e2v ELIIXA+ 8k/4k CL User Manual

ELIIXA+ 8k/4k CL
Cmos Multi-Line Color Camera
Summary
ELIIXA+® 8k/4k CL Color
1 CAMERA OVERVIEW ................................................................................. 4
1.1 Features ....................................................................................................................................................... 4
1.2 Key Specifications ....................................................................................................................................... 4
1.3 Description .................................................................................................................................................. 5
1.4 Typical Applications .................................................................................................................................... 5
2 CAMERA PERFORMANCES ............................................................................ 6
2.1 Camera Characterization ............................................................................................................................ 6
2.2 Image Sensor and color modes.................................................................................................................. 7
2.2.1 True Colour Enhanced Mode (TCE) ......................................................................................................................................... 7
2.2.2 True Colour Single Mode (TCS) ............................................................................................................................................... 8
2.2.3 Full Definition Single Mode (FDS) ........................................................................................................................................... 8
2.2.4 Full Definition Enhanced Mode (FDE) ..................................................................................................................................... 9
2.3 Response & QE curves .............................................................................................................................. 10
2.3.1 Quantum Efficiency ............................................................................................................................................................... 10
2.3.2 Spectral Response................................................................................................................................................................. 10
3 CAMERA HARDWARE INTERFACE ................................................................... 11
3.1 Mechanical Drawings ................................................................................................................................ 11
3.2 Input/output Connectors and LED ........................................................................................................... 12
3.2.1 Power Connector ................................................................................................................................................................... 13
3.2.2 Status LED Behaviour ............................................................................................................................................................ 14
3.2.3 CameraLink Output Configuration ........................................................................................................................................ 14
3.2.3.1
3.2.3.2
True Color (Single or Enhanced) Full Definition (Single or Enhanced)
........................................................................................................................... 15
..................................................................................................................... 16
4 STANDARD CONFORMITY .......................................................................... 19
4.1 CE Conformity ............................................................................................................................................ 19
4.2 FCC Conformity .......................................................................................................................................... 19
4.3 RoHs Conformity ........................................................................................................................................ 19
5 GETTING STARTED ................................................................................. 21
5.1 Out of the box ............................................................................................................................................ 21
5.2 Setting up in the system ........................................................................................................................... 21
6 CAMERA SOFTWARE INTERFACE .................................................................... 22
6.1 Control and Interface ................................................................................................................................ 22
6.2 Serial Protocol and Command Format ..................................................................................................... 23
6.2.1 Syntax ................................................................................................................................................................................... 23
6.2.2 Command Processing .......................................................................................................................................................... 23
6.2.3 GenICam ready ..................................................................................................................................................................... 23
6.3 Camera Commands ................................................................................................................................... 24
6.3.1 Information ........................................................................................................................................................................... 24
6.3.2 Image Format ........................................................................................................................................................................ 26
6.3.3 Acquisition Control ............................................................................................................................................................... 30
6.3.4 Gain and Offset ...................................................................................................................................................................... 31
6.3.4.1 White Balance ...................................................................................................................................................... 32
6.3.5 Flat Field Correction .............................................................................................................................................................. 34
6.3.5.1 Activation .............................................................................................................................................................. 36
2 e2v semiconductors SAS 2014
6.3.5.2 Automatic Calibration .......................................................................................................................................... 36
6.3.5.3 Manual Flat Field Correction ................................................................................................................................ 37
6.3.5.4 FFC User Bank Management ................................................................................................................................ 38
6.3.6 Statistics and Line Profile .................................................................................................................................................... 39
6.3.7 Privilege Level ........................................................................................................................................................................ 41
6.3.8 Save & Restore Settings ........................................................................................................................................................ 41
ELIIXA+® 8k/4k CL Color
7 APPENDIX A: Test Patterns ......................................................................... 42
7.1 Test Pattern 1: Vertical wave ..................................................................................................................... 42
7.2 Test Pattern 2: Fixed Horizontal Ramps ................................................................................................... 42
8 APPENDIX B: Timing Diagrams ..................................................................... 43
8.1 Synchronization Modes with Variable Exposure Time ........................................................................... 43
8.2 Synchronisation Modes with Maximum Exposure Time ........................................................................ 44
8.3 Timing Values ............................................................................................................................................ 44
9 APPENDIX C: CameraLink Data Cables .............................................................. 45
9.1 Choosing the Cable ................................................................................................................................... 45
9.2 Choosing the Data Rate ............................................................................................................................ 46
10
APPENDIX D: Lens Mounts ...................................................................... 47
10.1 F-Mount ...................................................................................................................................................... 47
10.2 T2 & M42x1 Mounts ............................................................................................................................... 48
11 APPENDIX E: Troubleshooting ...................................................................... 49
11.1 Camera ....................................................................................................................................................... 49
11.2 CommCam Connection ............................................................................................................................. 49
12
APPENDIX F: Commands ........................................................................ 50
12.1 Device Control ........................................................................................................................................... 50
12.2 Image Format ......................................................................................................................................... 50
12.3 Synchro and Acquisition ....................................................................................................................... 51
12.4 Gain & Offset .......................................................................................................................................... 51
12.5 Flat Field Correction .................................................................................................................................. 52
12.6 Save and Restore ................................................................................................................................... 52
12.7 Camera Status ........................................................................................................................................... 53
12.8 Communication ..................................................................................................................................... 53
12.9 Line Profile Average ............................................................................................................................... 53
13
APPENDIX G: Revision History ................................................................... 55
3 e2v semiconductors SAS 2014
1 CAMERA OVERVIEW
Characteristics
Typical Value
Unit
Sensor Characteristics at Maximum Pixel Rate
Resolution
8192 or 4096
RGB Pixels
pixel size (square)
5 or 10
µm
Max line rate
4096 RGB Pixels True Color Mode
66
kHz
8192 RGB Pixels Full Definition Modes
50
kHz
Radiometric Performance at Maximum Pixel Rate and minimum camera gain
Bit depth
3 x 8
Bits
Response (Peak) : True Color or Full Def Enhanced
Red
11.8
LSB 8bits/(nJ/cm²)
Green
11.2
LSB 8bits/(nJ/cm²)
Blue
7.8
LSB 8bits/(nJ/cm²)
Response non linearity
< 1
%
PRNU HF Max
3
%
Dynamic range
65
dB
1.1 Features
Cmos Colour Sensor :
o 8192 RGB Pixels, 5 x 5µm (Full Definition) o
4096 RGB Pixels 10x10µm (True Colour)
Interface : CameraLink® (up to 10 Taps at 85MHz) Line Rate :
o Up to 50000 l/s In 8k Full Definition Mode o Up to 66000 l/s in 4k True Colour Mode
 Bit Depth : 24bits (RGB 8bits)  Scan Direction
Flat Field Correction
 Low Power Consumption : <9W  F-Mount compliance
1.2 Key Specifications
ELIIXA+® 8k/4k CL Color
4 e2v semiconductors SAS 2014
ELIIXA+® 8k/4k CL Color
Functionality (Programmable via GenICam Control Interface)
Analog Gain
Up to 12 (x4)
dB
Offset
-4096 to +4096
LSB
Trigger Mode
Timed (Free run) and triggered (Ext Trig, Ext ITC) modes
Sensor Modes
True Color Enhanced : 4096 RGB Pixels of 10x10µm True Color Single : 4096 RGB Pixels of 10x10µm Full Definition Enhanced : 8192 RGB Pixels 5x5µm Full Definition Single : 8192 RGB Pixels 5x5µm
Mechanical and Electrical Interface
Size (w x h x l)
126 x 60 x 35
mm
Weight
360
g
Lens Mounts
F, T2, M42
-
Sensor alignment ( see chapter 4 )
±100
µm
Sensor flatness
±35
µm
Power supply
12 - 24
V
Power dissipation – Typ. while grabbing
< 9
W
General Features
Operating temperature
0 to 55 (front face) or 70 (Internal)
°C
Storage temperature
-40 to 70
°C
Regulatory
CE, FCC and RoHS compliant
1.3 Description
e2v’s next generation of line scan cameras are setting new, high standards for line rate and image quality. Thanks to e2v’s recently developed multi-line CMOS technology, the camera provides an unmatched 100,000 lines/s and
combines high response with an extremely low noise level; this delivers high signal to noise ratio even when short integration times are required or when illumination is limited. The 5μm pixel size is arranged in four active lines and dual line filter configuration allowing the camera to be operated in several modes: True colour mode with 10μm RGB pixels to provide equivalent colour fidelity to 10μm pixel tri-linear solutions with advanced immunity to web variation or Full definition mode with a 8192 RGB pixel resolution.
1.4 Typical Applications
Raw material surface inspection Flat panel display inspection PCB inspection Solar cell inspection Parcel and postal sorting High resolution document scanning Print and paper inspection
5 e2v semiconductors SAS 2014
2 CAMERA PERFORMANCES
Unit
True Color (8k)
Full Definition Single
Full Definition Enhanced
Typ.
Max
Typ.
Max
Typ.
Max
Dark Noise RMS
LSB
0.12
1.2
0.11
1.2
0.12
1.2
Dynamic Range
-
2125:1
-
2125:1
-
2125:1
-
RMS Noise (3/4 Sat)
LSB
2.2 - 2.15 4 2.2
4
Full Well Capacity
e-
(per color)
13650
-
13650
-
13650
-
SNR (3/4 Sat)
dB
40 - 40 - 40
-
Peak Response
(460/530/660nm)
LSB 8bits/
(nJ/cm2)
8/10/12
-
4/5/6
-
8/10/12
-
Non Linearity
%
0,3 - 0,3 - 0,3
-
Without Flat Field Correction :
FPN rms
LSB
0.21
1
0.23 1 0.22
1
FPN pk-pk
LSB 1 2 1 2 1 2
PRNU hf (3/4 Sat)
%
0.13
0,35
0.123
0,35
0.14
0,35
PRNU pk-pk (3/4 Sat)
%
1.1 3 1 3 1.25
3
2.1 Camera Characterization
ELIIXA+® 8k/4k CL Color
Test conditions :
All values are given at Nominal Gain (0dB) : Preamp Gain x1, Amp Gain 0dB Figures in LSB are for a 8bits format Measured at exposure time = 400µs and line period = 400µs in Ext Trig Mode (Max Exposure Time) Maximum data rate
6 e2v semiconductors SAS 2014
2.2 Image Sensor and color modes
8192 Pixels
ADC Column
ADC Column
Intermediate Blind Pixel
Pixel Line A
Pixel Line B
Pixel Line C
Pixel Line D
Intermediate Blind Pixel
Web
Direction
Delay : 1 line
Double Green :
Vertical Binning
Double Red :
Vertical Binning
Double Blue :
Vertical Binning
Pixel 10µm
{RGB}
Double Green :
Vertical Binning
Green Pixels
averaging
The Eliixa+ Colour 8k sensor is composed of two pairs of sensitive lines.
The Colour version has been completed with RGB colour Filter and disposed as detailed beside.
Each pair of lines use the same Analog to Digital Column converter (ADC Column). An appropriate (embedded) Time delay in the exposure between each line this allows to combine two successive exposures in order to double the sensitivity of a single line.
This Time Delay Exposure is used only in the Full Definition Enhanced mode (See Below).
ELIIXA+® 8k/4k CL Color
2.2.1 True Colour Enhanced Mode (TCE)
10µm pixels (R,G,B) Twice less pixels than B/W Requires x3/2 the data flow of B&W
High Sensitivity True Color mode:
Equivalent to 6 x Pixels of 5µm (with their respective colour filters).
“Full Exposure control” not needed in
TC as the TDI is not active (only binning). The Exposure time can be control as for a single line mode.
of 10µm
7 e2v semiconductors SAS 2014
2.2.2 True Colour Single Mode (TCS)
Single Red
Single Blue
Pixel 10µm
{RGB}
One Pixel 10x10µm
In the same time
Simple Green
Double Green
Web
Direction
Delay : 1 line
Single Green
Single Red
Single Blue
Blue or Red
Interpolated
(*)
Pixel 5µm
{RGB}
Single Green
Web
Direction
10µm pixels (R,G,B) Twice less pixels than B/W Requires x3/2 the data flow of B&W
Sensitivity Half of the TCE mode:
Equivalent to 6 x Pixels of 5µm (with their respective colour filters).
