspeaker will only exhibit its
characteristic, predictable coverage when installed as described above.
The size of the rectangular area that the loudspeaker will cover is determined by its mounting
height, as measured from the bottom rear of the loudspeaker. The horizontal coverage pattern
will maintain a width that is approximately twice as wide as the mounting height
measurement; the vertical throw will be about three times the mounting height. There is a
small area of reduced coverage on the floor directly in front of the loudspeaker, which will
help increase the gain-before-feedback margin in the area where the presenter or musicians
will likely be located. Full coverage starts at a distance equal to 6/10 of the mounting height.
These combined coverage parameters can be approximated with a simple 3:2:1 rule that
makes it easy to estimate coverage during the design phase of a project.
You can extend or reduce the vertical throw by adjusting the aiming angle of the loudspeaker.
Note that this will change both the front and rear boundaries of the coverage area, since both
are affected by aiming. The new vertical coverage extremes are defined by the following
equations:
Beginning of vertical coverage = tan(31.0° ± tilt angle) x mounting height
Limit of vertical coverage = tan(71.6° ± tilt angle) x mounting height
These values can easily be determined with the help of a scientific calculator with
trigonometric functions. The tilt angle should be entered in degrees, but the mounting height
can be in either English or metric units. Vertical aiming has no material effect on horizontal
coverage over the audience area.
Figure 3.1: Coverage area determined by mounting height and angle
The tools required to prepare the system for installation are:
▪3/16-inch (5 mm) flat blade screwdriver
▪6 mm Allen wrench
▪Phillips #2 screwdriver
Preparing the EVC loudspeakers for installation
Unpacking and inspection
Carefully open the packaging and take out the loudspeaker. Inspect the loudspeaker's
enclosure for any damage that might have happened during transportation. Each loudspeaker
is examined and tested in detail before leaving the manufacturing site. Please inform the
transport company immediately if the loudspeaker shows any damage. Being the addressee,
you are the only person who can claim damages in transit. Keep the cardboard box and all
packaging materials for inspection by the transport company.
Keeping the cardboard box including all packing materials is also recommended, even if the
loudspeaker shows no external damage.
When shipping the loudspeaker, make sure to always use its original box and packaging
materials. By packing the loudspeaker exactly as it was packed by the manufacturer, you will
guarantee optimum protection from transport damage.
4.2.2
4.2.3
Scope of delivery
Keep the original invoice that states the purchase/delivery date in a safe place.
Recommended pre-installation procedures
For any sound system, certain checks made at the installer’s place of business can prevent
expensive on-site delays. EV recommends that you take the following steps:
1.Unpack all loudspeakers in the shop.
2.Check for proper model numbers.
3.Check the overall condition of the loudspeakers.
4.Check for continuity at the loudspeaker inputs.
Once you are on site and the loudspeakers are connected, it is a good idea to check again for
continuity at the power-amplifier end of each cable run.