EM73P461A is an advanced single chip CMOS 4-bit one-time programming (OTP) micro-controller. It contains
4K/8K-byte ROM, 244-nibble RAM, 4-bit ALU, 13-level subroutine nesting, 22-stage time base, two 12-bit timer/
counters for the kernel function. EM73P461A also contains 6 interrupt sources, 1 input port, 2 bidirection ports,
LCD display (32x4), and one high speed timer/counter with melody output.
EM73P461A has plentiful operating modes (SLOW, IDLE, STOP) intended to reduce the power consumption.
FEATURESFEATURES
FEATURES
FEATURESFEATURES
• Operation voltage: 2.4V to 3.6V.
• Clock source: Dual clock system. Low-frequency oscillator is Crystal or RC oscillator (32K Hz,
• Instruction set: 109 powerful instructions for 4K ROM / 107 powerful instructoins for 8K ROM.
• Instruction cycle time : Up to 2us for 4 MHz (high speed clock).
• ROM capacity: 4096 X 8 bits / 8192 X 8 bits ROM are choosed by mask option.
• RAM capacity: 244 X 4 bits.
• Input port: 1 port (P0). P0(0..3) and IDLE releasing function are available by mask option.
• Bidirection port: 2 ports (P4, P8). P4.0 and SOUND is available by mask option. P4.1 is shared with
• 12-bit timer/counter: Two 12-bit timer/counters are programmable for timer, event counter and pulse width
• High speed timer/counter : One 8-bit high speed timer/counters is programmable for auto load timer, melody
* This specification are subject to be changed without notice.
12.27.2001
2
4-BIT MICRO-CONTROLLER FOR LCD PRODUCT4-BIT MICRO-CONTROLLER FOR LCD PRODUCT
4-BIT MICRO-CONTROLLER FOR LCD PRODUCT
4-BIT MICRO-CONTROLLER FOR LCD PRODUCT4-BIT MICRO-CONTROLLER FOR LCD PRODUCT
PreliminaryPreliminary
Preliminary
PIN DESCRIPTIONSPIN DESCRIPTIONS
PIN DESCRIPTIONS
PIN DESCRIPTIONSPIN DESCRIPTIONS
SymbolSymbol
Symbol
SymbolSymbol
V
DD
V
SS
RESETRESET-ASystem reset input signal, low active
CLKOSC-IRC clock source connecting pin
LXINOSC-B/OSC-H1Crystal/RC connecting pin for low speed clock source
LXOUTOSC-BCrystal connecting pin for low speed clock source
P0(0..3)/WAKEUP0..3INPUT-K4-bit input port with IDLE releasing function
P4.0/SOUNDI/O-R1-bit bidirection I/O port or inverse sound effect output
P4.1/TRGHI/O-Q1-bit bidirection I/O port with HTC external input
P4(2,3)I/O-Q2-bit bidirection I/O port with high current source
Pin-typePin-type
Pin-type
Pin-typePin-type
PreliminaryPreliminary
FunctionFunction
Function
FunctionFunction
Power supply (+)
Power supply (+) for programming OTP
Power supply (-)
Power supply (-) for programming OTP
Reset input signal for programming OTP
Always internal pull-up
P0.0/ACLK : address counter clock for programming OTP
P0.1/PGMB : program data to OTP cells for programming OTP
P0.2/OEB : data output enable for programming OTP
P0.3/DCLK : data in/out clock signal for programming OTP
mask option :wakeup enable, negative edge release, pull-up
SOUND disable, open-drain
SOUND disable, low current push-pull
SOUND disable, normal current push-pull
SOUND disable, high current push-pull
mask option :NMOS open-drain
PMOS open-drain
low current push-pull
normal current push-pull
high current push-pull
mask option :NMOS open-drain
PMOS open-drain
low current push-pull
normal current push-pull
high current push-pull
EM73P461AEM73P461A
EM73P461A
EM73P461AEM73P461A
* This specification are subject to be changed without notice.
