DX Engineering DXE-6MZR-HWK From W

Add 6 Meters to Your Triband Trap Yagi
This approach is almost painless, stealthy and gets the job done.
Joel R. Hallas, W1ZR
ack  in  the  1950s,  HF  transceivers  were just starting to replace separate 
B
receivers  and  transmitters  and  our  DX bands were  20,  15  and 10  meters. The  triband  trap  Yagi  became  a  very  popular  antenna for those who  wanted to work DX  but couldn’t swing separate monoband Yagis  for each band. Many amateurs also operated  on 6 meters in those days, but the equipment  was usually separate from the HF gear — the  focus of VHF specialists, in many cases.
Fast  forward  to  2011  a n d  alm ost  all   current “HF” transceivers also cover MF (160  meters) and VHF (at least to 6 meters), with  similar performance, power and features as on  the HF bands. A look on the towers of many  amateurs will yield a view of  the  same  type  (or even the same) trap tribander from the ’50s.
That Was the Situation at W1ZR
In my case,  the  triband Yagi was  a  relic  from the ’80s I obtained for a price too good  to pass up. I didn’t actually have a tower to put  it on, and after getting the neighborhood accli­mated to the driven element tied to the top of  my chimney for a few years, I took the plunge  and sunk a pipe mast next to the chimney, put  on a rotator, and — one piece at a time — the 
Yagi grew in place of the solo driven element. 
During the same period, I retired my old 
160-10  meter  transceiver  to  replace it  with 
a  modern  unit  that  covered  160  through   6  meters.  Now my  radio had  outpaced  my  antenna farm. I could operate 6 meters using  my 100 foot center fed Zepp, but I had nulls  every  few  degrees  all  the  way  around  —  something had to be done.
The Mast Thickens
My challenges were twofold. First, because  my  ro tator  was  mounted  on  top  of  a  mast,  rather than inside a tower, I had to derate the  rotator’s wind  load capability  by  50%, and  avoid any bending  moments  resulting  from  loads above the rotator. That put the tribander  right above the rotator. To  add  6  meters, my  first thought was to investigate the low wind  load Moxon we reviewed in  2004, secured a  few feet  above the tribander.1  Unfortunately,  my  modeling  indicated  that installing them  just a few feet apart would result in significant  degradation of  the gain  and  pattern  of  both 
1
Notes appear at end of article.
From September QST © ARRL
antennas — back to the drawing board. 
I had been very pleased with the results  of my 40 and 20 meter skeleton sleeve dipole  described in  a  recent  QST  article —  could  I use the same technique to add 6 meters to  my Yagi?2  EZNEC modeling indicated that  it could indeed work — and work very well.
This gave me two significant advantages:
I had sidestepped the wind loading and 
bending  moment  concerns. The  added  ele­ments  were  right  above the rotator and the  thin elements were largely in the shadow of  the tribander’s elements or boom, depending  on relative wind direction.
Perhaps even better  —  I did  not  need 
an  add itional  feed line.  The HF  feed line,  going to the split driven element, would also  feed power to the 6 meter Yagi.  through parasitic coupling, so no  connection  to the tribander is required.
This occurs 
The Details
Before  I  proceed,  I  should  give  credit 
where due. Following publication of my two 
band “skeleton sleeve” dipole article, I found  that the parasitic coupling to a single element 
was  pre sented  in  an  antenna  ar ticle  in   The
ARRL Antenna Compendium, Volume 5
Gary Breed, K9AY, also the developer of the 
low frequency receiving  loop  that  bears  his 
call letters.4 Gary called  it  a  coupled resona-
  antenna  —  perhaps  more  descriptive  a 
tor
name. There’s nothing new under the sun — it  would seem. 
  by 
Design Approach
The usual issue with Yagi  design is  that  
there  are  many variables  as  well as  many  objectives.  The  primary  variables  are  ele­ment length and spacing while the objectives  are  generally  forward  gain,  front-to-back  ratio (F/B) and bandwidth. They tend to fight  each other to  some  extent, and others may 
3
find different combinations that are better in  one respect or another.  
My goal was  to  achieve reasonable Yagi  performance  with  elements  comfo rtably  between those of the tribander. Using EZNEC  modeling, I  was able to  find a  set  of dimen­sions that were predicted to work well starting  from the National Bureau of Standards (NBS)  baseline of  0.2 l parasitic element spacing.5 
The modeled forward gain was within about  1 dB  of a similarly sized three element Yagi 
in the same space but without the tribander —  not a bad trade, in my view. 
The  loss  in  a  mismatched  transmission  line is a particular problem at  VHF, so it  is  important  to  match  to  whatever impedance  the Yagi offers. In  a  traditional  VHF  Yagi,  the low impedance is generally transformed  to  a  matched  value through  an  adjustable  matching arrangement. For the coupled reso­nator with no direct connection this is accom­plished, as predicted by  Breed’s formula, by  adjusting the spacing between the HF driven  element and our  coupled resonator.  I found  that  adjusting  the  center-to-center  spacing  from about 4 inches (the minimum possible 
with the mounting hardware) to the 10 inches 
shown, I  could increase the impedance of a  single  element  coupled   resonator  from 45  to 120 W. The same adjustments resulted in  a  reduction  of element  resonant  frequency 
from 50.2 to 49.2, so retrimming is required.  By using the  10  inch  spacing  for  the  three  element case, the low impedance of the Yagi  configuration was transformed to close to the  desired 50 W (see Table 1).