“Full Exposure control” not needed in
TC as the TDI is not active (only binning). The Exposure time can be control as for a single line mode.
Not sensitive to the Scanning direction
and the variation of the aspect ratio of the image.
grabbed
ELIIXA+® 8k/4k CL Color
2.2.3 Full Definition Single Mode (FDS)
5µm pixels (R,G,B) Same definition than B&W Requires x3 the data flow of the B&W
Sensitivity is half of the TC mode
available : Equivalent to 3 x Pixels of 5µm (with their respective colour filters).
“Full Exposure control” not needed in
this mode as the Time Delay Exposure is not active. The Exposure time can be control as for a single line mode.
of 5µm
8 e2v semiconductors SAS 2014
2.2.4 Full Definition Enhanced Mode (FDE)
Delay : 1 line
Double Green
TDE
Double Green
TDE
Double Red
TDE
Double Blue
Blue or Red
Interpolated
(*)
Pixel 5µm
{RGB}
Web
Direction
5µm pixels (R,G,B) Same definition than B&W Requires x3 the data flow of the B&W
Sensitivity is the same as the TC mode
available : Equivalent to 6 x Pixels of 5µm (with their respective colour filters).
“Full Exposure control” is activated in
this mode as the Time Delay Exposure is active.
of 5µm
ELIIXA+® 8k/4k CL Color
9 e2v semiconductors SAS 2014
2.3 Response & QE curves
2.3.1 Quantum Efficiency
ELIIXA+® 8k/4k CL Color
2.3.2 Spectral Response
This Response is for a single 5x5µm pixel of each color (True Color Single or Full Definition Single modes).
10 e2v semiconductors SAS 2014
3 CAMERA HARDWARE INTERFACE
The Step file is available on
the web :
www.e2v.com/cameras
X
Y
Z
3.1 Mechanical Drawings
ELIIXA+® 8k/4k CL Color
11 e2v semiconductors SAS 2014
Sensor alignment
Z = -10.3 mm
±100µm
X = 9.5 mm
±100 µm
Y = 62.5mm
±100 µm
Flatness
50 µm
Rotation (X,Y plan)
±0,15°
Tilt (versus lens mounting plane)
50µm
USB Connector
Power Connector :
12-24V DC
Multi-Colored
CameraLink
CameraLink
3.2 Input/output Connectors and LED
For Firmware
upgrade
LED for Status
and diagnostic
Connector CL2
ELIIXA+® 8k/4k CL Color
Connector CL1
12 e2v semiconductors SAS 2014
ELIIXA+® 8k/4k CL Color
Camera side description
Signal
Pin
Signal
Pin
PWR
1
GND
4
PWR
2
GND 5 PWR
3
GND
6
Power supply from 12 to 24v
Power 7,5W max with an typical inrush current peak of
1A
during power up
Camera supply
(Line Period Minimum)
Supply 12V
Supply 24V
I(mA)
P(W)
I(mA)
P(W)
Full 8Taps
605
7.26
303
7.272
Deca 10Taps
613
7.356
308
7.392
Base 3Taps RGB
589
7.068
298
7.152
Medium 2x 3Taps RGB
598
7.176
302
7.248
3.2.1 Power Connector
Camera connector type: Hirose HR10A-7R-6PB (male) Cable connector type: Hirose HR10A-7P-6S (female)
Typical current/Power during the grab (possible variation : +/- 5%)
Power Time : Max 40s (Green Light)
Inrush Current Peak Current Establishment time and level
24V
12V
13 e2v semiconductors SAS 2014
ELIIXA+® 8k/4k CL Color
Colour and state
Meaning
Green
and continuous
OK
Green
and blinking slowly
Waiting for Ext Trig (Trig1 and/or Trig2)
Red
and continuous
Camera out of order : Internal firmware error
Adjacent Channels
Base : 3 Channels RGB 8bits
3 x 85MHz
Medium : 2 x 3 Channels RGB 8bits
2x 3 x 85MHz
Full : 8 Channels 8bits
8 x 85MHz
Deca : 10 Channels 8bits
10 x 85MHz
Pixels to be outputted
3.2.2 Status LED Behaviour
After less than 2 seconds of power establishment, the LED first lights up in ORANGE. Then after a Maximum of 40 seconds, the LED must turn in a following colour :
3.2.3 CameraLink Output Configuration
Sensor Mode
True Color
4096 pixels Red 8bits 4096 pixels Average Green 8bits 4096 pixels Blue 8bits
Full Definition Single
4096 Pixels Green 4096 Pixels Green 4096 Pixels Red, 8bits 4096 Pixels Blue, 8bits
Full Definition Enhanced
4096 Pixels Green
4096 Pixels Green 4096 Pixels Red, 8bits 4096 Pixels Blue, 8bits
, 8bits
red
, 8bits
blue
, 8bits
red
, 8bits
blue
Output Configuration
Base 3 x 8bits
Dual Base 2x 3x8bits
Full 8 x 8bits
Raw mode : Number of pixels to Output is optimized. Red and Blue Are not interpolated.
Deca 10 x 8bits
Raw mode : Same as for Full 8 taps.
14 e2v semiconductors SAS 2014
3.2.3.1 True Color (Single or Enhanced)
Tap1
RED
RED
RED
RED
RED
RED
RED
RED RED
RED
RED
RED
RED
RED 1 3 5 7 9 11
13
15 8181
8183
8185
8187
8189
8191
Tap2 GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN 1 2 3 4 5 6 7 8 4091
4092
4093
4094
4095
4096
Tap3
BLUE
BLUE
BLUE
BLUE
BLUE
BLUE
BLUE
BLUE BLUE
BLUE
BLUE
BLUE
BLUE
BLUE
2 4 6 8 10
12
14
16 8182
8184
8186
8188
8190
8192
Tap1
RED
RED
RED
RED
RED
RED
RED
RED RED
RED
RED
RED
RED
RED 1 2 3 4 5 6 7 8 2043
2044
2045
2046
2047
2048
Tap2 GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN 1 2 3 4 5 6 7 8 2043
2044
2045
2046
2047
2048
Tap3
BLUE
BLUE
BLUE
BLUE
BLUE
BLUE
BLUE
BLUE BLUE
BLUE
BLUE
BLUE
BLUE
BLUE
1 2 3 4 5 6 7 8
2043
2044
2045
2046
2047
2048
Tap4
RED
RED
RED
RED
RED
RED
RED
RED RED
RED
RED
RED
RED
RED
2049
2050
2051
2052
2053
2054
2055
2056 4091
4092
4093
4094
4095
4096
Tap5 GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
2049
2050
2051
2052
2053
2054
2055
2056 4091
4092
4093
4094
4095
4096
Tap6
BLUE
BLUE
BLUE
BLUE
BLUE
BLUE
BLUE
BLUE BLUE
BLUE
BLUE
BLUE
BLUE
BLUE
2049
2050
2051
2052
2053
2054
2055
2056 4091
4092
4093
4094
4095
4096
Tap1
RED
BLUE
GREEN
RED
BLUE
GREEN
RED
BLUE RED
BLUE
GREEN
RED
BLUE
GREEN
1 3 6 9 11
14
17
19 4081
4083
4086
4089
4091
4094
Tap2 GREEN
RED
BLUE
GREEN
RED
BLUE
GREEN
RED GREEN
RED
BLUE
GREEN
RED
BLUE 1 4 6 9
12
14
17
20 4081
4084
4086
4089
4092
4094
Tap3
BLUE
GREEN
RED
BLUE
GREEN
RED
BLUE
GREEN BLUE
GREEN
RED
BLUE
GREEN
RED
1 4 7 9 12
15
17
20 4081
4084
4087
4089
4092
4095
Tap4
RED
BLUE
GREEN
RED
BLUE
GREEN
RED
BLUE RED
BLUE
GREEN
RED
BLUE
GREEN
2 4 7
10
12
15
18
20 4082
4084
4087
4090
4092
4095
Tap5 GREEN
RED
BLUE
GREEN
RED
BLUE
GREEN
RED GREEN
RED
BLUE
GREEN
RED
BLUE
2 5 7
10
13
15
18
21 4082
4085
4087
4090
4093
4095
Tap6
BLUE
GREEN
RED
BLUE
GREEN
RED
BLUE
GREEN BLUE
GREEN
RED
BLUE
GREEN
RED 2 5 8 10
13
16
18
21 4082
4085
4088
4090
4093
4096
Tap7
RED
BLUE
GREEN
RED
BLUE
GREEN
RED
BLUE RED
BLUE
GREEN
RED
BLUE
GREEN
3 5 8
11
13
16
19
21 4083
4085
4088
4091
4093
4096
Tap8 GREEN
RED
BLUE
GREEN
RED
BLUE
GREEN
RED GREEN
RED
BLUE
GREEN
RED
BLUE
3 6 8
11
14
16
19
22 4083
4086
4088
4091
4094
4096
In Base Output Mode
In Medium or Dual Base Output Mode Connector 1
Connector 2
ELIIXA+® 8k/4k CL Color
In Full 8 Taps Output Mode Connector 1
Connector 2
15 e2v semiconductors SAS 2014
ELIIXA+® 8k/4k CL Color
Tap1
RED
GREEN
BLUE
RED
GREEN
BLUE
RED
GREEN BLUE
RED
GREEN
BLUE
RED
GREEN 1 4 7 11
14
17
21
24 4077
4081
4084
4087
4091
4094
Tap2 GREEN
BLUE
RED
GREEN
BLUE
RED
GREEN
BLUE RED
GREEN
BLUE
RED
GREEN
BLUE
1 4 8
11
14
18
21
24 4078
4081
4084
4088
4091
4094
Tap3
BLUE
RED
GREEN
BLUE
RED
GREEN
BLUE
RED GREEN
BLUE
RED
BLUE
BLUE
RED
1 5 8
11
15
18
21
25 4078
4081
4085
4088
4091
4095
Tap4
RED
GREEN
BLUE
RED
GREEN
BLUE
RED
GREEN BLUE
RED
GREEN
BLUE
RED
GREEN 2 5 8 12
15
18
22
25 4078
4082
4085
4088
4092
4095
Tap5
GREEN
BLUE
RED
GREEN
BLUE
RED
GREEN
BLUE RED
GREEN
BLUE
RED
GREEN
BLUE
2 5 9
12
15
19
22
25 4079
4082
4085
4089
4092
4095
Tap6
BLUE
RED
GREEN
BLUE
RED
GREEN
BLUE
RED GREEN
BLUE
RED
GREEN
BLUE
RED
2 6 9
12
16
19
22
26 4079
4082
4086
4089
4092
4096
Tap7
RED
GREEN
BLUE
RED
GREEN
BLUE
RED
GREEN BLUE
RED
GREEN
BLUE
RED
GREEN
3 6 9
13
16
19
23
26 4079
4083
4086
4089
4093
4096
Tap8
GREEN
BLUE
RED
GREEN
BLUE
RED
GREEN
BLUE RED
GREEN
BLUE
RED
GREEN
BLUE 3 6
10
13
16
20
23
26 4080
4083
4086
4090
4093
4096
Tap9 BLUE
RED
GREEN
BLUE
RED
GREEN
BLUE
RED GREEN
BLUE
RED
GREEN
BLUE
3 7 10
13
17
20
23
27 4080
4083
4087
4090
4093
Tap10
RED
GREEN
BLUE
RED
GREEN
BLUE
RED
GREEN BLUE
RED
GREEN
BLUE
RED 4 7 10
14
17
20
24
27 4080
4084
4087
4090
4094
Tap1
RED
RED
RED
RED
RED
RED
RED
RED RED
RED
RED
RED
RED
RED 1 2 3 4 5 6 7 8 8187
8188
8189
8190
8191
8192
Tap2
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN 1 2 3 4 5 6 7 8 8187
8188
8189
8190
8191
8192
Tap3
BLUE
BLUE
BLUE
BLUE
BLUE
BLUE
BLUE
BLUE BLUE
BLUE
BLUE
BLUE
BLUE
BLUE
1 2 3 4 5 6 7 8
8187
8188
8189
8190
8191
8192
In Deca 10 Taps Output Mode
Connector 1
Connector 2
3.2.3.2 Full Definition (Single or Enhanced)
In Base Output Mode
16 e2v semiconductors SAS 2014
ELIIXA+® 8k/4k CL Color
Tap4
RED
RED
RED
RED
RED
RED
RED
RED RED
RED
RED
RED
RED
RED
4097
4098
4099
4100
4101
4102
4103
4104 8187
8188
8189
8190
8191
8192
Tap5
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
4097
4098
4099
4100
4101
4102
4103
4104 8187
8188
8189
8190
8191
8192
Tap6
BLUE
BLUE
BLUE
BLUE
BLUE
BLUE
BLUE
BLUE BLUE
BLUE
BLUE
BLUE
BLUE
BLUE
4097
4098
4099
4100
4101
4102
4103
4104 8187
8188
8189
8190
8191
8192
Tap1
BLUE
RED
BLUE
RED
BLUE
RED
BLUE
RED BLUE
RED
BLUE
RED
BLUE
RED
1 2 3 4 5 6 7 8
2043
2044
2045
2046
2047
2048
Tap2
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
1 2 3 4 5 6 7 8
2043
2044
2045
2046
2047
2048
Tap3
BLUE
RED
BLUE
RED
BLUE
RED
BLUE
RED BLUE
RED
BLUE
RED
BLUE
RED
2049
2050
2051
2052
2053
2054
2055
2056 4091
4092
4093
4094
4095
4096
Tap4
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
2049
2050
2051
2052
2053
2054
2055
2056 4091
4092
4093
4094
4095
4096
Tap5
BLUE
RED
BLUE
RED
BLUE
RED
BLUE
RED BLUE
RED
BLUE
RED
BLUE
RED
4097
4098
4099
4100
4101
4102
4103
4104 6139
6140
6141
6142
6143
6144
Tap6
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
4097
4098
4099
4100
4101
4102
4103
4104 6139
6140
6141
6142
6143
6144
Tap7
BLUE
RED
BLUE
RED
BLUE
RED
BLUE
RED BLUE
RED
BLUE
RED
BLUE
RED
6145
6146
6147
6148
6149
6150