12.27.2001
3
EM73P461AEM73P461A
EM73P461A
EM73P461AEM73P461A
4-BIT MICRO-CONTROLLER FOR LCD PRODUCT4-BIT MICRO-CONTROLLER FOR LCD PRODUCT
4-BIT MICRO-CONTROLLER FOR LCD PRODUCT
4-BIT MICRO-CONTROLLER FOR LCD PRODUCT4-BIT MICRO-CONTROLLER FOR LCD PRODUCT
PreliminaryPreliminary
Preliminary
PreliminaryPreliminary
PIN DESCRIPTIONSPIN DESCRIPTIONS
PIN DESCRIPTIONS
PIN DESCRIPTIONSPIN DESCRIPTIONS
SymbolSymbol
Symbol
SymbolSymbol
P8.0(INT1)I/O-S2-bit bidirection I/O port with external interrupt source input and IDLE
/WAKEUPA/DIN,releasing function
P8.2(INT0)/WAKEUPCP8.0/DIN : data input for programming OTP
P8.1(TRGB)I/O-S2-bit bidirection I/O port with time/counter A,B external input and IDLE
/WAKEUPB/DOUT,releasing function
P8.3(TRGA)P8.1/DOUT : data output for programming OTP
/WAKEUPDmask option :wakeup enable, low current push-pull
SOUNDMelody output
VA,VB, V1, V2, V3Connect the capacitors for LCD bias voltage
COM0~COM3LCD common output pins
SEG0~SEG31LCD segment output pins
TEST/VPPTest pin must be floating
Pin-type Pin-type
Pin-type
Pin-type Pin-type
FunctionFunction
Function
FunctionFunction
mask option :wakeup enable, low current push-pull
wakeup enable, normal current push-pull
wakeup disable, open-drain
wakeup disable, low current push-pull
wakeup disable, normal current push-pull
wakeup enable, normal current push-pull
wakeup disable, open-drain
wakeup disable, low current push-pull
wakeup disable, normal current push-pull
VPP : high vlotage (12V) power source for programming OTP
FUNCTION DESCRIPTIONSFUNCTION DESCRIPTIONS
FUNCTION DESCRIPTIONS
FUNCTION DESCRIPTIONSFUNCTION DESCRIPTIONS
PROGRAM ROM (4K X 8 bits)PROGRAM ROM (4K X 8 bits)
PROGRAM ROM (4K X 8 bits)
PROGRAM ROM (4K X 8 bits)PROGRAM ROM (4K X 8 bits)
4 K x 8 bits program ROM contains user's program and some fixed data.
The basic structure of program ROM can be divided into 5 parts.
1. Address 000h: Reset start address.
2. Address 002h - 00Ch : 6 kinds of interrupt service routine entry addresses.
3. Address 00Eh-086h : SCALL subroutine entry address, only available at 00Eh,016h,01Eh,026h, 02Eh,
036h, 03Eh, 046h, 04Eh, 056h, 05Eh, 066h, 06Eh, 076h, 07Eh, 086h.
5. Address 000h - FFFh : Except used as above function, the other region can be used as user's program region.
* This specification are subject to be changed without notice.
12.27.2001
4
EM73P461AEM73P461A
EM73P461A
EM73P461AEM73P461A
4-BIT MICRO-CONTROLLER FOR LCD PRODUCT4-BIT MICRO-CONTROLLER FOR LCD PRODUCT
4-BIT MICRO-CONTROLLER FOR LCD PRODUCT
4-BIT MICRO-CONTROLLER FOR LCD PRODUCT4-BIT MICRO-CONTROLLER FOR LCD PRODUCT
PreliminaryPreliminary
Preliminary
address 4096 x 8 bits
PreliminaryPreliminary
000hReset start address
002hINT0; External interrupt service routine entry address
004h HTCI; High speed timer interrupt service entry address
006hTRGA; Timer/counterA interrupt service routine entry address
008hTRGB; Timer/counter B interrupt service routine entry address
00AhTBI; Time base interrupt service routine entry address
00ChINT1; External interrupt service routine entry address
00Eh
086h
.
.
.
SCALL, subroutine call entry address
.
.
.
FFFh
User's program and fixed data are stored in the program ROM. User's program is according the PC value
to send next executed instruction code. Fixed data can be read out by two ways.
(1) Table-look-up instruction :
Table -look-up instruction is depended on the Data Pointer (DP) to indicate to ROM address, then to get the
ROM code data.
