Dynamic SFC332L Operator's Manual

SFC332L
OPERATORS MANUAL
Flow C o m p u t e r
Liqui d V e r s i o n
11 1 0 4 W . A i r p o rt Blvd , S u i t e 1 0 8 & 1 4 8
Staf f o r d , T e x as 77 4 7 7 U S A
(2 81 ) 5 6 5 -1118
Fa x ( 2 8 1 ) 5 6 5 -11 1 9
Date: 8/1/2019
WARRANTY
Dynamic Flow Computers warrants to the owner of the Smart Flow Computer that the product delivered will be free from defects in material and workmanship for one (1) year following the date of purchase. This warranty does not cover the product if it is damaged in the process of being installed or damaged by abuse, accident, misuse, neglect, alteration, repair, disaster, or improper testing. If the product is found otherwise defective, Dynamic Flow Computers will replace or repair the product at no charge, provided that you deliver the product along with a return material authorization (RMA) number from Dynamic Flow Computers. Dynamic Flow Computers will not assume any shipping charge or be responsible for product damage due to improper shipping. THE ABOVE WARRANTY IS IN LIEU OF ANY OTHER WARRANTY EXPRESS IMPLIED OR STATUTORY. BUT NOT LIMITED TO ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSE, OR ANY WARRANTY ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE. LIMITATION OF LIABILITY: DYNAMIC FLOW COMPUTERS SHALL HAVE NO LIABILITY FOR ANY INDIRECT OR SPECULATIVE DAMAGES (INCLUDING, WITHOUT LIMITING THE FOREGOING, CONSEQUENTIAL, INCIDENTAL AND SPECIAL DAMAGES) ARISING FROM THE USE OF, OR INABILITY TO USE THIS PRODUCT. WHETHER ARISING OUT OF CONTRACT, OR UNDER ANY WARRANTY, IRRESPECTIVE OF WHETHER DFM HAS ADVANCED NOTICE OF THE POSSIBILITY OF ANY SUCH DAMAGE INCLUDING, BUT NOT LIMITED TO LOSS OF USE, BUSINESS INTERRUPTION, AND LOSS OF PROFITS. NOTWITHSTANDING THE FOREGOING, DFM’S TOTAL LIABILITY FOR ALL CLAIMS UNDER THIS AGREEMENT SHALL NOT EXCEED THE PRICE PAID FOR THE PRODUCT. THESE LIMITATIONS ON POTENTIAL LIABILITY WERE AN ESSENTIAL ELEMENT IN SETTING THE PRODUCT PRICE. DFM NEITHER ASSUMES NOR AUTHORIZES ANYONE TO ASSUME FOR IT ANY OTHER LIABILITIES
Date: 8/1/2019
CHAPTER 1: QUICK START.................................................................................................................... 1-1
Introduction: ............................................................................................................................................ 1-1
Technical Data: ........................................................................................................................................ 1-2
Parts List .................................................................................................................................................. 1-3
SFC332L Flow Computer: Dimensions ................................................................................................. 1-4
Starting and Installing theWindow Software: .......................................................................................... 1-5
System Minimum Requirements ......................................................................................................... 1-5
Website - DFC Configuration Software .................................................................................................. 1-6
Getting acquainted with the flow computer wiring: ................................................................................ 1-8
Back terminal wiring: .......................................................................................................................... 1-8
Back Panel Jumper .............................................................................................................................. 1-9
Memory Jumper................................................................................................................................. 1-10
INPUT/OUTPUT: Assigning and Ranging Inputs ................................................................ ............... 1-14
Input/Output Assignment .................................................................................................................. 1-14
How to assign a transmitter to an I/O point ....................................................................................... 1-14
Ranging the Transmitter Inputs: ........................................................................................................ 1-15
WIRING: ............................................................................................................................................... 1-16
Wiring the Analog Inputs: ................................................................................................................. 1-16
Wiring the analog inputs 1-4 : ........................................................................................................... 1-17
RTD ................................................................................................................................................... 1-18
Wiring Analog Output: ................................................................ ................................ ...................... 1-19
Turbine Input Wiring ......................................................................................................................... 1-20
Turbine input wiring for passive (dry contact) pulse generators ....................................................... 1-23
Density Input Wiring: ........................................................................................................................ 1-24
RS-232 Connection: .......................................................................................................................... 1-25
RS-485: .............................................................................................................................................. 1-26
Wiring of Status Inputs: ..................................................................................................................... 1-27
Wiring of Switch/Pulse Outputs: ....................................................................................................... 1-28
I/O Expansion: ................................................................................................................................... 1-29
Prover/Expansion .............................................................................................................................. 1-31
CALIBRATION Through Window Program ........................................................................................ 1-32
Analog Input 4-20mA or 1-5 volt signal .......................................................................................... 1-32
RTD Calibration: ............................................................................................................................... 1-33