A Few Caveats
This project was initiated on  a trap trib­ander with a split dipole feed. Although this  is the arrangement of many such Yagis, other  configurations  will  be  encountered.  Some  may include a shunt transmission line section  across  the  feed or  other  matching arrange-
Table 1
Measured SWR at Antenna
Frequency SWR
50.0 1.2
50.1 1.1
50.2 1.1
50.3 1.2
50.4 1.6
Figure 1 — I used the DX Engineering (www. dxengineering. com) stainless steel saddle clamps, as well as their telescoping aluminum tubing and stainless element clamps. Lower cost non­stainless hardware could be used if the budget is tight.
ments.  They may  also work  but I  haven’t 
tried them. If you’re not sure, try it with just  the driven element before you commit to the 
whole project.
Elements
For elements, I selected aluminum tubing 
in diameters of 1⁄2 and 3⁄8 inches and  a  wall 
thickness of 0.058  inches.  These  telescope 
nicely. For the center of each element, I used 
a 3 foot section of 1⁄2 inch tubing with the ends  slit and compressed on the smaller section on  each side using stainless hose type clamps  of the appropriate size. I obtained my tubing  and  clamps  from  DX  Engineering,  which  offers the tubing in 3 foot and 6 foot lengths. 
The 3 foot, 1⁄2 inch tubing is  available with 
one end pre-slit for a slight additional charge,  and they may offer it  with both ends slit by  the time you read this. I had reasonable luck  slitting the other end using either a band saw  or a hacksaw with the tubing in a vise. The  outer 3⁄8 inch sections were made from 6 foot 
lengths, two required per element — each cut 
to 4 feet 4 inches long.
Element Mounting
I chose  to  mount the elements insulated 
from the boom to  avoid  having to make the 
required correction for all metal construction. 
I used a 3 × 6 inch piece of 1⁄4 inch polycar-
bonate for each insulator. I would guess other  materials could  be  used,  but  polycarbonate  comes highly recommended and was readily  available.
6,7
To mount the insulator to the boom, and to  the elements, I  choose stainless steel saddle  clamps  also  fr om  DX  Engineering.  These  clamps  are  very  nicely  constructed  (see 
Figure 1). 
Although they are more expensive 
than the hardware store variety, I thought they 
were worth it. For those on a tight budget, less 
expensive clamps  may  work  fine for  many 
years, but will make for tougher disassembly. 
Once you have the clamps selected, care­fully lay out the insulator for drilling. Figure 2   indicate s  the  construction  lines  that  I  laid 
on the handy paper that came applied to the 
McMaster-Carr polycarbonate. It is important 
that the holes be lined up quite closely. If the  clamps for  one side or the other aren’t paral-
lel, the tubing may bind. If misaligned,  the  
6 meter elements will not  be  parallel to  the 
HF elements.
If your shop gear and  skills are up there 
with Barry Shackleford, W6YE, you could 
make the holes just  a  bit  larger than the  U  bolts. For me, using a hand drill and a vise, I 
found I had to open them up just a bit with a 
rotary grinding tool.
Mounting the Elements
Figure  3  shows  the  dimensions  of  the   6 meter elements on the Yagi. Note that I have  referenced them  all to  the  center  of the  HF  driven element. This  should allow for  some  differences between tribanders. For the record,  my tribander is  a  Wilson Electronics SY33. 
This looks a lot like the very popular Mosely  TA-33, but has slightly wider element spacing.
Table 2 provides a summary of dimensions 
for the  NBS  0.2  l  spacing  case  that  I  used.  In case your  tribander has a shorter boom, I 
have also included dimensions for a  version 
with 0.2 l reflector spacing and 0.15 l  direc-
tor spacing. EZNEC  modeling  predicts  that  this version has about  0.5 dB  less gain than  the larger version. I haven’t actually tried the  shorter version.
Figure 2 — Dimensions of the construction lines and hole locations for the 3 × 6 inch pieces made from the McMaster-Carr polycarbonate sample pack. The dimensions assume a 2 inch boom and obtain correctly sized saddle clamps and lay out accordingly.
1
2 inch inner element section. For a different size boom,
Performance
Modeling is fine, but on-air measurements  remove  any  guesswork.  I  made  measure­ments of  W1AW  (50  air  miles  away) code  prac tice  on  20,  15  and  10  meters  before  and after adding the  6  meter  elements and 
found no difference. I asked W1AW Station  Manager Joe Carcia to put a signal on a clear 
6 meter frequency. I was very pleased; gain 
was at least as good as EZNEC predicted (see  Figure 4). My F/B was not as good, perhaps 
due  to  reflections  from multiple  antennas. 
From September QST © ARRL
Loading...
+ 1 hidden pages