LDAXLDAX
LDAX
LDAXLDAX
LDAXILDAXI
LDAXI
LDAXILDAXI
Acc Acc
Acc
Acc Acc
Acc Acc
Acc
Acc Acc
←←
ROM[DP] ROM[DP]
←
ROM[DP]
←←
ROM[DP] ROM[DP]
←←
ROM[DP] ROM[DP]
←
ROM[DP]
←←
ROM[DP] ROM[DP]
LL
L
LL
,DP+1,DP+1
,DP+1
,DP+1,DP+1
HH
H
HH
DP is a 12-bit data register which can store the program ROM address to be the pointer for the ROM code
data. First, user load ROM address into DP by instruction "STADPL, STADPM, STADPH", then user can
get the lower nibble of ROM code data by instruction "LDAX" and higher nibble by instruction "LDAXI".
PROGRAM EXAMPLE: Read out the ROM code of address 777h by table-look-up instruction.
5. Address 0000h - 1FFFh : Except used as above function, the other region can be used as user's program region.
6. Address 1000h - 1FFFh : Fixed data stortage area.
address 8192 x 8 bits
000hReset start address
002hINT0; External interrupt service routine entry address
004hHTCI; High speed timer interrupt service entry address
006hTRGA; Timer/counterA interrupt service routine entry address
008hTRGB; Timer/counter B interrupt service routine entry address LCALL entry address
00AhTBI; Time base interrupt service routine entry address
00ChINT1; External interrupt service routine entry address
00Eh
086h
SCALL, subroutine call entry address
800h1000h
::
FFFhBank 1fixed data area
1FFFh
User's program and fixed data are stored in the program ROM. User's program is according the PC value
to send next executed instruction code. Fixed data can be read out by table-look-up instruction.
Please note that fixed data only can be stored in 8K ROM Bank 1.
The program counter is a 13-bit binary counter. The PC can defined 8K ROM.
Table-look-up instruction :
Table -look-up instruction is depended on the Data Pointer (DP) to indicate to ROM address, then to get the
ROM code data.
LDAXLDAX
LDAX
LDAXLDAX
LDAXILDAXI
LDAXI
LDAXILDAXI
Acc Acc
Acc
Acc Acc
Acc Acc
Acc
Acc Acc
←←
ROM[DP] ROM[DP]
←
ROM[DP]
←←
ROM[DP] ROM[DP]
←←
ROM[DP] ROM[DP]
←
ROM[DP]
←←
ROM[DP] ROM[DP]
LL
L
LL
,DP+1,DP+1
,DP+1
,DP+1,DP+1
HH
H
HH
DP is a 13-bit data register which can store the program ROM address to be the pointer for the ROM code
data. First, user load ROM address into DP by instruction "STADPL, STADPM, STADPH", then user can
get the lower nibble of ROM code data by instruction "LDAX" and higher nibble by instruction "LDAXI".
* This specification are subject to be changed without notice.
12.27.2001
6
EM73P461AEM73P461A
EM73P461A
EM73P461AEM73P461A
4-BIT MICRO-CONTROLLER FOR LCD PRODUCT4-BIT MICRO-CONTROLLER FOR LCD PRODUCT
4-BIT MICRO-CONTROLLER FOR LCD PRODUCT
4-BIT MICRO-CONTROLLER FOR LCD PRODUCT4-BIT MICRO-CONTROLLER FOR LCD PRODUCT
PreliminaryPreliminary
Preliminary
PROGRAM EXAMPLE: Read out the ROM code of address 1777h by table-look-up instruction for 8K ROM.
There is total 244 - nibble data RAM from address 00 to F3h
Data RAM includes 3 parts: zero page region, stacks and data area.
Increment
Address
00h~0Fh
zero page
10h~1Fh
20h~2Fh
30h~3Fh
LCD display RAM
40h~4Fh
:
B0h ~ BFh
C0h ~ CFh
D0h ~ DFh
E0h ~ EFh
F0h ~ F3h
level 0
level 4
level 8
level C
level 1
level 5
level 9
level 2
level 6
level A
level 3
level17
level B
* This specification are subject to be changed without notice.
12.27.2001
7
EM73P461AEM73P461A
EM73P461A
EM73P461AEM73P461A
4-BIT MICRO-CONTROLLER FOR LCD PRODUCT4-BIT MICRO-CONTROLLER FOR LCD PRODUCT
4-BIT MICRO-CONTROLLER FOR LCD PRODUCT
4-BIT MICRO-CONTROLLER FOR LCD PRODUCT4-BIT MICRO-CONTROLLER FOR LCD PRODUCT
PreliminaryPreliminary
Preliminary
PreliminaryPreliminary
LCD display RAM:
RAM address from 20h ~ 3Fh are the LCD display RAM area, the RAM data of this region can't be operated
by instruction LDHL xx and EXHL.