6151
6152 8187
8188
8189
8190
8191
8192
Tap8
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
6145
6146
6147
6148
6149
6150
6151
6152 8187
8188
8189
8190
8191
8192
Tap1
RED
RED
RED
RED
RED
RED
RED
RED RED
RED
RED
RED
RED
RED
1 2 3 4 5 6 7 8
4091
4092
4093
4094
4095
4096
Tap2
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
1 2 3 4 5 6 7 8
4091
4092
4093
4094
4095
4096
Tap3
BLUE
BLUE
BLUE
BLUE
BLUE
BLUE
BLUE
BLUE BLUE
BLUE
BLUE
BLUE
BLUE
BLUE 1 2 3 4 5 6 7 8 4091
4092
4093
4094
4095
4096
In Medium or Dual Base Output Mode Connector 1
Connector 2
In Full 8 Taps Output Mode Connector 1
Connector 2
17 e2v semiconductors SAS 2014
ELIIXA+® 8k/4k CL Color
Tap1
BLUE
RED
BLUE
RED
BLUE
RED
BLUE
RED BLUE
RED
BLUE
RED
BLUE
RED
1 2 3 4 5 6 7 8
1633
1634
1635
1636
1637
1638
Tap2
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
1 2 3 4 5 6 7 8
1633
1634
1635
1636
1637
1638
Tap3
BLUE
RED
BLUE
RED
BLUE
RED
BLUE
RED BLUE
RED
BLUE
RED
BLUE
RED
1639
1640
1641
1642
1643
1644
1645
1646 3271
3272
3273
3274
3275
3276
Tap4
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
1639
1640
1641
1642
1643
1644
1645
1646 3271
3272
3273
3274
3275
3276
Tap5
BLUE
RED
BLUE
RED
BLUE
RED
BLUE
RED BLUE
RED
BLUE
RED
BLUE
RED
3277
3278
3279
3280
3281
3282
3283
3284 4909
4910
4911
4912
4913
4914
Tap6 GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
3277
3278
3279
3280
3281
3282
3283
3284 4909
4910
4911
4912
4913
4914
Tap7
BLUE
RED
BLUE
RED
BLUE
RED
BLUE
RED BLUE
RED
BLUE
RED
BLUE
RED
4915
4916
4917
4918
4919
4920
4921
4922 6547
6548
6549
6550
6551
6552
Tap8 GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
4915
4916
4917
4918
4919
4920
4921
4922 6547
6548
6549
6550
6551
6552
Tap9
BLUE
RED
BLUE
RED
BLUE
RED
BLUE
RED BLUE
RED
BLUE
RED
BLUE
RED
6553
6554
6555
6556
6557
6558
6559
6560 8185
8186
8187
8188
8189
8190
Tap10
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
GREEN
6553
6554
6555
6556
6557
6558
6559
6560 8185
8186
8187
8188
8189
8190
In Deca 10 Taps Output Mode Connector 1
Connector 2
18 e2v semiconductors SAS 2014
4 STANDARD CONFORMITY
The ELIIXA+ cameras have been tested using the following equipment:
A shielded power supply cable A Camera Link data transfer cable ref. MVC-1-1-5-2M from CEI (Component Express, Inc.)
e2v recommends using the same configuration to ensure the compliance with the following standards.
4.1 CE Conformity
The ELIIXA+ cameras comply with the requirements of the EMC (European) directive 2004/108/CE (EN50081-2, EN 61000-6-2).
4.2 FCC Conformity
The ELIIXA+ cameras further comply with Part 15 of the FCC rules, which states that: Operation is subject to the following two conditions:
This device may not cause harmful interference, and This device must accept any interference received, including interference that may cause undesired operation
This equipment has been tested and found to comply with the limits for Class A digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.
Warning: Changes or modifications to this unit not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.
ELIIXA+® 8k/4k CL Color
4.3 RoHs Conformity
ELIIXA+ cameras comply with the requirements of the RoHS directive 2011/65/EU.
19 e2v semiconductors SAS 2014
ELIIXA+® 8k/4k CL Color
20 e2v semiconductors SAS 2014
5 GETTING STARTED
There is no CDROM delivered with the Camera : Both User Manual (this document) and CommCam control software have to be downloaded from the web site : This ensure you to have an up-to-date version.
Main Camera page : www.e2v.com/cameras
On the appropriate Camera Page (ELIIXA+ 8k/4k color) you’ll find a download link first version of CommCam compliant is indicated in the last Chapter CommCam download requires a login/password :
Login : commcam
Password : chartreuse
FOV
L
=
FOV
Focal Plan
Sensor Plan
f
L
w
s
Web
Direction
First
Pixel
Readout
Direction
5.1 Out of the box
The contains of the Camera box is the following :
- One Camera ELIIXA+
- Power connector (
Hirose HR10A-7P-6S -female)
ELIIXA+® 8k/4k CL Color
5.2 Setting up in the system
The Compliant Lenses Mounts are detailed in Appendix D
21 e2v semiconductors SAS 2014
6 CAMERA SOFTWARE INTERFACE
6.1 Control and Interface
As all the e2v Cameras, the ELIIXA+ CL is delivered with the friendly interface control software COMMCAM.UCL (as “Ultimate Camera Link”) which is based on the GenICam standard COMMCAM recognizes and detects automatically all the UCL Cameras connected on any transport layers (Camera Link or COM ports) of your system. Once connected to the Camera you have an easy access to all its features. The visibility of these features can be associated to three types of users: Beginner, Expert or Guru. Then you can make life easy for simple users. Minimum version of CommCam is 2.2.0 in order to recognize the ELIIXA+ 8k/4k color Camera.
ELIIXA+® 8k/4k CL Color
22 e2v semiconductors SAS 2014
6.2 Serial Protocol and Command Format
The camera return code has to be received before sending a new command. Some commands are longer than the others : Waiting for the return code ensure a good treatment of all the commands Without saturating the buffer of the camera
Returned code
meaning
>0
(or “>OK”) : All right, the command will be implemented
>3
Error Bad CRC (for write command only)
>16
Invalid Command ID (Command not recognized or doesn't exist)
>33
Invalid Access (the receipt of the last command has failed).
>34
Parameter out of range (the parameter of the last command sent is out of range).
>35
Access Failure (bad communication between two internal devices).
The Camera Link interface provides two LVDS signal pairs for communication between the camera and the frame grabber. This is an asynchronous serial communication based on RS -232 protocol. The serial line configuration is:
 Full duplex/without handshaking  9600 bauds (default), 8-bit data, no parity bit, 1 stop bit. The baud rate can be set up to 115200
6.2.1 Syntax
Internal camera configurations are activated by write or readout commands. The command syntax for write operation is:
w <command_name> <command_parameters><CR>
The command syntax for readout operation is:
r <command_name><CR>
6.2.2 Command Processing
Each command received by the camera is processed:
 The setting is implemented (if valid)  The camera returns “>”<return code><CR>
The camera return code has to be received before sending a new command.
ELIIXA+® 8k/4k CL Color
Table 5-1. Camera Returned Code
6.2.3 GenICam ready
The CameraLink Standard is not yet compliant with GenICam Standard, but as much as possible, each command of the ELIIXA+ will have its correspondence with the Standard Feature Naming Convention of the GenIcam Standard. This correspondence is given in parenthesis for each feature/command as the following example :
Vendor name (
DeviceVendorName
) : “e2v
23 e2v semiconductors SAS 2014
6.3 Camera Commands
6.3.1 Information
These values allow to indentify the Camera. They can be accessed in CommCam software in the “Info” section
All these values are fixed in factory and can’t be changed (shaded) except the Camera User ID which can be fixed by the
Customer :
Vendor name (
Read function : “r vdnm”;
Returned by the camera : “e2v”, string of 32 bytes (including “/0”)
Can not be written
Model Name (
Read function : “r mdnm”;
Returned by the camera : String of 32 bytes (including “/0”) :
Can not be written
Device Manufacturer Info (
Read function : “r idnb”;
Returned by the camera : String of 128 bytes (including “/0”)
Can not be written
Device Version (
Read function : “r dhwv”;
Returned by the camera : String of 32 bytes (including “/0”)
Can not be written
Device Firmware Version (
Read function : “r dfwv”;
Returned by the camera : String of 16 bytes (including “/0”)
Can not be written
Device SFNC Version : 1.5.0
These Parameters (Major, Minor, Sub Minor) are only virtual ones in order to give the SFNC compliance of the Camera.
Device ID (
Read function : “r cust”;
Returned by the camera : String of 128 bytes (including “/0”)
Write function : “w cust <idstr>
Device User ID (
Read function : “r cust”;
Returned by the camera : String of 128 bytes (including “/0”)
Write function : “w cust <idstr>
Electronic board ID (
Read function : “r boid”;
Returned by the camera : String of 32 bytes (including “/0”)
Can not be written
Device Temperature Selector (
Can not be written
DeviceVendorName
DeviceModelName
DeviceVersion
DeviceID
) : Camera Factory identifier ID
DeviceUserID
DeviceFirmwareVersion
ElectronicBoardID
) : “e2v”
) : Internal name for GenICam :
DeviceManufacturerInfo
) : Get Camera Hardware version
) : Camera user identifier ID
) : Get PcB Board ID
) : Get Camera ID
): Get camera synthetic firmware
DeviceTemperatureSelector
) : MainBoard
ELIIXA+® 8k/4k CL Color
24 e2v semiconductors SAS 2014
ELIIXA+® 8k/4k CL Color
A standby mode, what for ?
The Standby mode stops all activity on the sensor level. The power dissipation drops down to about 6W. During the standby mode, the grab is stopped
Once the Standby mode turned off, the Camera recovers in less than 1ms to send images again from the sensor.
Internal Temperature
25
30
35
40
45
50
55
60
65
70
75
0571020304050607080
90
100
110
120
130
140
Time (mn)
°C
Standby Off Standby On
Device Temperature (
Read function : “r temp”;
Return by the camera : Temperature in Q10.2 format (8 bits signed + 2 bits below comma). Value is between -512 to 511 in °C.