Calibration of Analog Output: ........................................................................................................... 1-34
Multi-Variable Transmitters (Model 205) – DP and Pressure ........................................................... 1-34
Multi-Variable Transmitters (Model 205) –RTD .............................................................................. 1-35
CALIBRATION Through DOS Program .............................................................................................. 1-36
Analog Input 4-20mA or 1-5 volt signal: .......................................................................................... 1-36
RTD calibration: ................................................................................................................................ 1-37
Calibration of Analog Output: ........................................................................................................... 1-38
Multi-Variable Transmitters (Model 205)- DP and Pressure ............................................................ 1-38
Multi-Variable Transmitters (Model 205)- RTD ............................................................................... 1-39
Verifying Digital Inputs and Outputs .................................................................................................... 1-40
CHAPTER 2: Data Entry ............................................................................................................................ 2-1
Introduction to the SFC332L Computer Software ................................................................................... 2-1
Configuration File through Window Program ......................................................................................... 2-1
New ..................................................................................................................................................... 2-1
Open .................................................................................................................................................... 2-1
Close .................................................................................................................................................... 2-1
Save ..................................................................................................................................................... 2-1
Save As ................................................................................................................................................ 2-1
VIEW ...................................................................................................................................................... 2-2
View Drawings .................................................................................................................................... 2-2
TOOLS .................................................................................................................................................... 2-3
Com Settings ....................................................................................................................................... 2-3
Date: 8/1/2019
Meter Configuration ............................................................................................................................ 2-4
Security Code .................................................................................................................................... 2-33
PID OPERATING ................................................................................................................................. 2-34
CALIBRATION .................................................................................................................................... 2-34
Calibrate Mode .................................................................................................................................. 2-34
Parameter Overrides: ............................................................................................................................. 2-34
Temperature Override ....................................................................................................................... 2-34
Pressure Override .............................................................................................................................. 2-34
DP Override ....................................................................................................................................... 2-34
API/SG/Density Override .................................................................................................................. 2-34
Orifice ID Override ........................................................................................................................... 2-34
Current Batch Preset .......................................................................................................................... 2-34
Equilibrium Pressure Override .......................................................................................................... 2-35
Alpha T E-6 Override ........................................................................................................................ 2-35
Wedge Fa Override and Wedge Kd2 Override .................................................................................. 2-35
Venturi C Override ............................................................................................................................ 2-35
End Batch .......................................................................................................................................... 2-35
SYSTEM ........................................................................................................................................... 2-35
HISTORICAL DATA ........................................................................................................................... 2-36
VIEW, CAPTURE AND STORE ..................................................................................................... 2-36
Viewing previously captured reports ................................................................................................. 2-36
Exporting or Printing Reports ............................................................................................................ 2-37
SCHEDULED AUTO POLLING ..................................................................................................... 2-38
CHAPTER 3: FLOW EQUATIONS ........................................................................................................... 3-1
AGA3 ...................................................................................................................................................... 3-1
