
User Manual
Radio Modules
deRFmega128-22M00
deRFmega128-22M10
deRFmega128-22M12
Document Version V1.1c
2013-07-01

User Manual
Version 1.1c
2013-07-01
OEM radio modules deRFmega
www.dresden-elektronik.de
Table of contents
1. Overview ......................................................................................................................... 6
2. Applications ................................................................ ..................................................... 6
3. Features .......................................................................................................................... 7
3.1. deRFmega128-22M00 ............................................................................................ 7
3.2. deRFmega128-22M10 ............................................................................................ 8
3.3. deRFmega128-22M12 ............................................................................................ 9
4. Technical data ............................................................................................................... 10
4.1. TX Power register settings for deRFmega128-22M00 and 22M10 ........................ 13
4.2. TX Power register settings for deRFmega128-22M12 .......................................... 14
4.3. Output power and duty cycle settings for deRFmega128-22M00 .......................... 15
4.4. Output power and duty cycle settings for deRFmega128-22M12 .......................... 16
5. Mechanical size ............................................................................................................. 17
5.1. deRFmega128-22M00 .......................................................................................... 17
5.2. deRFmega128-22M10 .......................................................................................... 18
5.3. deRFmega128-22M12 .......................................................................................... 19
6. Soldering profile............................................................................................................. 20
7. Pin assignment .............................................................................................................. 21
7.1. Signals of deRFmega128-22M00 ......................................................................... 21
7.2. Signals of deRFmega128-22M10 ......................................................................... 24
7.2.1. External front-end and antenna diversity control ....................................... 27
7.3. Signals of deRFmega128-22M12 ......................................................................... 28
7.3.1. Internal front-end control ........................................................................... 31
7.4. Signal description ................................................................................................. 32
8. PCB design ................................................................................................................... 34
8.1. Technology ........................................................................................................... 34
8.2. Base board footprint ............................................................................................. 34
8.2.1. Footprint of deRFmega128-22M00 ........................................................... 35
8.2.2. Footprint of deRFmega128-22M10 ........................................................... 36
8.2.3. Footprint of deRFmega128-22M12 ........................................................... 37
8.3. Ground plane........................................................................................................ 37
8.4. Layers .................................................................................................................. 38
8.5. Traces .................................................................................................................. 39
8.6. Placement on the PCB ......................................................................................... 40
9. Clock ............................................................................................................................. 41
10. Application circuits ......................................................................................................... 42
10.1. UART ................................................................................................................... 42
10.2. ISP ....................................................................................................................... 42
10.3. JTAG .................................................................................................................... 42
10.4. TWI ...................................................................................................................... 43
10.5. External front-end and antenna diversity .............................................................. 44
11. Programming ................................................................................................................. 46

User Manual
Version 1.1c
2013-07-01
OEM radio modules deRFmega
www.dresden-elektronik.de
12. Pre-flashed firmware ..................................................................................................... 46
13. Adapter boards .............................................................................................................. 46
14. Radio certification .......................................................................................................... 47
14.1. United States (FCC) ............................................................................................. 47
14.2. European Union (ETSI) ........................................................................................ 48
14.3. Approved antennas .............................................................................................. 48
15. Ordering information ...................................................................................................... 49
16. Packaging dimension .................................................................................................... 50
17. Revision notes ............................................................................................................... 50
18. References .................................................................................................................... 51

User Manual
Version 1.1c
2013-07-01
OEM radio modules deRFmega
www.dresden-elektronik.de
Update technical data
TX_PWR register settings
Sensitivity
Update signal description
RFOUT pin description on deRFmega128-22M12
more precisely specified
Update FCC section
Document history

