16Mbytes parallel PCM non-volatile memory
10/100 Ethernet PHY
On-board USB2 port for programming & data
xfer
USB-UART and USB-HID port (for
mouse/keyboard)
8-bit VGA port
100MHz CMOS oscillator
72 I/Os routed to expansion connectors
GPIO includes 8 LEDs, 5 buttons,8 slide
switches and 4-digit seven-segment display
USB2 programming cable included
Features include:
Overview
The Nexys 3 is a complete, ready-to-use digital circuit development platform based on the Xilinx Spartan-6 LX16
FPGA. The Spartan-6 is optimized for high performance logic, and offers more than 50% higher capacity, higher
performance, and more resources as compared to the Nexys 2's Spartan-3 500E FPGA.
In addition to the Spartan-6 FPGA, the Nexys 3 offers an improved collection of peripherals including 32Mbytes of
Micron's latest Phase Change nonvolatile memory, a 10/100 Ethernet PHY, 16Mbytes of Cellular RAM, a USBUART port, a USB host port for mice and keyboards, and an improved high-speed expansion connector. The large
FPGA and broad set of peripherals make the Nexys 3 board an ideal host for a wide range of digital systems,
including embedded processor designs based on Xilinx's MicroBlaze.
Nexys 3 is compatible with all Xilinx CAD tools, including ChipScope, EDK, and the free WebPack. The Nexys 3 uses
Digilent's newest Adept USB2 system that offers FPGA and ROM programming, automated board tests, virtual I/O,
and simplified user-data transfer facilities.
A comprehensive collection of board support IP and reference designs, and a large collection of add-on boards are
available on the Digilent website. Please see the Nexys 3 page at www.digilentinc.com for more information.
Nexys 3™ FPGA Board Reference Manual
Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.
Page 2 of 22
M0
M1
JTAG
Port
USB
Controller
Micron SPI Quad
mode PCM (P5Q)
1x6 JTAG
Header
SPI
Port
Micro-AB USB
Connector
Adept “USB Prog” Port
Spartan6
Done
PIC24
Type A USB
Connector
Host Port
Serial
Prog. Port
2
Micron Parallel
PCM (P8P)
BPI
Port
J8
Programming
Mode
SLV Serial
SPI
BPI UP
M0 M1
6-pin JTAG
Header (J7)
Prog
23
Cellular RAM
16MByte
High-Speed
Expansion
USB HID Host
Mouse/Keyboard
Spartan-6
XC6SLX16
CSG324C
Basic I/O
LEDs, Btns, Swts
Pmod Port
Expansion
8
22
40
32
4
USB-UART
2
Clock 100MHz
Adept USB2
Config & data
SPI PCM (x4)
Nonvolatile
Memory
16MByte
28
10/100
Ethernet PHY
Parallel PCM
Nonvolatile
Memory
16MByte
10
8-bit VGA
47
2,278 slices each containing four 6-input LUTs
and eight flip-flops
576Kbits of fast block RAM
two clock tiles (four DCMs & two PLLs)
32 DSP slices
500MHz+ clock speeds
Spartan-6 LX16 features include:
1 Configuration
After power-on, the Spartan-6 FPGA board must be configured (or programmed) before it can perform any
functions. The FPGA can be configured in one of four ways: a PC can use the Adept "USB Prog" port to program
the FPGA any time power is on; a configuration file stored in the non-volatile parallel PCM device can be
transferred to the FPGA at power-on using the BPI-UP port; a file stored in the non-volatile serial (SPI) PCM device
can be transferred to the FPGA using the SPI port; or a programming file can be transferred from a USB memory
stick attached to the USB HID port. An on-board "mode" jumper (J8) selects between the programming modes as
shown in the J8 Mode legend in the figure below. JTAG Mode can be accessed at any time without changing
jumpers.
Programming files are stored in SRAM-based memory cells within the FPGA. This data defines the FPGA's logic
functions and circuit connections, and it remains valid until it is erased by removing board power, by pressing the
reset button attached to the PROG input, or by writing a new configuration file using the JTAG port.
FPGA configuration files transferred via the JTAG port use the .bin or .svf file types, files transferred from a USB
stick use the .bit file type, and BPI or SPI programming files can use .bit, .bin, or .mcs types. The ISE/WebPack or
EDK software from Xilinx can create bit, svf, bin, or mcs files from VHDL, Verilog, or schematic-based source files
Nexys 3™ FPGA Board Reference Manual
Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.