API 14.3................................................................................................................................................... 3-2
Wedge ................................................................................................................................ ...................... 3-3
Venturi ..................................................................................................................................................... 3-4
AGA7 ...................................................................................................................................................... 3-5
DENSITY EQUATIONS ........................................................................................................................ 3-6
Sarasota Density GM/CC .................................................................................................................... 3-6
UGC Density GM/CC ......................................................................................................................... 3-7
Solartron Density GM/CC ................................................................................................................... 3-8
Propylene Density ............................................................................................................................... 3-9
Ethylene Density ................................................................................................................................. 3-9
NBS 1045 ............................................................................................................................................ 3-9
NIST14 ................................................................................................................................................ 3-9
DENSITY EQUATIONS (Without Live Densitometer) ....................................................................... 3-10
CHAPTER 4: MODBUS DATA ................................................................................................................. 4-1
MODBUS PROTOCOL .......................................................................................................................... 4-1
TRANSMISSION MODE ................................................................................................................... 4-1
ASCII FRAMING ............................................................................................................................... 4-1
RTU FRAMING .................................................................................................................................. 4-1
FUNCTION CODE ............................................................................................................................. 4-2
ERROR CHECK ................................................................................................................................. 4-2
EXCEPTION RESPONSE .................................................................................................................. 4-2
BROADCAST COMMAND ............................................................................................................... 4-2
MODBUS EXAMPLES ...................................................................................................................... 4-3
FUNCTION CODE 03 (Read Single or Multiple Register Points) ..................................................... 4-3
ASCII MODE - Read Address 3076 ................................................................................................... 4-3
MODBUS ADDRESS TABLE – 16 BITS ............................................................................................. 4-5
MODBUS ADDRESS TABLE – 32 BITS ........................................................................................... 4-12
Last Batch/Daily Data Area ............................................................................................................... 4-15
Alarms and Status Codes ................................................................................................................... 4-40
Previous Audit Data Area .................................................................................................................. 4-41
CURRENT ALARM STATUS ......................................................................................................... 4-44
Date: 8/1/2019
FLOATING POINTS ............................................................................................................................ 4-46
Historical Batch/Daily Data Area – Meter #1 ................................................................................... 4-49
Historical Hourly Data Area – Meter #1 ........................................................................................... 4-50
Current Data Area– Meter #2 ............................................................................................................ 4-51
Historical Batch/Daily Data Area – Meter #2 ................................................................................... 4-52
Historical Hourly Data Area – Meter #2 ........................................................................................... 4-53
Programmable Floating Point Variables ............................................................................................ 4-54
Date: 8/1/2019
Dynamic Flow Computers SFC332L Manual Quick Start 1-1
CHAPTER 1: QUICK START
Introduction:
A good flow computer must be:
User friendly Flexible Easy to understand and configure Rugged Economical to install and maintain Accurate
The model SFC332L Smart Flow Computer incorporates all these features. We hope that your experience with the Smart Flow Computer will be a very pleasant and friendly experience and not intimidating in any way. General Description: The SFC332L is a dual meter run bi-directional flow computer for the measurement of liquid products. Using orifice plate, Venturi, turbine/PD/ultrasonic mass meter, or wedge devices, it can meter a wide variety of products, such as crude, refined product, LPG/NGL products, products that use table 24C, ethylene, propylene, and water. Fifty days of previous daily data, fifty previous batch data, and fifty previous hourly data are stored in the full format type reports. The previous 100 audit trail reports and 100 alarm reports are stored. User formatted reports and user formatted ticket reports are available. Sixteen different product files are user-configurable with easy switch feature and product scheduling for batch operation. Inputs/Outputs: 2 serial connections, RS-232 and RS-485, both of them Modbus ready. The RS-232 can also be used with serial printer. Inputs: two 4 wire RTD, 4 single ended analog inputs, 4 status inputs and 1 density frequency. Outputs: 2 pulse/switch outputs; 3 switch outputs; and 2 analog outputs. Also includes a programmable plasma display.