User Manual
Version 1.1c
2013-07-01
OEM radio modules deRFmega
www.dresden-elektronik.de
IEEE 802.15.4 standard, applicable to low-rate Wireless Personal Area
Networks (WPAN)
IPv6 over Low Power Wireless Personal Area Networks
Analog to Digital Converter
Electromagnetic Interference
European Telecommunications Standards Institute
Federal Communications Commission
Generals Purpose Input Output
Joint Test Action Group, digital interface for debugging of embedded
devices, also known as IEEE 1149.1 standard interface
International Society of Automation, the Committee establishes standards
and related technical information for implementing wireless systems.
Land Grid Array, a type of surface-mount packaging for integrated circuits
Medium (Media) Access Control
Radio and Telecommunications Terminal Equipment
(Directive of the European Union)
Serial Peripheral Interface
Two-Wire Serial Interface
Universal [Synchronous/]Asynchronous Receiver Transmitter
Low-cost, low-power wireless mesh network standard. The ZigBee Alliance
is a group of companies that maintain and publish the ZigBee standard.
Abbreviations

User Manual
Version 1.1c
2013-07-01
OEM radio modules deRFmega
www.dresden-elektronik.de
1. Overview
The tiny radio module series by dresden elektronik combines Atmel’s 8-bit AVR single chip
ATmega128RFA1 with a small footprint. Three different module types are available providing
different features for the custom application.
The deRFmega22M00 has an onboard chip antenna to establish a ready-to-use device. No
additional and expensive RF designs are necessary. This module is full compliant to all EU
and US regulatory requirements.
The deRFmega128-22M10 has the smallest form factor of all module types. The customer is
free to design his own antenna, coaxial output or front-end; but it is also possible to use one
of the dresden elektronik’s certified and documented RF designs.
The deRFmega128-22M12 has an onboard front-end feature including LNA and PA with
20 dB gain. Furthermore it supports antenna diversity by a direct connection of two antennas
or coaxial connectors. All necessary RF parts and switches are integrated. This module type
combined with the small form factor is the optimal solution between range extension and
space for mounting on PCB.
2. Applications
The main applications for the radio modules are:
2.4 GHz IEEE 802.15.4
ZigBee PRO
ZigBee RF4CE
ZigBee IP
6LoWPAN
ISA SP100
Wireless Sensor Networks
Industrial and home controlling/monitoring
Smart Metering

User Manual
Version 1.1c
2013-07-01
OEM radio modules deRFmega
www.dresden-elektronik.de
Tiny size: 23.6 x 13.2 x 3.0 mm
51 LGA pads 0.6 x 0.6 mm
Supply voltage 1.8 V to 3.6 V
RF shielding
Onboard 32.768 kHz crystal
(Deep-Sleep clock) and
16 MHz crystal
Application interfaces:
2x UART, 1x TWI, 1x ADC
GPIO interface
Debug/Programming interfaces:
1x SPI, 1x JTAG, 1x ISP
Onboard 2.4 GHz chip antenna
Certification: CE, FCC
ATmega128RFA1
Transceiver crystal
16MHz [+/-10ppm]
JTAG
UART
VCC
1.8V to 3.6V
Watch crystal
32.768kHz
SPI
TWI
ADC
GPIO
2.4GHz antenna
3. Features
3.1. deRFmega128-22M00
The radio module deRFmega128-22M00 offers the following features:
Figure 1 shows the block diagram of the radio module deRFmega128-22M00.
Figure 1: Block diagram deRFmega128-22M00

User Manual
Version 1.1c
2013-07-01
OEM radio modules deRFmega
www.dresden-elektronik.de
Tiny size: 19.0 x 13.2 x 3.0 mm
55 LGA pads 0.6 x 0.6 mm
Supply voltage 1.8 V to 3.6 V
RF shielding
Onboard 32.768 kHz crystal
(Deep-Sleep clock) and
16 MHz crystal
Application interfaces:
2x UART, 1x TWI, 1x ADC
GPIO interface
Debug/Programming interfaces:
1x SPI, 1x JTAG, 1x ISP
Solderable 2.4 GHz RF output pads
(1x RFOUT, 3x RFGND)
Certification: CE, FCC pending
ATmega128RFA1
Transceiver crystal
16MHz [+/-10ppm]
JTAG
UART
VCC
1.8V to 3.6V
Watch crystal
32.768kHz
SPI
TWI
ADC
GPIO
RFout
3.2. deRFmega128-22M10
The radio module deRFmega128-22M10 offers the following features:
Figure 2 shows the block diagram of the radio module deRFmega128-22M10.
Figure 2: Block diagram deRFmega128-22M10