Page 3 of 22
Adept
USB Port
Power
Switch
USB HID
Host Port
Power
Jack
JTAG
Header
MODE
Jumper
Power
Good LED
Done
LED
Reset
Button
Power Select
Jumper
LEDs
Slide switchesPush buttons
7-seg
Display
USB
UART
VGA
Port
10/100
Ethernet
Pmod
Connectors
VHDC
Conncector
(EDK is used for MicroBlaze™ embedded processor-based designs). Digilent's Adept software or Xilinx's iMPACT
software can be used to program the FPGA or ROMs using the Adept USB port.
During JTAG programming, a .bit or .svf file is transferred from the PC to the FPGA using the Adept USB port. When
programming a non-volatile PCM device, a .bit, .bin, or .mcs file is transferred to the in a two-step process. First,
the FPGA is programmed with a circuit that can program PCM devices, and then data is transferred to the PCM
device via the FPGA circuit (this complexity is hidden from the user – a simple "program ROM" interface is
presented by the programming software. Note the PCM devices are next-generation Flash ROM devices, and they
are often referred to as "Flash" or "ROM" memory). After the PCM device has been programmed, it can
automatically configure the FPGA at a subsequent power-on or reset event as determined by the J8 jumper
setting. Programming files stored in the PCM devices will remain until they are overwritten, regardless of powercycle events.
The FPGA can be programmed from a memory stick attached to the USB-HID port if the stick contains a single .bit
configuration file in the root directory, the J8 Programming Mode jumper is set to JTAG (both jumpers loaded), and
board power is cycled. The FPGA will automatically reject any .bit files that are not built for the proper FPGA.
After being successfully programmed, the FPGA will cause the "Done" LED to illuminate. Pressing the Reset button
at any time will reset the configuration memory in the FPGA. After being reset, the FPGA will immediately attempt
to reprogram itself from one of the PCM devices if the J8 Mode jumper is set to BPI or SPI mode.
Nexys 3™ FPGA Board Reference Manual
Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.
Page 4 of 22
To program the Nexys 3 board using Adept, first
set up the board and initialize the software:
plug in and attach the power supply
plug in the USB cable to the PC and to
the USB port on the board
start the Adept software
turn ON Nexys 3's power switch
wait for the FPGA to be recognized.
Use the browse function to associate the desired
.bit file with the FPGA, and click on the Program
button. The configuration file will be sent to the
FPGA, and a dialog box will indicate whether
programming was successful. The configuration
"done" LED will light after the FPGA has been
successfully configured.
Before starting the programming sequence, Adept ensures that any selected configuration file contains the correct
FPGA ID code – this prevents incorrect .bit files from being sent to the FPGA.
In addition to the navigation bar and browse and program buttons, the Config interface provides an Initialize Chain
button, console window, and status bar. The Initialize Chain button is useful if USB communications with the board
have been interrupted. The console window displays current status, and the status bar shows real-time progress
when downloading a configuration file.
Digilent's Adept software offers a simplified programming interface and many additional features as described
below. The Adept USB port is fully compatible with all Xilinx tools, including the iMPACT programming software.
The Adept features are always available, regardless of how the FPGA was programmed.
1.1 Adept System
Digilent's Adept high-speed USB2 system can be used to program the FPGA and PCM devices, run automated
board tests, add PC-based virtual I/O devices (like buttons, switches, and LEDs) to FPGA designs, and exchange
register-based and file-based data with the FPGA. Adept automatically recognizes the Nexys 3 board and presents
a graphical interface with tabs for each of these applications. Adept also includes public APIs/DLLs so that users
can write applications to exchange data with the Nexys 3 board at up to 38Mbytes/sec. The Adept application, an
SDK, and reference materials are freely downloadable from the Digilent website.
1.2 Programming Interface
1.3 Memory Interface
The Memory tab allows .bin, .bit, and .mcs configuration files to be transferred to the on-board BPI (parallel) or SPI
(serial) PCM devices for subsequent FPGA programming, and allows user data files to be transferred to/from the
PCM devices or RAM memories at user-specified addresses. The target memory is selected by clicking one of the
three radio buttons in the upper-right corner.
Nexys 3™ FPGA Board Reference Manual
Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.
Page 5 of 22
The configuration tool supports programming
from any valid ROM file produced by the Xilinx
tools. After programming, board power can either
be cycled or the Reset button can be pressed to
program the FPGA from the PCM device selected
by the J8 mode jumper. If programming with a
.bit file, the startup clock must be set to CCLK.
All three memory devices (the PCM's and the
cellular RAM) can be fully tested by clicking the
Full Test button. They can also be completely
erased by clicking the Erase button.
The Read/Write tools allow data to be exchanged
between files on the host PC and specified
address ranges in the memory devices.