Date: 8/1/2019
Dynamic Flow Computers SFC332L Manual Quick Start 1-2
POWER
VOLTAGE RANGE
12-30 VDC
WATTAGE
4 WATT
OPERATING CONDITIONS
TEMPERATURE
- 40 TO 185 °F
HUMIDITY
100%
HOUSING
NEMA 4X CLASS 1 DIV. 1
FEATURES
DISPLAY
PLASMA 2 LINES 16 CHARACTER
PROCESSOR
32-BIT MOTOROLA 168332 @ 16.7 MHz
FLASH ROM
4 MB @ 70 NANO SECONDS
ROM
2 MB @ 30 NANO SECONDS
FREQUENCY INPUT
3 CHANNELS 0 - 5000 Hz WITH TURBINE DIAGNOSTIC FUNCTION >70 mV FOR SIN WAVE > 6 VOLTS FOR SQUARE WAVE
ANALOG INPUT
FOUR 24-BIT CHANNEL
RTD INPUTS
2 CHANNELS 4 WIRES
ANALOG OUTPUT
2 CHANNELS 12 BIT SINGLE ENDED
DIGITAL OUTPUT
OUTPUTS 1 & 2 PULSE/SWITCH 0.5 AMPS RATING OUTPUTS 3 TO 5 ARE SWITCH OUTPUTS 0.25 AMPS RATING
STATUS INPUTS
4 ON/OFF TYPE SIGNAL
ALL INPUTS AND OUTPUTS ARE OPTICALLY ISOLATED
SERIAL
1 RS485 @ 9600 BAUDS VARIABLE 1 RS232 @ 9600 BAUDS VARIABLE
COMMUNICATION PROTOCOL
MODBUS
Technical Data:
Date: 8/1/2019
Dynamic Flow Computers SFC332L Manual Quick Start 1-3
Part
Description
332-01P
Controller (CPU) Board for SFC332/1000 w/prover option.
332-02
Terminal (BP) Board for SFC332/1000.
332-03
Analog Board for SFC332/1000.
332-04
Display (LCD) for SFC332/1000.
332-05
Rosemount Interface Board for SFC1000.
332-06
Prover Option for SFC332/1000.
332-07
Enclosure for SFC332/1000.
332-08
Mounting Bracket w/captive screws for SFC332/1000 Boards.
332-09
Adapter between SFC1000 and Rosemount 205.
332-10
Center portion of housing for SFC332/1000 enclosure.
332-11
Glass Dome Cover for SFC332/1000 Enclosure.
332-12
Blank Dome Cover for SFC332/1000 Enclosure.
332-13
O-ring for SFC332 Enclosure.
332-14
External I/O Expansion.
332-15
Battery Replacement for SFC332/1000.
332-16
1/2 Amp 250V Fuse for SFC332/1000.
332-17
EPROM for SFC332/1000 (set of two).
RS232
External RS232 Connection for all models.
Parts List
Date: 8/1/2019
Dynamic Flow Computers SFC332L Manual Quick Start 1-4
SFC332L Flow Computer: Dimensions
Date: 8/1/2019
Dynamic Flow Computers SFC332L Manual Quick Start 1-5
Starting and Installing theWindow Software:
System Minimum Requirements
In order to install this software product the following requirements must be met:
Windows Operating System (Win95, Win98, Win98SE, win2000, WinNT, WinXP, Vista,
Windows 7, Windows 8, Windows 10)
For Windows NT, 2000, XP or Vista: Administrator level access to create an ODBC system DNS. Minimum disk space available: 16 MB. 1 Serial Communication Port
If your computer meets these requirements, you can run the setup file downloaded from our website
Date: 8/1/2019
Dynamic Flow Computers SFC332L Manual Quick Start 1-6
Website - DFC Configuration Software
Step 1. Go to our website WWW.DYNAMICFLOWCOMPUTERS.COM
Step 2. Click on the “Downloads
Step 3. Select either Windows or
DOS software based on Step 2.
Step 4. On the new screen presented to you click on the application that you are trying to download. Once you hit the link it will ask you if you want to run or save the file in your computer. Select SAVE. (See illustration 1)
Date: 8/1/2019
Dynamic Flow Computers SFC332L Manual Quick Start 1-7
Step 5. The file will start to transfer to your computer. The download time depends on your Internet connection speed and the type of application that being downloaded.
Step 6. When the download if finish. Press the OPEN button to start the setup process. (See Illustration)
Step 7. Follow the steps in the application setup.