User Manual
Version 1.1c
2013-07-01
OEM radio modules deRFmega
www.dresden-elektronik.de
Tiny size: 21.5 x 13.2 x 3.0 mm
59 LGA pads 0.6 x 0.6 mm
Supply voltage 2.0 V to 3.6 V
Antenna diversity support
RF shielding
Onboard 32.768 kHz crystal
(Deep-Sleep clock) and
16 MHz crystal
Application interfaces:
2x UART, 1x TWI
GPIO interface
Debug/Programming interfaces:
1x SPI, 1x JTAG, 1x ISP
2.4 GHz front-end module with
internal 20 dB PA and LNA
Solderable 2.4 GHz RF output pad
(2x RFOUT, 6x RFGND)
Certification: CE, FCC pending
ATmega128RFA1
Transceiver crystal
16MHz [+/-10ppm]
JTAG
UART
VCC
2.0V to 3.6V
Watch crystal
32.768kHz
SPI
TWI
ADC
GPIO
2.4GHz Front-End
RFout 1
RFout 2
RF
Control
3.3. deRFmega128-22M12
The radio module deRFmega128-22M12 offers the following features:
Figure 3 shows the block diagram of the radio module deRFmega128-22M12.
Figure 3: Block diagram deRFmega128-22M12

User Manual
Version 1.1c
2013-07-01
OEM radio modules deRFmega
www.dresden-elektronik.de
23.6 x 13.2 x 3.0 mm (for 22M00)
19.0 x 13.2 x 3.0 mm (for 22M10)
21.5 x 13.2 x 3.0 mm (for 22M12)
Operating
temperature range
Storage
temperature range
deRFmega128-22M00 and deRFmega128-22M10
I
TXon
(TX_PWR = -17 dBm)
I
Idle
(Txoff, MCK = 8MHz)
I
Sleep
(depends on Sleep Mode)
4. Technical data
Table 4-1: Mechanical data
Table 4-2: Temperature range
Table 4-3: Electrical data

User Manual
Version 1.1c
2013-07-01
OEM radio modules deRFmega
www.dresden-elektronik.de
I
TXon
(TX_PWR = +20 dBm)
I
Idle
(Txoff, MCK = 8 MHz)
I
Sleep
(depends on Sleep Mode)
Transceiver crystal
Frequency
Radio 2.4 GHz (Supply voltage VCC = 3.3V)
Transmitting
power conducted
Data Rate = 250 kBit/s
Data Rate = 500 kBit/s
Data Rate = 1000 kBit/s
Data Rate = 2000 kBit/s
Table 4-4: Quartz crystal properties
Table 4-5: Radio data of deRFmega128-22M00 and deRFmega128-22M10
Operating the transmitter at channel 11 to 25 requires a duty cycle ≤35% and channel 26 requires a
duty cycle ≤15% to fulfil all requirements according to FCC Part 15 Subpart C § 15.209. See chapter
4.3 for further information.

User Manual
Version 1.1c
2013-07-01
OEM radio modules deRFmega
www.dresden-elektronik.de
TRX_CTRL_2 = 0x00
TRX_CTRL_2 = 0x01
TRX_CTRL_2 = 0x02
TRX_CTRL_2 = 0x03
kBit/s
kBit/s
kBit/s
kBit/s
Radio (Supply voltage VCC = 3.3V)
Transmitting
power conducted
2,3
Data Rate = 250 kBit/s
Data Rate = 500 kBit/s
Data Rate = 1000 kBit/s
Data Rate = 2000 kBit/s
TRX_CTRL_2 = 0x00
TRX_CTRL_2 = 0x01
TRX_CTRL_2 = 0x02
TRX_CTRL_2 = 0x03
kBit/s
kBit/s
kBit/s
kBit/s
Table 4-6: Radio data of deRFmega128-22M12
Only applicable for EU: The maximum allowed TX_PWR register setting of deRFmega128-22M12 is
TX_PWR = 0x0E. According to EN 300 328 clause 4.3.1 the maximum transmit power is restricted to
a limit of +10dBm.
Only applicable for US: Operating the transmitter at channel 11, 12, 13, 23, 24, 25 and 26 requires to
ensure a reduced output power and/or duty cycle limit to fulfil all requirements according to FCC Part
15 Subpart C § 15.209. See chapter 4.3.