Device Serial Port Selection : Indicates the Serial Port on which the Camera is connected. Device Serial Port Baud Rate (
Read function : “r baud”;
Returned by the camera : Value of the Baud Rate
Write function : “w baud” <index> with the index as follows :
1 : 9600 Bauds (default value at power up) 2 : 19200Bauds 6 : 57600Bauds 12 : 115200Bauds
Standby Mode (
Read function : “r stby”;
Returned by the camera : Boolean.
0 : Disable Standby mode (False) 1 : Enable stanby mode (True)
Write function : “w stby <val>”; <val> is 0 or 1.
DeviceTemperature
Standby
) : Activation of the Standby mode of the Camera
) : Get Main Board Temperature
ComBaudRate
): Set the Camera BaudRate
Camera status : Get the Camera status register (32bits Integer)
Read function : “r stat”;
Returned by the camera : 32bits integer :
Bit 0 : ( Bit 1 : (
25 e2v semiconductors SAS 2014
Bit 2 : ( Bit 3, 4, 5, 6, 7 : Reserved Bit 8 : ( Bit 9 : ( Bits 10 : Reserved Bits 11 : Scrolling Direction : 0 = Forward, 1 = Reverse. Updated only by external CC3 (CameraLink) Bits, 12, 13, 14, 15 : Reserved Bit 16 : ( Bits 17 to 31 : Reserved
StatusWaitForTrigger
StatusTriggerTooFast
) : True if no trig received from more than 1sec
) : Missing triggers. Trig signal too fast
StatusSensorConnection
StatusWarningOverflow StatusWarningUnderflow
StatusErrorHardware
) : True if hardware error detected
) : True is the Sensor pattern is checked as failed.
) : True is an overflow occurs during FFC or Tap balance processing.
) : True is an underflow occurs during FFC or Tap balance processing
6.3.2 Image Format
Modes
Connector CL1
Connector CL2
Mode value
Base 3 Channels RGB 8 bits
3 x 8 bits
-
0
Dual Base 3 Channels RGB 8 bits
3 x 8 bits
3 x 8 bits
1
Full 8 Channels 8bits
8 x 8 bits
2
Full+ 10 Channels 8bits
10 x 8 bits
3
Switching between Sensor modes
The “Raw” output modes (8 or 10Taps) are achieved by loading another FPGA firmware. Then the switch
time between Base or Dual Base modes and Full 8taps or Full+ 10Taps mode is about several seconds (maximum 9s). When these output modes are activated, the Color selection (see below p29) is no more possible.
Sensor Width (
Format Control” section :
Read function : “r snsw”;
Return by the sensor : Integer 8192.
Can not be written;
Sensor Height (
Format Control” section :
No Access. Virtual command in xml”; Value always = 1
Width Max (
Control” section :
No Access. The value is mapped on “SensorWidth”
Height Max (
Control” section :
No Access. Virtual command in xml”; Value always = 1
Output mode (
Configuration). This command is available in the CommCam “Image Format Control” section :
Read function : “r mode”;
Returned by the camera : Output mode from 0 to 3 (see table below).
Write function : “w mode” <value> :
detailed in the table below :
SensorWidth
SensorHeight
WidthMax
HeigthMax
OutputMode
ELIIXA+® 8k/4k CL Color
) : Get the physical width of the Sensor. This value is available in the CommCam “Image
) : Get the physical height of the Sensor. This value is available in the CommCam “Image
) : Get the Maximum Width of the Sensor. This value is available in the CommCam “Image Format
) : Get the Maximum height of the Sensor. This value is available in the CommCam “Image Format
) : Set the CameraLink Output mode (refer also to Chapter : CameraLink Output
“0” : BaseRGB8bits “1” : DualBaseRGB8bits “2” : RawFull8Outputs8bits “3” : RawFullPlus10Outputs8bits
26 e2v semiconductors SAS 2014
ELIIXA+® 8k/4k CL Color
Structure of the Camera Link Channels for interfacing
Base Mode : 1 Tap RGB 24 bits (3 channels), outputted from Left to Right.
3x4096 pixels (1 RGB Tap) in True Color Mode 3x8192 pixels (1 RGB Tap) in Full Definition Modes
Dual Base Mode : 2 Taps RGB 24 bits (2 x 3 channels), outputted from Left to Right
2 x (3x2048) pixels (2 RGB Taps) in True Color Mode 2 x (3x4096) pixels (2 RGB Taps) in Full Definition Modes
The two following output modes are considered as “Monochrome” on the Frame Grabber side.
A specific interpolation on the application level is required to get back the color buffer.
FULL Mode : 8 Taps Separate, outputted from Left to Right.
8x1536 pixels each Channel in True Color Mode : 12290 pixels total.
- 4096 Green, 4096 Red and 4096 Blue pixels 8x2048 pixels each Channel in Full Definition Modes : 16380 pixels total.
- 8192 Green, 4096 Red and 4096 Blue pixels
FULL+ (Deca) Mode : 10 Taps Separate, outputted from Left to Right.
10x1229 pixels each Channel in True Color Mode : 12290 pixels total.
- 4096 Green, 4096 Red and 4096 Blue pixels. The last pixel of Tap9 and Tap10 are valid but black. 10x1638 pixels each Channel in Full Definition Modes : 16380 pixels total.
- 8190 Green, 4095 Red and 4095 Blue pixels
Ch 1
Ch 2
Ch 3
Ch 4
Ch 5
Ch 6
Ch 7
Ch 8
Ch 1
Ch 2
Ch 3
Ch 4
Ch 5
Ch 6
Ch 7
Ch 8
Ch 9
Ch 10
Tap 1
Output direction
Tap 1
Tap 2
Output direction
Output direction
Output direction
27 e2v semiconductors SAS 2014
Output Frequency (
Full Exposure Control
As the « Full Definition Enhanced » color mode is performing an internal Time delay exposure on the Four Color lines, normally, the variation of the Exposure time should not possible in this sensor mode. Thanks to an e2v licensed solution, two of the Exposure controlled mode (Ext Trig with internal or External exposure control) are still available in this color mode.
The “Free Run” synchronization mode (line Trigger and Exposure time controlled internally) is not available in the “FDE” color mode.
ADC
ADC
Memory node
Pixel Line A
Pixel Line B
Pixel Line C
Memory node
Green « Blue »
Pixels (G
B
)
Green « Red »
Pixels (GR)
GB
GB
GB
GR
GR
GR
P
n-1
P
n-1
Pn
P
n+1
P
n+2
P
n+3
P
n-1
Pn
P
n+1
Pixels in « Full Definition » modes :
Pn = R
(n-1)
, G
B(n)
, B
(n)
P
n+1
= R
(n+1)
, G
R(n+1)
, B
(n)
Each pixel has to be considered as a
5x5µm pixels. The Red or Blue information
is alternatively interpolated from the
neighbour pixel. The Enhanced mode has
the double of this information
Pixels in « True Color » modes :
Pn = R
(n)
, G
B(n)
, B
(n)
Each Pixel has to be considered as a 10x10µm
pixel including 2xGreen + 1xRed and 1x Blue,
all Pixels of 5x5µm.
The Enhanced mode has the double of this
information
OutputFrequency
CommCam “Image Format Control” section :
Read function : “r clfq”;
Return by the Camera : Frequency from 0 to 5
Write Function : “w clfq <value>”
“0” : 85MHz (default). “1” : 60MHz. “2” : 65MHz. “3” : 70MHz. “4” : 75MHz. “5” : 80MHz.
Sensor Mode (
SensorMode
CommCam “Image Format Control” section :
Read function : “r smod”;
Returned by the camera : Integer from 0 to 2
Write function : “w smod” <value> :
“0” : True Color Enhanced “1” : Full definition Single “2” : Full Definition Enhanced “3” : True Color Single
Refer to chapter §2.2 for a more detailed information about the color modes.
ELIIXA+® 8k/4k CL Color
) : Set the CameraLink Data Output Frequency. This value is available in the
) : Defines the number of Line used on the Sensor. This command is available in the
28 e2v semiconductors SAS 2014
Web
Direction
First
Pixel
Readout
Direction
Scan Direction (
Format Control” section :
Read function : “r scdi”;
Return by the Camera : 0, 1 or 2 (Forward/reverse/external)
Write function : “w scdi <value>”;
“0” : Forward. “1” : Reverse “2” : Externally controlled (by CC3 of the
CameraLink Sync signals)
Forward/reverse information has to be set correctly For the re-ordering of the colors.
ScanDirection
The Forward direction is defined as detailed beside
Note : The delay for the Camera to take in account a change in the ScanDirection value is minimum 100ms.
This information can be set dynamically by using the CC3 Trig signal of the CameraLink connector (change the direction “on the fly”). In these case, the Trigger level signification is :
“0” : Forward.
“1” : Reverse
Test Image Selector (
data comes from the Sensor or the FPGA (test Pattern). This
command is available in the CommCam “Image Format”
section :
Read function : “r srce”;
Returned by the camera : “0” if Source from the Sensor and “1 to 5” if test pattern active
Write function : “w srce” <value> :
“0” : To switch to CCD sensor image “1” : Grey Horizontal Ramp (Fixed) : See AppendixA “2” : White Pattern (Uniform white image : 255)  “3” : Grey Pattern (Uniform middle Grey : 128 on each color)) “4” : Black Pattern (Uniform white image : 0) “5” : Grey vertical Ramp (moving)
The test pattern is generated in the FPGA : It’s used to point out any interface problem with the Frame Grabber. When any of the Test pattern is enabled, the whole processing chain of the FPGA is disabled.
Color Selection :
Disables each of the 3 colors.. This command is available in the CommCam “Image Format” section.
Read function : “r cold”;
Returned by the camera : Integer corresponding to one of the 3 different step values :
Bit 0 : Red color disabled if set to 1 Bit 1 : Blue color disabled if set to 1 Bit 2 : Green (both Green
Write function : “w cold” <val> ;
The Color Selection is not possible when the Camera output mode are full or Deca (8/10 Taps) Raw modes.
TestImageSelector
ELIIXA+® 8k/4k CL Color
) : Set the scan direction for the sensor. This value is available in the CommCam “Image
:
) : Defines if the
and Green
Red
) color disabled if set to 1
Blue
29 e2v semiconductors SAS 2014
ELIIXA+® 8k/4k CL Color
The Timing diagrams associated to each Synchronization mode and the Timing values associated are detailed in the APPENDIX B of this document.
Due to the limitation of the timing pixel inside the sensor, the Exposure time has to be set by taking in account the limitation detailed in the APPENDIX B of this document. The Minimum exposure time which can be set is 1,5µs
The Tables of the minimum Line Period (Max Line Rate) versus the Data rate and the output mode chosen are given in Appendix C (Chap. 9.2) of this document.
6.3.3 Acquisition Control
This section deals with all the Exposure, Line period and synchronisation modes
Synchronisation Mode (TriggerPreset) : Timed or Triggered, it defines how the grabbing is synchronized. This command is
available in the CommCam “Acquisition Control” section :
Read function : “r sync”;
Returned by the camera :
0 : Internal Line Trigger with Exposure time Internally Controlled (Free Run).
set in “Full Definition Enhanced”
“1 : External Trigger with Exposure Time Internally Controlled.
Available also when Sensor mode is set in “Full
Definition Enhanced”.
2 : External Trigger with maximum Exposure time 3 : One External with Exposure Time Externally Controlled. The same Trigger signal defines the line period and
its low level defines the exposure time.
4 : Two External Triggers with Exposure Time Externally Controlled : CC2 defines the start of the exposure (and
also the start Line) and CC1 defines the Stop of the exposure.
Available also when Sensor mode is set in “Full Definition Enhanced”.
Not available when Sensor mode is set in “Full
Definition Enhanced”.
“5 : Internal Line Trigger with maximum Exposure Time
Write function : “w sync” <value>
Not available when Sensor mode is
Exposure time (
CommCam “Acquisition Control” section :
Read function : “r tint”;
Returned by the camera : Integer from 15 to 65535 (=1,5µs to 6553,5µs by step o 0,1µs)
Write function : “w tint” <value> ;
This value of exposure time is taken in account only when the synchronisation mode is “free run” (0) or “Ext Trig with Exposure time set” (1). Otherwise it’s ignored.