Date: 8/1/2019
Dynamic Flow Computers SFC332L Manual Quick Start 1-8
Getting acquainted with the flow computer wiring:
Back terminal wiring:
The back terminal wiring indicates the overall positions of the terminal plugs and their functions. Though
the back panel’s jumpers are also shown, refer to the next drawing, “Back Panel Jumpers”, for information
on their settings and functions. The Smart Flow Computer receives its power via the two topmost pins on Terminal P1, on the left of the terminal board. Also on Terminal P1 are, from top to bottom, inputs from the two turbines and the RS-485 serial connection. To the right (P4), from top to bottom, are status input 1, density frequency input, and switch output 1 and 2. Terminal P3, at the lower bottom, handles analog inputs and outputs. These are, in order from right to left, analog inputs 1-4 and analog outputs 1 and 2. Terminal P5, top middle, is the RTD terminal block, "100 platinum RTD input".
Date: 8/1/2019
Dynamic Flow Computers SFC332L Manual Quick Start 1-9
Back Panel Jumper
In this illustration, a jumper is “ON” when the jumper block is used to connect the jumper’s to wire prongs.
“OFF” means the jumper block is completely removed or attached to only one of the two wire prongs.
Note: R11 and R3 could have a vertical orientation instead of a horizontal
orientation on certain Smart Flow Computer models.
Date: 8/1/2019
Dynamic Flow Computers SFC332L Manual Quick Start 1-10
Memory Jumper
Date: 8/1/2019
Dynamic Flow Computers SFC332L Manual Quick Start 1-11
Steps to clear memory through removing the memory jumper
(1) Turn off the power, move the jumper to the next two pins, wait for 5 seconds
(2) Put the jumper back
Memory cleared and Flow Computer ID is set to 1, 9600 baud rate, RTU mode
Date: 8/1/2019
Dynamic Flow Computers SFC332L Manual Quick Start 1-12
Date: 8/1/2019
Dynamic Flow Computers SFC332L Manual Quick Start 1-13
Date: 8/1/2019
Dynamic Flow Computers SFC332L Manual Quick Start 1-14
INPUT/OUTPUT: Assigning and Ranging Inputs
Input/Output Assignment
We will now configure your SFC332L Flow Computer’s inputs and outputs. The flow computer allows the user to configure the inputs and outputs. (I.e. Analog #1 is pressure for Meter #1). The flow computer will not use the unassigned inputs.
How to assign a transmitter to an I/O point
1 Click “Configure Device”, configuration menu is prompted 2 On configuration menu, click “Input Assignment” 3 Enter assignments for DP, temperature, pressure, density and spare inputs.
4 Assignment (1-n). Assignments 1-4 are analog inputs attached
to terminal of the back panel. These inputs accept 4-20mA or 1-5
volts input and are suitable for temperature, pressure, density, or spare inputs. An assignment 5 is strictly RTD (temperature) input only for the meter, densitometer or spare. Assignment 7 indicates a density frequency input; it is assigned automatically once you choose live density frequency input in the setup menu at density type Assignment 10 (module 1) is for Rosemount multi-variable module only. DP, pressure, and temperature for the meter can be assigned. When a frequency type primary element is hooked to the flow computer, the Multi Variable pressure and temperature can be used and the DP becomes a spare input that could be assigned for strainer differential.
Date: 8/1/2019
Dynamic Flow Computers SFC332L Manual Quick Start 1-15
Ranging the Transmitter Inputs:
1. Enter the range values: after assigning the inputs scroll down the transducer inputs
assignment menu to scale the 4-20mA. Enter the value at @4mA and @20mA. Enter both values similar to the way the transmitter is ranged. 1-5 volts is equivalent to 4-20mA. Enter the 1 volt value at the 4mA, and 5 volt value at 20mA. When the Multi Variable is used the 4­20 ma scale has no effect on anything and does not need to be configured for that input. The reason is simply that the flow computer gets the data via digital communication from the transmitter in engineering units, and therefore a scale is not needed. Normal pressure range is 0-3626, temperature –40 to 1200, DP –250 to 250, or -830 to 830 inches of water.