ZERO-PAGE:
From 00h to 0Fh is the location of zero-page. It is used as the pointer in zero-page addressing mode for the
instruction of "STD #k,y; ADD #k,y; CLR y,b; CMP k,y".
PROGRAM EXAMPLE: To wirte immediate data "07h" to address "03h" of RAM and to clear bit 2 of RAM.
There are 13-level (maximum) stack for user using for subroutine (including interrupt and CALL). User can
assign any level be the starting stack by giving the level number to stack pointer (SP).
When user using any instruction of CALL or subroutine, before entry the subroutine, the previous PC address
will be saved into stack until return from those subroutines, the PC value will be restored by the data saved
in stack.
DATA AREA:
Except the special area used by user, the whole RAM can be used as data area for storing and loading general
data.
ADDRESSING MODE
(1) Indirect addressing mode:
Indirect addressing mode indicates the RAM address by specified HL register.
For example: LDAM ; Acc ← RAM[HL]
STAM ; RAM[HL] ← Acc
(2) Direct addressing mode:
Direct addressing mode indicates the RAM address by immediate data.
For example: LDA x ; Acc← RAM[x]
STA x ; RAM[x] ← Acc
(3) Zero-page addressing mode
For zero-page region, user can using direct addressing to write or do any arithematic, comparsion or bit
manupulated operation directly.
For example: STD #k,y ; RAM[y] ← #k
ADD #k,y; RAM[y] ← RAM[y] + #k
* This specification are subject to be changed without notice.
12.27.2001
8
EM73P461AEM73P461A
EM73P461A
EM73P461AEM73P461A
4-BIT MICRO-CONTROLLER FOR LCD PRODUCT4-BIT MICRO-CONTROLLER FOR LCD PRODUCT
4-BIT MICRO-CONTROLLER FOR LCD PRODUCT
4-BIT MICRO-CONTROLLER FOR LCD PRODUCT4-BIT MICRO-CONTROLLER FOR LCD PRODUCT
PreliminaryPreliminary
Preliminary
PreliminaryPreliminary
PROGRAM COUNTER (4K/8K ROM)PROGRAM COUNTER (4K/8K ROM)
PROGRAM COUNTER (4K/8K ROM)
PROGRAM COUNTER (4K/8K ROM)PROGRAM COUNTER (4K/8K ROM)
Program counter ( PC ) is composed by a 12-bit counter for 4K ROM/13-bit counter for 8K ROM which indicates
the next executed address for the instruction of program ROM.
For a 4K - byte size ROM, PC can indicate address form 000h - FFFh, for BRANCH and CALL instrcutions,
PC is changed by instruction indicating.
For a 8K - byte size ROM, PC can indicate address form 0000h - 1FFFh, for BRANCH and CALL instrcutions,
PC is changed by instruction indicating.
(1) Branch instruction:(1) Branch instruction:
(1) Branch instruction:
(1) Branch instruction:(1) Branch instruction:
SBR aSBR a
SBR a
SBR aSBR a
Object code: 00aa aaaa
Condition: SF=1; PC ← PC
PC Hold original PC value+1 aaaaaa(for 4K/8K ROM)
SF=0; PC ← PC +1( branch condition not satisified )
( branch condition satisified )
11-6.a
PC Original PC value + 1
LBR aLBR a
LBR a
LBR aLBR a
Object code: 1100 aaaa aaaa aaaa
Condition: SF=1; PC ← a ( branch condition satisified )
PCaaaaaaaaaaa a(for 4K/8K ROM)
SF=0 ; PC ← PC + 2 ( branch condition not satisified )
When an interrupt is accepted, the original PC is pushed into stack and interrupt vector will be loaded into
PC,The interrupt vectors are as following:
INT0INT0
INT0 (External interrupt from P8.2)
INT0INT0
PC000000000010(for 4K ROM)
PC000000000001 0(for 8K ROM)
TRGATRGA
TRGA (Timer A overflow interrupt)
TRGATRGA
PC000000000110(for 4K ROM)
PC000000000011 0(for 8K ROM)
* This specification are subject to be changed without notice.