Line Period (
CommCam “Acquisition Control” section :
ExposureTime
LinePeriod
): Defines the exposure time when set in the Camera. This command is available in the
) : Defines the Line Period of the Camera in Timed mode. This command is available in the
Read function : “r tper”;
Returned by the camera : Integer from 151 to 65536 (=15,1µs to 6553,6µs by step o 100ns)
Write function : “w tper” <value> ;
The line period is active only in Free Run modes. It’s also disabled if in this mode, the Integration time is set higher than the Line Period.
30 e2v semiconductors SAS 2014
6.3.4 Gain and Offset
Analog Gain in the ADC
The only analog Gain available in the ELIIXA+ is located at the sensor level, in the ADC converter. This “Preamp Gain” is in fact a variation of the ramp of the comparator of the ADC. Then 3 Values are available : x1, x2 and x4. A gain x1 in a 12 bits conversion is equivalent to x4 in 10 bits.
x1
x2
x4
LSB
FWC
Comparator Ramps
or Format
Clamp (Black Ref)
Setting
1024
(10bits conversion)
electrons
4096
(12bits conversion)
x1
x2
x4
OUT
Pixel
X
Preamp
Gain
X
White Balance Gains
Red Green
red
Green
blue
Blue
+
X
FFC
Offset Gain
X
FFC
Adjust
FPGA
Sensor
X
Quarter
Gains
Action on whole line
Action per Color
(Not available on BA0 models)
X
Amp Gain
X
X
X
Action per pixel
Action per Sensor’s Quarter
ELIIXA+® 8k/4k CL Color
(Tap)
at different Gains
Preamp Gain : (
31 e2v semiconductors SAS 2014
Set the Pre-amplification Gain. This command is available in the CommCam “Gain & Offset” section.
Read function : “r pamp”;
Returned by the camera : Integer corresponding to one of the 3 different step values :
0 : x1 (0dB) 1 : x2 (6dB) 2 : x4 (12dB)
Write function : “w pamp” <int> ;
Gain
with
GainSelector= AnalogAll
)
Gain: (
Tap Gain (
Digital Gain (
Digital Offset (
Tap Balance Gains Enable Switch (
Gain
with
GainSelector= GainAll
Set the Amplification Gain. This command is available in the CommCam “Gain & Offset” section :
Read function : “r gain”;
Returned by the camera : Value from 0 to 6193 corresponding to a Gain range of 0dB to +8dB calculated as following : Gain(dB) = 20.log(1+ Gain/4096).
Write function : “w gain” <int> ;
Gain
with
GainSelector=Tap
Read function : “r fga<tap>”; <tap> is 1 or 2
Returns the Gain value for the tap. Ex : “
Write function : “w fga<tap> <value>”
<tap> : 1 or 2 <value> : from -128 to +127 by step of 1 (0,0021dB each step)
Gain
with
GainSelector=DigitalAll
“Gain & Offset” section :
Read function : “r gdig”;
Returned by the camera : Integer value from 0 to 255. The corresponding Gain is calculated as 20log(1+val/64) in dB
Write function : “w gdig” <int> ;
BlackLevelRaw
the CommCam “Gain & Offset” section :
Read function : “r offs”;
Returned by the camera : Value from –4096 to +4095 in LSB
Write function : “w offs” <int> ;
Read function : “r fgae”;
Returns the Tap Balance Status.
Write function : “w fgae <val>” with <val> : 0 or 1
0 : Disables the Tap Balance Gains 1 : Enables the Tap Balance Gains
)
X) :
with
BlackLevelSelector=All
TapBalanceGainEnable
ELIIXA+® 8k/4k CL Color
r fga1
” returns Gain value Tap1.
) : Set the global Digital Gain. This command is available in the CommCam
) : Set the global Digital Offset. This command is available in
) :
6.3.4.1 White Balance
As described in chapter 6.3.2, the structure of the sensor differentiates Green pixels facing Blue or Red pixels.
Then the white balance is associated with 4 color Gains :
- Red Gain
- Green
- Green
- Blue Gain
The Color Selection or enabling (Image Format Chapter) can affect the way you’re performing the white balance :
For example, if you disable the Blue and the Red color, the “White Balance” will be performed only between the two Green Gains.
The dissociation of Green (blue) and Green (Red) is justified by the possible difference of response of the two types of Green because of their respective neighbor color influence and then the necessity to tune them separately.
As usual, for a perfect White balance, provide to the Camera a non-saturating white (gray) target in the center of the sensor.
The White balance has to be performed after the Flat Field Correction as each color is performing its own FFC with its own reference.
In any case, the best tuning of the Camera Gains is performed from the left to the right of the Gain Chain described above : Preamp Gain first and quarter Gains last (if required).
Red
Blue
Gain
Gain
32 e2v semiconductors SAS 2014
The Following Gains are enabled by the White balance Enable switch :
Digital Red Gain (
in the CommCam “Gain & Offset” section :
Read function : “r gwbr”;
Returned by the camera : Integer value from 0 to 1548. The corresponding Gain is calculated as 20.log( 1 + <val>/1024) in dB
Write function : “w gwbr” <val> ;
Digital Blue Gain (
available in the CommCam “Gain & Offset” section :
Read function : “r gwbb”;
Returned by the camera : Integer value from 0 to 1548. The corresponding Gain is calculated as 20.log( 1 + <val>/1024) in dB
Write function : w gwbb” <val> ;
Digital Green
is available in the CommCam “Gain & Offset” section :
Read function : “r gwbg”;
Returned by the camera : Integer value from 0 to 1548. The corresponding Gain is calculated as 20.log( 1 + <val>/1024) in dB
Write function : “w gwbg” <val> ;
Digital Green
command is available in the CommCam “Gain & Offset” section :
Read function : “r gwbj”;
Returned by the camera : Integer value from 0 to 1548. The corresponding Gain is calculated as 20.log( 1 + <val>/1024) in dB
Write function : “w gwbj” <val> ;
White Balance Enable Switch (
CommCam “Gain & Offset” section :
Read function : “r gwbe”; Write function : “w gwbe <val>” with <val> : 0 or 1
White Balance Calibration Control (
Gains calculation. This command is available in the CommCam “Gain & Offset” section :
No Read Function Write function :
Gain
with
Gain
Gain (
Red
Blue
0 : Disables the White Balance Gains 1 : Enables the White Balance Gains
“w awbc 1” : Launch the White Balance Calibration Process. “w awbc 0” : Abort the White Balance Calibration Process.
Gain
Gain (
Returns the White Balance Gain Enable Status.
Gain
GainSelector=DigitalRed
with
GainSelector=DigitalBlue
with
GainSelector=DigitalGreenR
with
GainSelector=DigitalGreenB
WhiteBalanceEnable
AutoWhiteBalanceStart
ELIIXA+® 8k/4k CL Color
) : Set the Red Gain for the white balance. This command is available
) : Set the Blue Gain for the white balance. This command is
) : Set the Green
) : Set the Green
) : Enables the White Balance Gains. This command is available in the
) : Launch or abort of the White Balance process for the RGB
Gain for the white balance. This command
Red
Gain for the white balance. This
Blue
33 e2v semiconductors SAS 2014
ELIIXA+® 8k/4k CL Color
How is performed the Flat Field Correction ?
What is the Flat Field correction (FFC) ?
The Flat Field Correction is a digital correction on each pixel which allows :
To correct the Pixel PRNU (Pixel Response Non Uniformity) and DSNU (Dark Signal Non Uniformity) To Correct the shading due to the lens To correct the Light source non uniformity
Before After
How is calculated / Applied the FFC ?
The FFC is a digital correction on the pixel level for both Gain and Offset.
Each Pixel is corrected with :
o An Offset on 8 bits (Signed Int 5.3). They cover a dynamic of 16LSB in 12bits with a resolution of 1/8
LSB 12bits.
o A Gain on 12 bits with a max gain value of x5. Gain : U12 (1+Gain/1024) => x1 to x3.999 by step of 1/1024
The calculation of the new pixel value is : P’ = ( P + Off).(1 + Gain/1024)
The FFC is processed independently for each Color (Red, Blue, Green
Blue
, Green
Red
). A white balance is required after
any FFC process.
The FFC is always processed with the max pixel value of the line as reference. If enabled, the FFC adjust module (located at the output of the FFC module) calculates the adjustment gain to reach the target defined by the User.
When the FFC result is saved in memory, the adjust gain and target are saved in the same time in order to associate this gain value with the FFC result.
6.3.5 Flat Field Correction
34 e2v semiconductors SAS 2014
ELIIXA+® 8k/4k CL Color
How to perform the Flat Field Correction ?
FPN/DSNU Calibration
Cover the lens Launch the FPN Calibration : Grab and calculation is performed in few seconds Offset format : S9.1 => -256..+255.5 by step of ½
PRNU Calibration
The User must propose a white/gray uniform target to the Camera (not a fixed paper). The Gain/Light conditions must give a non saturated image in any Line. The Camera must be set in the final conditions of Light/ Gain and in the final position in the System. I f required, set a user target for the FFC adjust and enable it.
White uniform (moving) target Launch the FFC Enable the FFC You can save the FFC result (both FPN+PRNU in the same time) in one of the x4 FFC User Banks. The user target and Gain are saved with the associated FFC in the same memory.
Advices
The ELIIXA+ Cameras have 4 x FFC Banks to save 4 x different FFC calibrations. You can use this feature if your system needs some different conditions of lightning and/or Gain because of the inspection of different objects : You can perform one FFC per condition of Gain/setting of the Camera ( 4 Max) and recall one of the four global settings (Camera Configuration + FFC + Line Balance) when required.
Pixels
3020
User Target value
Standard FFC computed on
Adjustment gain
the max of the line
35 e2v semiconductors SAS 2014
6.3.5.1 Activation
Some Warnings can be issued from the PRNU/FPN Calibration Process as “pixel Overflow” of “Pixel Underflow” because some pixels have been detected as too high or too low in the source image to be corrected efficiently. The Calculation result will be proposed anyway as it’s just a warning message. The Status Register is the changed and displayed in CommCam “Status” section : Register status is detailed chap §6.3.3.
FFC Activation (
“Flat Field Correction” section :
Read function : “r ffcp” : Returns the FFC Status (0 if disabled, 1 if enabled) Write function :
“w ffcp 1” : Enable the FFC. “w ffcp 0” : Disabled the FFC
6.3.5.2 Automatic Calibration
FPN/DSNU Calibration :
o FPN Calibration Control (
These commands are available in the CommCam “Flat Field Correction / Automatic Calibration ” section :
Read function : “r calo” : Returns the FPN Calculation Process Status (0 if finished, 1 if processing) Write function :
o FPN Coefficient Reset (
the CommCam “Flat Field Correction / Manual Calibration ” section :
Write function : “w rsto 0” : Reset (set to 0) the FPN coefficients in memory. This doesn’t affect the FFC User
FFCEnable
“w calo 1” : Launch the FPN Calibration Process. “w calo 0” : Abort the FPN Calibration Process.
Memory Bank but only the active coefficients in Memory.
PRNU Calibration :
o PRNU Calibration Control (
This command is available in the CommCam “Flat Field Correction / Automatic Calibration ” section :
Read function : “r calg” : Returns the PRNU Calculation Process Status (0 if finished, 1 if processing) Write function :
“w calg 1” : Launch the PRNU Calibration Process. “w calg 0” : Abort the PRNU Calibration Process.
o PRNU coefficient Reset (
in the CommCam “Flat Field Correction / Manual Calibration ” section :
Write function : “w rstg 0” : Reset (set to “x1”) the PRNU coefficients in memory. This doesn’t affect the FFC
User Memory Bank but only the active coefficients in Memory.
ELIIXA+® 8k/4k CL Color
) : Enable/disable the Flat Field Correction. This command is available in the CommCam
FPNCalibrationCtrl
FPNReset
) : Reset the FPN (Offsets) coefficient in Memory. This command is available in
FFCCalibrationCtrl
PRNUReset
) : Reset the PRNU (Gains) coefficient in Memory. This command is available
) : Launch or abort of the FPN process for the Offsets calculation.