2. Enter the high and low limits: high limits and low limits are simply the alarm points in
which you would like the flow computer to flag as an alarm condition. Enter these values with respect to the upper and lower range conditions. Try to avoid creating alarm log when conditions are normal. For example: If the line condition for the pressure is between 0 to 500 PSIG, then you should program less than zero for low pressure alarm, and 500 or more for high pressure alarm. High limits are also used in the SCALE for the Modbus variables. The high limit is equalent to 32767 or 4095. The low limit is not used for calculating the scale. The scale starts at zero to wherever the high limit value.
3. Set up the fail code: Maintenance and Failure Code values tell the flow computer
to use a default value in the event the transmitter fails. The default value is stored in Maintenance. There are three outcomes: the transmitter value is always used, no matter what (Failure Code = 0); the Maintenance value is always used, no matter what (Failure Code = 1); and the Maintenance value is used only when the transmitter’s value indicates that the transmitter has temporarily failed (Failure Code = 2).
RTD inputs will skip 4-20 mA assignment because RTD is a raw signal of 50 (ohms) to 156. Readings beyond that range require a 4-20 mA signal to the flow computer or using the built in Rosemount Multi Variable transmitter. The Rosemount Multivariable has a range of –40-1200 degrees Fahrenheit. Density coefficients for raw frequency inputs are programmed in this menu. The menu will only show parameters relevant to the live density selected (i.e., Solartron or UGC, etc.).
Date: 8/1/2019
Dynamic Flow Computers SFC332L Manual Quick Start 1-16
WIRING:
Wiring to the flow computer is very straightforward and simple. But still it is very important to get familiar with the wiring diagram.
Wiring the Analog Inputs:
Typical wiring for analog inputs 1 and 2 are shown in the drawing. Analog inputs 3 and 4 are to the left of analog 1 and 2. Note that the analog input has only one common return, which is the -Ve signal of power supply powering the transmitters. When wiring 1-5 volts, make sure to calibrate the flow computer for the 1-5 volt signal because the flow computer calibration defaults for the 4-20mA, which is different from the 1-5 volts. JP5 must be cut for 1­5 volt inputs. The jumpers for analog 1-4 are in order from right to left. It is possible to cut the first two jumpers for analog 1 & 2 in for 1-5 volts signal and have analog in 3 & 4 as 4-20mA signal. Signal line impedance provided by our flow computer is less than 250. Therefore, when using a smart transmitter that requires a minimum of 250 resistance in the loop, an additional resistor at the flow computer end needs to be installed in series with the 4-20mA loop in order to allow the hand held communicator to talk to the transmitter.
NOTE: The 4-20mA or 1-5 volt DOES NOT source power to the transmitters. You can use the DC
power feeding the flow computer to power the 4-20mA loop IF that power supply is FILTERED.
Date: 8/1/2019
Dynamic Flow Computers SFC332L Manual Quick Start 1-17
Wiring the analog inputs 1-4 :
Date: 8/1/2019
Dynamic Flow Computers SFC332L Manual Quick Start 1-18
RTD
The flow computer shows wiring to RTD 1 and RTD 2. 100 platinum can be used; a temperature range of -43F to +300F can be measured. RTD 1 is to the right where P5 designation is. In the figure below notice that each side of the RTD requires two wire connections. When using less than 4 wires a jumper must be used to make up for the missing lead. Internal excitation current source generated is approximately 7mA. .
RTD can be wired to multi-variable directly through specially provided cable. This wiring diagram describes wiring directly into the flow computer and not into the multi-variable.
Date: 8/1/2019
Dynamic Flow Computers SFC332L Manual Quick Start 1-19
Wiring Analog Output:
Wiring diagram shows typical Analog output wiring. Notice that analog output will regulate 4-20 mA current loop but DOES NOT source the power for it. External power is required.
ASSIGN ING/R ANGING THE 4-20MA AN ALOG OUT PUTS :
Go to the I/O assignment main menu and click Analog Output Assignment. A selection menu is prompted. Select the analog output number, and then enter what the 4-mA output will indicate and the 20 mA. Make sure that the 20 mA assignment value exceeds the upper range limit of what you assigned the Analog output for, otherwise the analog output will not update beyond 20 mA.