The test interface provides an easy way to verify
many of the board's hardware circuits and
interfaces. These are divided into two major
categories: on-board memory (RAM and Flash)
and peripherals. In both cases, the FPGA is
configured with test and PC-communication
circuits, overwriting any FPGA configuration that
may have been present.
Clicking the Run RAM/Flash Test button will
identify the CellularRam, SPI Flash, and BPI Flash
memory by reading out and verifying the IDCODE
on each memory. The memory contents will not
be modified. To run a full test on a particular
memory device, refer to the Full Test in the
Memory Tab.
Clicking the Start Peripherals Test button will
initialize GPIO and user I/O testing. Once the
indicator near the Start Peripherals Test button
turns green, all peripheral tests can be run.
1.4 Test Interface
The Test Shorts feature checks all discrete I/O's for shorts to Vdd, GND, and neighboring I/O pins. The switches and
buttons graphics show the current states of those devices on the Nexys 3 board. Connect a VGA monitor and USB
mouse to visually test the J2 VGA port and J4 USB port respectively.
Nexys 3™ FPGA Board Reference Manual
Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.
Page 6 of 22
The register I/O tab requires that a corresponding IP
block, available in the Parallel Interface reference design
(DpimRef.vhd) on the Adept page of the Digilent
website, is included and active in the FPGA. This IP block
provides an EPP-style interface, where an 8-bit address
selects a register, and data read and write buttons
transfer data to and from the selected address.
Addresses entered into the address field must match the
physical address included in the FPGA IP block.
Register I/O provides an easy way to move small
amounts of data into and out of specific registers in a
given design. This feature greatly simplifies passing
control parameters into a design, or reading lowfrequency status information out of a design.
The File I/O tab can transfer files between the PC and
the Nexys 3 FPGA. A number of bytes (specified by the
Length value) can be streamed into a specified register
address from a file or out of a specified register address
into a file. During upload and download, the file start
location can be specified in terms of bytes.
As with the Register I/O tab, File I/O also requires
specific IP to be available in the FPGA. This IP can
include a memory controller for writing files into the onboard Ram and Flash memories.
1.5 Register I/O
1.6 File I/O
1.7 I/O Expand
The I/O Expand tab works with an IP block in the FPGA to provide additional simple I/O beyond the physical
devices found on the Nexys 3 board. Virtual I/O devices include a 24-LED light bar, 16 slide switches, 16 push
buttons, 8 discrete LEDs, a 32-bit register that can be sent to the FPGA, and a 32-bit register that can be read from
the FPGA.
Nexys 3™ FPGA Board Reference Manual
Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.
Page 7 of 22
The IP block, available in the Adept I/O Expansion
reference design (AdeptIOExpansion.zip) on the Adept
page of the Digilent website, provides a simple interface
with well-defined signals. This IP block can easily be
included in, and accessed from, user-defined circuits.
For more information, see the Adept documentation
available at the Digilent website.
Supply
Circuits
Device
Amps (max/typ)
3.3V
FPGA I/O, USB ports, Clocks, ROM & RAM I/O, Ethernet
IC13: LTC3633
3A / 200mA
2.5V
Optional voltage for Bank0 and VHDC connector
IC14: LTC3619
800mA / 0mA
1.2V
FPGA Core
IC13: LTC3633
3A / 0.2 to 1.0A
1.8V
RAM and ROM core
IC14: LTC3619
400mA / 0.1 to 0.3A
2 Power Supplies
The Nexys 3 board can receive power from the Adept USB port or from an external power supply. Jumper JP1 (near
the power jack) determines which source is used.
The USB port can deliver enough power for the vast majority of designs. It is possible that a very demanding
application, including an application that drives many peripheral boards, might require more power than can be
delivered by the USB port. Some applications may also need to run without being connected to a PC's USB port. In
either case, an external power supply or battery pack can be used by setting JP1 to "Wall".
The main regulator on the Nexys 3 can accommodate input voltages up to 5.5VDC. An external DC wall-plug supply
should provide at least five watts of input power, and use a coax center-positive 2.1mm internal-diameter plug. An
external battery pack can also be used by connecting the battery's terminal leads to connector J11 (J11 is in
parallel with the wall-plug power jack, so if a battery pack is connected, a wall plug should not be). An external
battery pack should also be limited to 5.5VDC, and should be capable of delivering adequate power for the
application.
Voltage regulator circuits from Linear Technology create the required 3.3V, 2.5V, 1.8V, and 1.2V supplies from the
main power input. The table below provides additional information (typical currents depend strongly on FPGA
configuration and the values provided are typical of medium size/speed designs).
Table 1. Nexys 3 Power Supplies.
Loading...
+ 15 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.