) : Launch or abort of the PRNU process for the Gains calculation.
36 e2v semiconductors SAS 2014
6.3.5.3 Manual Flat Field Correction
It is recommended to setup the baud rate at the maximum value possible (115000 for example) otherwise the transfer can take a long time.
The FFC Coefficients can also be processed outside of the Camera or changed manually by accessing directly their values
in the Camera : This is the “Manual” FFC.
In CommCam, the User can access to a specific interface by clicking on “click for extended control” in both “Manual FFC calibration” and “Manual FPN calibration sections” :
This will allow the user to upload/download out/in the Camera the FFC coefficients in/from a binary or text file that can be processed externally.
ELIIXA+® 8k/4k CL Color
FPN coefficients modification : Direct access to the FPN coefficients for reading or writing.
The FPN coefficients are read packets of x128 coefficients : Format: S9.1 => -256..+255.5 step ½
Read function : “r ffco <addr>” : Read 128 consecutive FPN user coefficients starting from <addr> address.
Returned value is in hexadecimal, without space between values (one unsigned short per coefficient).
- Coefficient from address 0 to 4095 are for red pixels
- Coefficient from address 4096 to 8191 are for blue pixels
- Coefficient from address 8192 to 12287 are for green
- Coefficient from address 12288 to 163837 are for green
Write function :” w ffco <addr><val> : Write 128 consecutive FPN user coefficients starting from the <addr> address.
<val> is the concatenation of individual FPN values, without space between the values (one unsigned short per coefficient).
PRNU coefficients modification : Direct access to the PRNU coefficients for reading or writing.
The PRNU coefficients are read packets of x128 coefficients. Format : U1.13 (1+coeff/8192) => x1 to x2.999877 by step of 1/8192
Read function : “r ffcg <addr>” : Read 128 consecutive PRNU user coefficients starting from <addr> address.
Returned value is in hexadecimal, without space between values (one unsigned short per coefficient).
- Coefficient from address 0 to 4095 are for red pixels
- Coefficient from address 4096 to 8191 are for blue pixels
- Coefficient from address 8192 to 12287 are for green
- Coefficient from address 12288 to 163837 are for green
Write function :” w ffcg <addr><val> : Write 128 consecutive PRNU user coefficients starting from the <addr>
address. <val> is the concatenation of individual PRNU values, without space between the values (one unsigned short per coefficient).
pixels
Red
pixels
Blue
pixels
Red
pixels
Blue
37 e2v semiconductors SAS 2014
ELIIXA+® 8k/4k CL Color
FFC User Bank Usage
User1
User2
User3
User4
User
Ram Memory
Save
Load
Reset FPN
Reset PRNU
At the power up :
- Last User Bank used is loaded in RAM
Reset a User bank :
- Reset the RAM (FPN/PRNU individually)
- Save in the bank to reset
6.3.5.4 FFC User Bank Management
The new-processed FFC values can be saved or restored in/from 4 x User banks. Both Gains and Offsets in the same time but also the FFC Adjust User target and associated gain. These functions are available in the Flat Field correction/Save & Restore FFC section :
Restore FFC from Bank (
Read function : r rffc” : Get the current FFC Bank used
Returned by the camera : 0 for Factory bank or 1 to 4 for User banks
Write function : w rffc <val>” : Bank <val> 1 to 4 for User banks
Note : Factory means neutral FFC (no correction).
Save FFC in User Bank (
Can not de read Write function : w sffc <val>” : User bank <val> if from 1 to 4.
RestoreFFCFromBank
SaveFFCToBank
) : Save current FFC in User Bank
) : Restore the FFC from a Bank in the current FFC.
38 e2v semiconductors SAS 2014
6.3.6 Statistics and Line Profile
This function allows the User to get some statistics on a pre-defined ROI. On request, the Camera acquires and then calculates some key values as the min, the max, the average or the standard deviation in this Region of Interest. The grab and calculation command and also the collection of the results is not performed in real time as it is done through the serial connection. This function and the results are available in CommCam in the “Line Profile Average” Section :
Line Profile average measurement (
Read function : “r pixs” : Get the status of the calculation
Returned by the camera : 0 : finished, 1: running
Write function :
“w pixs 1” : Start the accumulation and then the computing “w pixs 0” : Abort the computing.
The Calculated values are detailed as following : For the Red Pixels
o Pixel average Value (
Read function : “r pavr” : Get the average value
Returned by the camera : Unsigned format value : U12.4
o Pixel Standard deviation (
Region of interest
Read function : “r pstr” : Get the standard deviation
Returned by the camera : Unsigned format value : U12.4
o Pixel Min value (
Read function : “r pmir” : Get the Minimum value
Returned by the camera : Unsigned format value : U12.4
o Pixel Max Value (
Read function : “r pmar” : Get the maximum value
Returned by the camera : Unsigned format value : U12.4
For the Blue Pixels
o Pixel average Value (
Read function : “r pavb” : Get the average value
Returned by the camera : Unsigned format value : U12.4
o Pixel Standard deviation (
of Region of interest
Read function : “r pstb” : Get the standard deviation
Returned by the camera : Unsigned format value : U12.4
o Pixel Min value (
Read function : “r pmib” : Get the Minimum value
Returned by the camera : Unsigned format value : U12.4
o Pixel Max Value (
Read function : “r pmab” : Get the maximum value
Returned by the camera : Unsigned format value : U12.4
RedPixelROIMean
RedPixelROIMin
RedPixelROIMax
BluePixelROIMean
BluePixelROIMin
BluePixelROIMax
ELIIXA+® 8k/4k CL Color
LineAverageProfile
RedPixelROIStandardDeviation
) : Minimum Red level pixel value on the whole region of interest.
) : Maximum Red level pixel value on the whole region of interest
BluePixelROIStandardDeviation
) : Minimum Blue level pixel value on the whole region of interest.
) : Maximum Blue level pixel value on the whole region of interest
) : Control the grab and computation of the statistics.
) : Average Red level value calculated on whole Region of interest
) : standard deviation of all the Red pixel level values of
) : Average Blue level value calculated on whole Region of interest
) : standard deviation of all the Blue pixel level values
39 e2v semiconductors SAS 2014
After performing a line profile measurement, all the values computed which are described below are not refreshed automatically in CommCam : You have to right-click on each value and ask for an individual refresh.
For the Green
o Pixel average Value (
o Pixel Standard deviation (
o Pixel Min value (
o Pixel Max Value (
For the Green
o Pixel average Value (
o Pixel Standard deviation (
o Pixel Min value (
o Pixel Max Value (
Pixel access Line number (
Read function : “r pixl” : Get the number of line
Returned by the camera : 1, 256, 512 or 1024
Write function : “w pixl <val>” : Set the number of lines. <val> is 1, 256, 512 or 1024.
Pixels
Red
interest
Read function : “r pavg” : Get the average value
Returned by the camera : Unsigned format value : U12.4
values of Region of interest
Read function : “r pstg” : Get the standard deviation
Returned by the camera : Unsigned format value : U12.4
Read function : “r pmig” : Get the Minimum value
Returned by the camera : Unsigned format value : U12.4
Read function : “r pmag” : Get the maximum value
Returned by the camera : Unsigned format value : U12.4
Pixels
Blue
interest
Read function : “r pavj” : Get the average value
Returned by the camera : Unsigned format value : U12.4
values of Region of interest
Read function : “r pstj” : Get the standard deviation
Returned by the camera : Unsigned format value : U12.4
Read function : “r pmij” : Get the Minimum value
Returned by the camera : Unsigned format value : U12.4
Read function : “r pmaj” : Get the maximum value
Returned by the camera : Unsigned format value : U12.4
Pixel ROI Start (
Read function : “r prod” : Get the starting pixel
Returned by the camera : value between 0 and 16383
Write function : “w prod <val>: Set the starting pixel. <val> is between 0 and 16383
. Pixel ROI Width (
Read function : “r prow” : Get the width in pixel
Returned by the camera : value between 1 and 16384
Write function : “w prow <val>” : Set the ROI width in pixels. <val> is between 1 and 16384
PixelRoiStart
Green(r)BluePixelROIMean
Green(r)PixelROIMin
Green(r)PixelROIMax
Green(b)BluePixelROIMean
Green(b)PixelROIMin
Green(b)PixelROIMax
PixelAccessLineNumer
) : Set the Region of Interest start position.
PixelRoiWidth
) : Average Green
Green(r)PixelROIStandardDeviation
) : Minimum Green
) : Maximum Green
) : standard deviation of all the Green
level pixel value on the whole region of interest.
Red
level pixel value on the whole region of interest
Red
) : Average Green
Green(b)PixelROIStandardDeviation
) : Minimum Green
) : Maximum Green
) : standard deviation of all the Green
level pixel value on the whole region of interest.
Blue
level pixel value on the whole region of interest
Blue
) : Set the number of lines to accumulate.
) : Set the Width of the Region of Interest.
ELIIXA+® 8k/4k CL Color
level value calculated on whole Region of
Red
pixel level
Red
level value calculated on whole Region of
Blue
pixel level
Blue
40 e2v semiconductors SAS 2014
6.3.7 Privilege Level
The integrator bank (User Set5) can be written only if the Camera is set in integrator mode (Privilege level = 1). This integrator bank can be used as a « Factory default » by a system integrator.
Configuration Bank Usage
At the power up : Last User Bank used is loaded in RAM
“Integrator” Bank (5) can be locked by switching the Camera in “User” mode (cf : Privilege feature). Then it can’t be saved any more without switching back the Camera in “Integrator” Mode.
Ram Memory
Save
Load
Factory
Integrator
User1
User2
User3
User4
User
Load
Save
There are 3 privilege levels for the camera :
Factory (0) : Reserved for the Factory Integrator (1) : Reserved for system integrators User (2) : For all Users.
The Cameras are delivered in Integrator mode. They can be locked in User mode and a specific password is required to switch back the Camera in Integrator mode. This password can be generated with a specific tool available from the hotline (hotline-cam@e2v.com)
This function is available in the Privilege section :
Privilege level Management (
Read function : “r lock” : Get the current privilege
Returned by the camera : 0 to 2
Write function : “w lock <val>” : <val> is as follow
2 : Lock the Camera in Integrator or “privilege User” <computed value> : Unlock the Camera back in Integrator mode
6.3.8 Save & Restore Settings
The settings (or Main configuration) of the Camera can be saved in 4 different User banks and one Integrator bank. This setting includes also the FFC and LUT enable This function is available in the Save & Restore Settings section :
Load settings from Bank : Allows to restore the Camera settings.
Read function : r rcfg” : Get the current Tap Bank in use Write function : w rcfg <val>” : Load settings from bank <val> (0: Factory , 1 to 4 for Users, 5 for Integrator)
Save settings to Bank : Allows to save the Camera settings in User or Integrator Bank
Write function : w scfg <val>” : Save the current settings in the User bank <val> (1 to 4 for User, 5 for Integrator)
PrivilegeLevel
ELIIXA+® 8k/4k CL Color
) : Get the current Camera privilege level..
41 e2v semiconductors SAS 2014
7 APPENDIX A: Test Patterns
7.1 Test Pattern 1: Vertical wave
The Test pattern 1 is a vertical moving wave : each new line will increment of 1 gray level in regards with the previous one : level reaches 255 before switching down to 0
7.2 Test Pattern 2: Fixed Horizontal Ramps
ELIIXA+® 8k/4k CL Color
Starting at 0, an increment of 1 LSB is made every 16 pixels. When it reaches 255, turns back to 0 and starts again.
42 e2v semiconductors SAS 2014
8 APPENDIX B: Timing Diagrams
Digital Conversion
T
pix
Line Trigger
CC1 or Internal
Td
T
per
Tint
real
Exposure Time
Programmed
ITC Trigger
CC1
T
int
(Exposure Time)
T
x
Exposure Time
Internal
Exposure Time
Programmed
Line Triggers
CC2
T T
Synchro
Mode
Sync = 0 Sync = 1
Sync = 3
Sync = 4
In the
Camera /
No Exposure start before this point
T
intProg
8.1 Synchronization Modes with Variable Exposure Time
CC1
T
: Timing Pixel. During this uncompressible period, the pixel and its black reference are read out to the Digital
pix
converter. During the first half of this timing pixel (read out of the black reference), we can consider that the exposure is still active.