Date: 8/1/2019
Dynamic Flow Computers SFC332L Manual Quick Start 1-20
Turbine Input Wiring
Scroll to Turbine under Wiring and press ENTER. Two drawings above each other will show typical wiring for turbine meter 1 and turbine meter 2. When dual pickups from the same turbine are connected, use the inputs for turbine 1 for pickup 1 and turbine 2 for the second pickup coil. When connecting sine wave directly from the pickup coil make sure the distance from the pickup coil to the flow computer is very short--less than 50 feet with shielded cable. In the event there is presence of noise, the distance must be shortened. When connecting sine wave signal, the R11 jumper for meter 1 must be installed and R3 jumper for meter 2 must be installed. (JP3 and JP2 must be off when using sine wave). On the other hand, when using square wave, the square wave signal can be sinusoidal but has to be above 5 volts peak to peak with less than 0.4 volts offset in order for the flow computer to read it. R11 and R3 must be off and JP3 on for meter 1; JP2 must be on for meter 2.
Note: When connecting square wave input, the JP3 and JP2 connect the turbine return to the
flow computer power return. Therefore, signal polarity is very important. Reverse polarity could result in some damage or power loss. When sine wave is used the signal polarity is usually of no significance.
The turbine input is immediately under the power input on terminal P1. The third pin down from the top is Turbine/PD "minus", and below it is Turbine plus. The second pulse input for Turbine/PD meter 2 or the second pickup coil is below turbine one input on P1. The fifth pin down from the top is turbine 2 "minus" signal and below it is Turbine/PD 2 plus signal.
Date: 8/1/2019
Dynamic Flow Computers SFC332L Manual Quick Start 1-21
TUR BINE- SINE WAVE
Date: 8/1/2019
Dynamic Flow Computers SFC332L Manual Quick Start 1-22
TUR BINE-SQUARE WAVE
Note: R11 and R3 are oriented vertically in some flow computers.
Date: 8/1/2019
Dynamic Flow Computers SFC332L Manual Quick Start 1-23
Turbine input wiring for passive (dry contact) pulse generators
Some mass flow meters have pulse outputs that do not provide power but instead require external power, they are referred to as passive outputs, dry outputs, open collector, etc. (For example the Krohne UFM 3030 Mass meter).
In these cases the wiring should be as shown on the below diagram. The pull up resistor can be adjusted to limit the current sink by the Mass meter. For Turbine Input 1 JP3 must be ON and R11 OFF and if using Turbine Input 2 then JP2 must be ON and R3 OFF.
Date: 8/1/2019
Dynamic Flow Computers SFC332L Manual Quick Start 1-24
Density Input Wiring:
When using a live densitometer input with frequency signal, the signal can be brought into the Smart Flow Computer in its raw form. The Smart Flow Computer accepts a sine wave or square with or without DC offset. Example for density wiring can be seen in the wiring diagram. Three are two drawings, one with barrier and the other without. Barriers are used for area classification. Notice that the RTD wiring is also drawn to show how to hook the density RTD signal.
Note: When wiring the density input polarity is of significance and reverse polarity could
result in some damage or power loss. The density signal is on connector P4, the third and fourth pin down from the top. The third pin down is density plus, the fourth down is density minus. When Density input is 4-20mA it should be connected as a regular 4-20mA signal to the analog input and not the density frequency input.
Date: 8/1/2019
Dynamic Flow Computers SFC332L Manual Quick Start 1-25
RS-232 Connection:
The RS-232 is not located on the terminal board. The RS-232 is a green 5-pin terminal block with screw type connector located on the display side of the enclosure. Go to Wiring | RS-232. Termination jumpers for the RS-232 are located at the top corner of the board on the same side of the RS-232 connector. The two jumpers at the top are for terminating the transmit line and below it is the receive line.
The RS-232 port can be used for printing reports, Modbus communication, or interfacing
to the configuration program. If the port is configured as printer port in the flow computer Note: Twisted shielded cable is required.
WARNING: When the RS-232 terminal is used with a modem, external protection on the
phone line is required. Jumper DTR to DSR, RTS to CTS, and disable software handshake on the modem RS232 connection
Date: 8/1/2019
Loading...
+ 118 hidden pages