User Manual
Version 1.1c
2013-07-01
OEM radio modules deRFmega
www.dresden-elektronik.de
4.1. TX Power register settings for deRFmega128-22M00 and 22M10
The diagrams in Figure 4 and Figure 5 are showing the current consumption and conducted
output power during transmission depending on the TX_PWR register setting. The values are
valid for deRFmega128-22M00 and 22M10.
Figure 4: TX Idd vs. TX_PWR for deRFmega128-22M00 / 22M10
Figure 5: TX Pout vs. TX_PWR for deRFmega128-22M00 / 22M10

User Manual
Version 1.1c
2013-07-01
OEM radio modules deRFmega
www.dresden-elektronik.de
4.2. TX Power register settings for deRFmega128-22M12
The diagrams in Figure 6 and Figure 7 showing the current consumption and conducted
output power during transmission depending on the TX_PWR register setting. The values are
valid for deRFmega128-22M12.
Figure 6: TX Idd vs. TX_PWR for deRFmega128-22M12
Figure 7: TX Pout vs. TX_PWR for deRFmega128-22M12

User Manual
Version 1.1c
2013-07-01
OEM radio modules deRFmega
www.dresden-elektronik.de
Data transmission timeline
4.3. Output power and duty cycle settings for deRFmega128-22M00
The radio module deRFmega128-22M00 must observe the duty cycle settings to be
compliant with all FCC regulatory requirements.
The requirements are a duty cycle which is ≤15% for channel 26 operation and ≤36% for the
remaining channels. The duty cycle is related to a period of 100ms, where the given value
defines the TX-ON time. That means, the maximum allowed TX-ON time is 15ms within a
period of 100ms for channel 26 and 36ms for all other channels respectively.
The available default firmware for the radio modules is a ‘Wireless UART’ (WUART) that
transmits wireless data inputs from one node to another. The WUART packets length
including overhead ranges between of 12 and 127 bytes. All radio protective systems like
automated acknowledgement, CSMA-CA and frame-retry are activated. Therefore sending a
packet with maximum length takes approximately 4ms to from start to end of transmission.
Before each transmission, a fixed delay time of 30ms is defined, to ensure that the available
maximum packet length is used. This optimizes the energy performance of the radio module,
because not every single data input will be transmitted separately. The fixed delay time
cannot be changed by software. By default, the WUART firmware operates at channel 20
which also cannot be changed by the user.
Table 4-7 shows a worst case scenario of data transmission with maximum packet length of
127 bytes. The data input will be buffered within the 30ms delay and then transmitted. The
CSMA-CA wait time is assumed to be zero. Here, the RX-ON time of receiving the
automated acknowledgement after each transmission is ignored. The transition will be
continued until all data inputs are successfully transmitted. Therefore, the resulting duty cycle
is ≤ 12% and fulfills the FCC requirements for all channels.
Table 4-7: Timeline

User Manual
Version 1.1c
2013-07-01
OEM radio modules deRFmega
www.dresden-elektronik.de
4.4. Output power and duty cycle settings for deRFmega128-22M12
The radio module deRFmega128-22M12 is able to provide an output power greater than
20dBm. Table 4-8 defines the necessary power settings of the TX_PWR register [1], which
must be set to fulfill all national requirements of Europe (EN 300 328) and USA (CFR 47
Ch. I FCC Part 15). The duty cycle defines the relationship between the radio-on time and
the period of 100ms.
Table 4-8: power table for deRFmega128-22M12