Digital Conversion : During the conversion, the analog Gain is applied by the gradient of the counting ramp (see next
chapter : Gain & Offset). The conversion time depends on the pixel format :
- 8 or 10 bits : 6µs
This conversion is done in masked time, eventually during the next exposure period.
T
: Delay between the Start exposure required and the real start of the exposure.
d
ELIIXA+® 8k/4k CL Color
sensor
43 e2v semiconductors SAS 2014
ELIIXA+® 8k/4k CL Color
If T
per
is the Line Period (internal or external coming from the Trigger line), in order to respect this line
Period, the Exposure Time as to be set by respecting : T
int
+ T
pix
<= T
per
Then, the real exposure time is : Tint
real
= T
int
+ Tx - Td.
In the same way, The high level period of the Trig signal in sync=3 mode, Tht >= T
pix
For a Line Period of
LinePer
, the maximum exposure time possible without reduction of line rate
is : Tint
max
= T
per-Tpix
(T
pix
is defined above) but the effective Exposure Time will be about Tint
real
= T
int
+
T
x
.
-
Td.
Label
Min
Unit
T
pix
5
µs
T
x
3,1
µs
Th
0,120
µs
Tht
T
pix
µsec
Td
1.1
µs
Tint
prog
1,5µs
Tint
real
Tper
min
10µs
13µs
Line Trigger
CC1 or Internal
Td
T
per = Tint
T
Digital Conversion
T
pix
Tint
real
T
x
Exposure Time
Internal
Synchro
Mode
Sync = 2 Sync = 5
In the
Camera /
Digital Conversion
T
pix
T
x
8.2 Synchronisation Modes with Maximum Exposure Time
In these modes, the rising edge of the Trigger (internal or External) starts the readout process (T The Real exposure time (Tint the incoming Line Trigger.
) is finally equal to the Line Period (
real
T
) even if it’s delayed from (
per
sensor
) of the previous integration.
pix
Tx + T
) from the rising edge of
d
8.3 Timing Values
44 e2v semiconductors SAS 2014
9 APPENDIX C: CameraLink Data Cables
0
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Skew (ps)
Data rate (MHz)
DataRate Skew Cable Length 40Mhz 390ps 7,8m
66MHz 290ps 5,8m 70MHz 270ps 5,4m 80MHz 218ps 4,36m 85MHz 190ps 3,8m
9.1 Choosing the Cable
You may check the compliance of your CameraLink cables with the transportation of the 85MHz data rate. The main parameter to be checked in the cable specification is the skew (in picoseconds) This parameter is given for a dedicated maximum value per meter of cable (as max : 50ps/m)
The CameraLink Standards defines the maximum total skew possible for each data rate :
ELIIXA+® 8k/4k CL Color
Here is a following example of cable and the cable length limitation in accordance with the standard :
45 e2v semiconductors SAS 2014
9.2 Choosing the Data Rate
Data Frequency : 85MHz
Sensor Mode
Base : 3x8bits
Dual Base : 2x 3x8bits
Full 8x8bits
Full+ : 10x8bits
Line Rate Max
(kHz)
Tper Min (µs)
Line Rate Max
(kHz)
Tper Min (µs)
Line Rate
Max (kHz)
Tper Min
(µs)
Line Rate
Max (kHz)
Tper Min
(µs)
True Color (4k 10µm)
20
50
40
25
52.9
18.9
66.2
15.1
Full Def. (8K 5µm)
10
100
20
50
40
25
50
20
Data Frequency : 80MHz
Sensor Mode
Base : 3x8bits
Dual Base : 2x 3x8bits
Full 8x8bits
Full+ : 10x8bits
Line Rate Max
(kHz)
Tper Min (µs)
Line Rate Max
(kHz)
Tper Min (µs)
Line Rate
Max (kHz)
Tper Min
(µs)
Line Rate
Max (kHz)
Tper Min
(µs)
True Color (4k 10µm)
18.8
53.2
37.6
26.6
49.8
20.1
62.1
16.1
Full Def. (8K 5µm)
9.4
106.3
18.8
53.2
37.6
26.6
46.9
21.3
Data Frequency : 75MHz
Sensor Mode
Base : 3x8bits
Dual Base : 2x 3x8bits
Full 8x8bits
Full+ : 10x8bits
Line Rate Max
(kHz)
Tper Min (µs)
Line Rate Max
(kHz)
Tper Min (µs)
Line Rate
Max (kHz)
Tper Min
(µs)
Line Rate
Max (kHz)
Tper Min
(µs)
True Color (4k 10µm)
17.6
56.7
35.2
28.4
46.5
21.5
58.1
17.2
Full Def. (8K 5µm)
8.8
113.4
17.6
56.7
26
38.4
44
22.7
Data Frequency : 70MHz
Sensor Mode
Base : 3x8bits
Dual Base : 2x 3x8bits
Full 8x8bits
Full+ : 10x8bits
Line Rate Max
(kHz)
Tper Min (µs)
Line Rate Max
(kHz)
Tper Min (µs)
Line Rate
Max (kHz)
Tper Min
(µs)
Line Rate
Max (kHz)
Tper Min
(µs)
True Color (4k 10µm)
16.4
60.8
32.9
30.4
43.5
23
54.3
18.4
Full Def. (8K 5µm)
8.2
121.5
16.4
60.8
32.9
30.4
41.1
24.3
Data Frequency : 65MHz
Sensor Mode
Base : 3x8bits
Dual Base : 2x 3x8bits
Full 8x8bits
Full+ : 10x8bits
Line Rate Max
(kHz)
Tper Min (µs)
Line Rate Max
(kHz)
Tper Min (µs)
Line Rate
Max (kHz)
Tper Min
(µs)
Line Rate
Max (kHz)
Tper Min
(µs)
True Color (4k 10µm)
15.3
65.4
30.5
32.7
40.3
24.8
50.5
19.8
Full Def. (8K 5µm)
7.6
130.8
15.3
65.4
30.5
32.7
38.1
26.2
Data Frequency : 60MHz
Sensor Mode
Base : 3x8bits
Dual Base : 2x 3x8bits
Full 8x8bits
Full+ : 10x8bits
Line Rate Max
(kHz)
Tper Min (µs)
Line Rate Max
(kHz)
Tper Min (µs)
Line Rate
Max (kHz)
Tper Min
(µs)
Line Rate
Max (kHz)
Tper Min
(µs)
True Color (4k 10µm)
14.1
70.9
28.1
35.5
37.3
26.8
46.7
21.4
Full Def. (8K 5µm)
7
141.7
14.1
70.9
28.1
35.5
35.2
28.4
Maximum Line Rates tables versus Data rate and Pixel Format
ELIIXA+® 8k/4k CL Color
46 e2v semiconductors SAS 2014
10 APPENDIX D: Lens Mounts
10.1 F-Mount
ELIIXA+® 8k/4k CL Color
F Mount : Kit10 (Part number EV71KFPAVIVA-ABA)
47 e2v semiconductors SAS 2014
10.2 T2 & M42x1 Mounts
M42x0,75 (T2 Mount) : Kit30 (Part number AT71KFPAVIVA-AKA)
M42x1 Mount : Kit40 (Part number AT71KFPAVIVA-ADA)
ELIIXA+® 8k/4k CL Color
48 e2v semiconductors SAS 2014
11 APPENDIX E: Troubleshooting
Camera
Power up
43s
No LED
Red
Blinking
Green
Fixed
Green
Hardware failure
or Firmware loading
defect.
Contact Hotline for
RMA
If CommCam connection possible : then the LED is HS,
else :
Check power supply
And its characteristics
Contact Hotline
Camera ready
Camera waits
for Trigger or
Trigger too fast
Fixed
Orange
LED Color
11.1 Camera
ELIIXA+® 8k/4k CL Color
11.2 CommCam Connection
Refer to CommCam software Help for the connection issues.
49 e2v semiconductors SAS 2014
12 APPENDIX F: Commands
Feature
CL Command
Description
DeviceVendorName
r vdnm
Get camera vendor name as a string (32 bytes long including ‘\0’)
DeviceModelName
r mdnm
Get camera model name as a string (32 bytes long including ‘\0’)
DeviceFirmwareVersion
r dfwv
Get camera synthetic firmware version (PKG version) as a string (32 bytes long including ‘\0’)
DeviceVersion
r dhwv
Get camera version as a string (hardware version) (32 bytes long including \0’)
DeviceManufacturerInfo
r idnb
Get camera ID as a string (48 bytes long including ‘\0’)
DeviceUserID
r cust
Get device user identifier as a string (16 bytes long including '\0')
w cust <idstr>
Set camera identifier to <idstr>
DeviceID
r deid
Read Serial Nb
ElectronicBoardID
r boid
Read Electronic Board ID
DeviceSFNCVersionMajor
Xml Virtual
1
DeviceSFNCVersionMinor
Xml Virtual
5
DeviceSFNCVersionSubMinor
Xml Virtual
0
Feature
Command
Description
SensorWidth
r snsw
Get sensor physical width.
SensorHeight
Xml virtual
WidthMax
Map on SensorWidth
HeightMax
Xml virtual
Height
Xml virtual
Width
Xml virtual
Depends on (OuputRegion, OuputRegionWidth) and SensorWidth
SensorMode
r smod
Get sensor mode
w smod 0
Set sensor mode to “True Color Enhanced
w smod 1
Set sensor mode to “Full Definition single”
w smod 2
Set sensor mode to “Full Definition Enhanced”
w smod 3
Set sensor mode to “True Color Single
ScanDirection
r scdi
Get scan direction
w scdi 0
Set scan direction to “forward”
w scdi 1
Set scan direction to “reverse”
w scdi 2
Set scan direction to “Externally controlled direction via CC3 Camera Link
(CC3=0 forward, CC3=1 reverse)”
OutputMode
r mode
Get output mode (CameraLink configuration and CMOS sensor resolution)
w mode 0
Set output mode to “BaseRGB8bits
w mode 1
Set output mode to “DualBaseRGB8bits
w mode 2
Set output mode to “RawFull8Outputs8bits”
w mode 3
Set output mode to “RawFullPlus10Outputs8bits”
OutputFrequency
r clfq
Get Camera Link frequency
w clfq 0
Set Camera Link frequency to 85MHz
w clfq 1
Set Camera Link frequency to 60MHz
w clfq 2
Set Camera Link frequency to 65MHz
w clfq 3
Set Camera Link frequency to 70MHz
w clfq 4
Set Camera Link frequency to 75MHz
w clfq 5
Set Camera Link frequency to 80MHz
TestImageSelector
r srce
Get test (output FPGA) image pattern
w srce 0
Set test (output FPGA) image pattern to “Off”, processing chaine activated
w srce 1
Set test (output FPGA) image pattern to “GreyHorizontalRamp”, processing chaine desactivated
w srce 2
Set test (output FPGA) image pattern to “White pattern”, processing chaine
desactivated
w srce 3
Set test (output FPGA) image pattern to “gray pattern”, processing chaine desactivated
w srce 4
Set test (output FPGA) image pattern to “Black pattern”, processing chaine desactivated
12.1 Device Control
12.2 Image Format
ELIIXA+® 8k/4k CL Color
50 e2v semiconductors SAS 2014
Feature
Command
Description
w srce 5
Set test (output FPGA) image pattern to “GreyVerticalRampMoving”, processing chaine desactivated
Color Selection
r cold
Read the color selection
w cold <val>
Set the color selection. Val :
- Bit 0 : Disables the Red color
- Bit 1 : Disables the Blue color
- Bit 2 : Disables both Green
Red
and Green
Blue
colors
Feature
Commands
Description
LinePeriod
r tper
Get current line period
w tper <val>
Set line period, from from 150 (15µs) to 65535 (6553,5µs), step 1 (0,1µs)
LinePeriodMin
r tpmi
Get current line period min (15…65535 step 0,1µs)
AcquisitionLineRate
Xml Virtual
= 1 / LinePeriod en Hertz
ExposureTime
r tint
Get exposure time
w tint <val>
Set exposure time, from 1 (0,1µs) to 65535 (6553,5µs), step 1 (0,1µs)
TriggerPreset
r sync
Get trigger preset mode
w sync 0
Set trigger preset mode to Freerun timed mode, with exposure time and line period programmable. Not available in FDE sensor mode.