12.27.2001
10
TRGBTRGB
TRGB (Time B overflow interrupt)
TRGBTRGB
PC000000001000(for 4K ROM)
PC000000000100 0(for 8K ROM)
TBITBI
TBI (Time base interrupt)
TBITBI
PC000000001010(for 4K ROM)
PC000000000101 0(for 8K ROM)
INT1INT1
INT1 (External interrupt from P8.0)
INT1INT1
PC000000001100(for 4K ROM)
EM73P461AEM73P461A
EM73P461A
EM73P461AEM73P461A
4-BIT MICRO-CONTROLLER FOR LCD PRODUCT4-BIT MICRO-CONTROLLER FOR LCD PRODUCT
4-BIT MICRO-CONTROLLER FOR LCD PRODUCT
4-BIT MICRO-CONTROLLER FOR LCD PRODUCT4-BIT MICRO-CONTROLLER FOR LCD PRODUCT
PreliminaryPreliminary
Preliminary
PreliminaryPreliminary
PC000000000110 0(for 8K ROM)
(4) Reset operation:(4) Reset operation:
(4) Reset operation:
(4) Reset operation:(4) Reset operation:
PC000000000000(for 4K ROM)
PC000000000000 0(for 8K ROM)
(5) Other operations:(5) Other operations:
(5) Other operations:
(5) Other operations:(5) Other operations:
For 1-byte instruction execution: PC + 1
For 2-byte instruction execution: PC + 2
ACCUMULATORACCUMULATOR
ACCUMULATOR
ACCUMULATORACCUMULATOR
Accumulator is a 4-bit data register for temporary data. For the arithematic, logic and comparative opertion
.., ACC plays a role which holds the source data and result.
FLAGSFLAGS
FLAGS
FLAGSFLAGS
There are four kinds of flag, CF ( Carry flag ), ZF ( Zero flag ), SF ( Status flag ) and GF ( General flag ),
these 4 1-bit flags are affected by the arithematic, logic and comparative .... operation.
All flags will be put into stack when an interrupt subroutine is served, and the flags will be restored after
RTI instruction executed.
* This specification are subject to be changed without notice.
12.27.2001
11
EM73P461AEM73P461A
EM73P461A
EM73P461AEM73P461A
4-BIT MICRO-CONTROLLER FOR LCD PRODUCT4-BIT MICRO-CONTROLLER FOR LCD PRODUCT
4-BIT MICRO-CONTROLLER FOR LCD PRODUCT
4-BIT MICRO-CONTROLLER FOR LCD PRODUCT4-BIT MICRO-CONTROLLER FOR LCD PRODUCT
PreliminaryPreliminary
Preliminary
PreliminaryPreliminary
(1) Carry Flag ( CF )
The carry flag is affected by following operation:
a. Addition : CF as a carry out indicator, when the addition operation has a carry-out, CF will be "1",
in another word, if the operation has no carry-out, CF will be "0".
b. Subtraction : CF as a borrow-in indicator, when the subtraction operation must has a borrow, in the CF
will be "0", in another word, if no borrow-in, CF will be "1".
c. Comparision: CF is as a borrow-in indicator for Comparision operation as the same as subtraction
operation.
d. Rotation: CF shifts into the empty bit of accumulator for the rotation and holds the shift out data after
rotation.
e. CF test instruction : For TFCFC instruction, the content of CF sends into SF then clear itself "0".
For TTSFC instruction, the content of CF sends into SF then set itself "1".
(2) Zero Flag ( ZF )
ZF is affected by the result of ALU, if the ALU operation generate a "0" result, the ZF will be "1",
otherwise, the ZF will be "0".
(3) Status Flag ( SF )
The SF is affected by instruction operation and system status.
a. SF is initiated to "1" for reset condition.
b. Branch instruction is decided by SF, when SF=1, branch condition will be satisified, otherwise,
branch condition will not be satisified by SF = 0.
@(4) General Flag ( GF )
GF is a one bit general purpose register which can be set, clear, test by instruction SGF, CGF and TGS.
PROGRAM EXAMPLE:
Check following arithematic operation for CF, ZF, SF
@ : just for 4K ROM.
* This specification are subject to be changed without notice.
12.27.2001
12
Loading...
+ 26 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.