w sync 1
Set trigger preset mode to Triggered mode with exposure time settings
w sync 2
Set trigger preset mode to Triggered mode with maximum exposure time
w sync 3
Set trigger preset mode to Triggered mode with exposure time controlled by one signal
w sync 4
Set trigger preset mode to Triggered mode with exposure time controlled by two signals. Not available in FDE sensor mode.
w sync 5
Set trigger preset mode to Freerun mode, with max exposure time and programmable line period
Feature
Commands
Description
Gain GainSelector= AnalogAll
r pamp
Get the current pre-amp gain
w pamp <val>
Set pre amplifier gain to: 0 (-12dB), 1 (-6dB), 2 (0dB) (analog gain) Change balances and compensation
Gain GainSelector= gainAll
r gain
Get current digital gain
w gain <val>
Set gain from 0dB(0) to +8 dB (6193)
Gain GainSelector=DigitalAll
r gdig
Get contrast expansion digital gain
w gdig <val>
Set contrast expansion digital gain from 0 (0 dB) to 255 (+14 dB), step 1 (TBD dB)
BlackLevelRaw BlackLevelSelector=All
r offs
Get common black level.
w offs <val>
Set common black from -4096 to 4095, step 1
GainAbs GainSelector=DigitalTap<j>
r fga<j> <val>
Get tap<j> digital gain. Dynamically updated on AnalogAll gain changes
w fga<j> <val>
Set tap<j> digital gain from -128 to 127 by step 1 (0.0021dB). Dynamically updated on AnalogAll gain changes
TapBalanceGainEnable
r fgae
Get the status of the Tap balance
w fgae <val>
Enables the Tap Balance :
- 0 : Disables the Tap Balance Gains
- 1 : Enables the Tap Balance Gains
Gain GainSelector= DigitalRed
r gwbr
Get the Red Gain for the white balance
w gwbr <val>
Set the Red Gain from 0 (0dB) to 1548 (8dB) : (1 + <val>/1024)
Gain GainSelector= DigitalBlue
r gwbb
Get the Blue Gain for the white balance
w gwbb <val>
Set the Blue Gain from 0 (0dB) to 1548 (8dB) : (1 + <val>/1024)
Gain GainSelector= DigitalGreenR
r gwbg
Get the Green
Red
Gain for the white balance
w gwbg <val>
Set the Green
Red
Gain from 0 (0dB) to 1548 (8dB) : (1 + <val>/1024)
Gain GainSelector= DigitalGreenB
r gwbj
Get the Green
Blue
Gain for the white balance
w gwbj <val>
Set the Green
Blue
Gain from 0 (0dB) to 1548 (8dB) : (1 + <val>/1024)
AutoWhiteBalanceStart
w awbc 0
Stops the Auto white Balance calibration process
w awbc 1
Starts the Auto white Balance calibration process
AutoWhiteBalanceEnable
w gwbe 0
Disables the White Balance
w gwbe 1
Enables the White Balance
12.3 Synchro and Acquisition
ELIIXA+® 8k/4k CL Color
12.4 Gain & Offset
51 e2v semiconductors SAS 2014
12.5 Flat Field Correction
Feature
Commands
Description
FFCEnable
r ffcp
Get Flat Field Correction processing status
w ffcp 0
Disable Flat Field Correction (“False”)
w ffcp 1
Enable Flat Field Correction (“True”)
FPNReset
w rsto 0
Reset FPN coefficients
PRNUReset
w rstg 0
Reset PRNU coefficients
No direct feature
r ffco <addr>
Read 128 Fpn coefficients starting from address <addr>. Return value is in hexadecimal, without space between values (one unsigned short per coef). Format: S9.1 => -256 to +255.5 by step of 1/2
w ffco <addr> <val>
Write 128 Fpn coefficients (straight to FPGA) starting from address <addr>. <val> is the concatenation of individual Fpnvalue, without space between values.
- Coefficient from address 0 to 4095 are for red pixels
- Coefficient from address 4096 to 8191 are for blue pixels
- Coefficient from address 8192 to 12287 are for green
Red
pixels
- Coefficient from address 12288 to 163837 are for green
Blue
pixels
No direct feature
r ffcg <addr>
Read 128 Prnu coefficients (straight from FPGA) starting from address <addr>. Return value is in hexadecimal, without space between values. (one unsigned short per coef) U12 (1+coeff/1024) => x1 to x3.999 by step of 1/1024
w ffcg <addr> <val>
Write 128 Prnu coefficients (straight to FPGA) starting from address <addr>. <val> is the concatenation of individual PRNUvalue, without space between values.
- Coefficient from address 0 to 4095 are for red pixels
- Coefficient from address 4096 to 8191 are for blue pixels
- Coefficient from address 8192 to 12287 are for green
Red
pixels
- Coefficient from address 12288 to 163837 are for green
Blue
pixels
FFCCalibrationCtrl
r calg
Get the PRNU calibration status
w calg 0
Abort PRNU calibration by setting it to “Off” (no effect if already stopped)
w calg 1
Launch PRNU calibration by setting it to “Once” (no effect if already launched)
PrnuCalibrationCtrl
r calo
Get the fpn calibration status
w calo 0
Abort fpn calibration by setting it to “Off” (no effect if already stopped)
w calo 1
Launch fpn calibration by setting it to “Once” (no effect if already launched)
Feature
Commands
Description
UserSetLoad
r rcfg
Get the current user configuration bank (saved or restored)
w rcfg <val>
Restore current UserSet from UserSet bank number <val>, from 0 to 5; <val> comes from UserSetSelector.
UserSetSave
w scfg <val>
Save current UserSet to UserSet bank number <val>, from 1 to 5; <val> comes
from UserSetSelector. 0 cannot be saved. 5 (Integrator) can’t be saved in
User mode
UserSetControl
Xml virtual
RestoreLUTFromBank
r rlut
Get the current LUT bank (saved or restore)
w rlut <val>
Restore current LUT from LUT bank number <val>, from 1 to 4; <val> comes from LUTSetSelector.
SaveLUTToBank
w slut <val>
Save current LUT to LUT FFC bank number <val>, from 1 to 4; <val> comes from LUTSetSelector.
RestoreFFCFromBank
r rffc
Get the current FFC bank (save or restore)
w rffc <val>
Restore current FFC (including FPN and FFCGain) from FFC bank number <val>, from 1 to 4; <val> comes from UserFFCSelector (XML feature).
SaveFFCToBank
w sffc <val>
Save current FFC (including FPN and FFCGain) to FFC bank number <val>, from 1 to 4; <val> comes from FFCSelector (XML feature).
ELIIXA+® 8k/4k CL Color
12.6 Save and Restore
52 e2v semiconductors SAS 2014
12.7 Camera Status
Feature
Commands
Description
PrivilegeLevel
r lock
Get camera running privilege level 0 = Privilege Factory 1 = Privilege Advanced User 2 = Privilege User
ChangePrivilegeLevel
w lock 1
Lock camera privilege to “Advanced User”
w lock 2
Lock camera privilege to “User”
w lock <val>
Unlock camera privilege depending on <val> (min=256; max=232-1)
DeviceTemperature
r temp
Read Mainboard internal temperature (format signed Q10.2 = signed 8 bits, plus 2 bits below comma. Value from -512 to +511) in °C
DeviceTemperatureSelector
Xml Virtual
Standby
r stby
Read Standby state (CMOS sensor)
w stby 0
Disable standby mode (“False”)
w stby 1
Enable standby mode (“True”), no more video available but save power and
temperature
r stat
Get camera status (see below for details)
StatusWaitForTrigger
Bit 0: true if camera waits for a trigger during more than 1s
Satus trigger too fast
Bit 1: true if camera trigger is too fast
StatusWarningOverflow
Bit 8: true if a an overflow occurs during FFC calibration or Tap balance (available only for integrator/user mode)
StatusWarningUnderflow
Bit 9: true if a an underflow occurs during FFC calibration or Tap balance (available only for integrator/user mode)
Cc3 Scrolling direction
Bit 11: 0 : forward, 1: reverse
StatusErrorHardware
Bit 16 : true if hardware error detected
Feature
Commands
Description
ComBaudRate
r baud
Get current baud rate (This feature is not saved in camera)
w baud 1
Set baud rate to “9600Bds”
w baud 2
Set baud rate to “19200Bds”
w baud 6
Set baud rate to “57600Bds”
w baud 12
Set baud rate to “115200Bds”
Feature
Commands
Description
LineAverageProfile
r pixs
Get the line Line Average Profile status
- 1 : running
- 0 : finished
w pixs 0
Abort the Line Average Profile
w pixs 1
Run the Line Average Profile
PixelAccessLineNumer
r pixl
Get the number of line for average
w pixl <val>
Set the number of line to accumulate
- <val> : 1,256,512,1024
No direct feature
r pixv <addr>
Read 128 pixel values starting from address <addr>, from SensorWidth-128-1. Return value is in hexadecimal, without space between values. (one unsigned short per coef)
PixelRoiStart
r prod
Get Roi start
w prod <val>
Set Roi start for pixel statistic computing (0 to SensorWidth -1-1)
PixelRoiWidth
r prow
Get Roi width
w prow <val>
Set Roi width for pixel statistic computing (1 to SensorWidth)
RedPixelROIMean
r pavr
Get ROI Mean value for Red Pixels (format U12.4)
RedPixelROIStandardDeviation
r pstr
Get ROI Stand deviation for Red Pixels (format U12.4)
RedPixelROIMin
r pmir
Get ROI Min value for Red Pixels (format U12.4)
RedPixelROIMax
r pmar
Get ROI Max value for Red Pixels (format U12.4)
BluePixelROIMean
r pavb
Get ROI Mean value for Blue Pixels (format U12.4)
ELIIXA+® 8k/4k CL Color
12.8 Communication
12.9 Line Profile Average
53 e2v semiconductors SAS 2014
Feature
Commands
Description
BluePixelROIStandardDeviation
r pstb
Get ROI Stand deviation for Blue Pixels (format U12.4)
BluePixelROIMin
r pmib
Get ROI Min value for Blue Pixels (format U12.4)
BluePixelROIMax
r pmab
Get ROI Max value for Blue Pixels (format U12.4)
Green(r)PixelROIMean
r pavg
Get ROI Mean value for Green
Red
Pixels (format U12.4)
Green(r)PixelROIStandardDeviation
r pstg
Get ROI Stand deviation for Green
Red
Pixels (format U12.4)
Green(r)PixelROIMin
r pmig
Get ROI Min value for Green
Red
Pixels (format U12.4)
Green(r)PixelROIMax
r pmag
Get ROI Max value for Green
Red
Pixels (format U12.4)
Green(b)PixelROIMean
r pavg
Get ROI Mean value for Green
Blue
Pixels (format U12.4)
Green(b)PixelROIStandardDeviation
r pstg
Get ROI Stand deviation for Green
Blue
Pixels (format U12.4)
Green(b)PixelROIMin
r pmig
Get ROI Min value for Green
Blue
Pixels (format U12.4)
Green(b)PixelROIMax
r pmag
Get ROI Max value for Green
Blue
Pixels (format U12.4)
ELIIXA+® 8k/4k CL Color
54 e2v semiconductors SAS 2014
13 APPENDIX G: Revision History
Manual
Revision
Comments / Details
Firmware version
1st CommCam
compliant
Version
Rev A
First release
1.0.3
2.2.1
Rev B
Update Firmware
1.1.0
2.3.1
Rev C
True Color Single Change Documentation Template
1.2.0
2.3.3
Rev D
Documentation Corrections in the Color mode description
1.2.0
2.3.3
ELIIXA+® 8k/4k CL Color
55 e2v semiconductors SAS 2014
ELIIXA+® 8k/4k CL Color
Contact us online at:
e2v.com/imaging
56 e2v semiconductors SAS 2014
Loading...