Digilent 6003-410-000P User Manual

Xilinx University Program Virtex-II Pro Development System
Hardware Reference Manual
UG069 (v1.0) March 8, 2005
R
R
"Xilinx" and the Xilinx logo shown above are registered trademarks of Xilinx, Inc. Any rights not expressly granted herein are reserved.
The shadow X shown above is a trademark of Xilinx, Inc.
ACE Controller, ACE Flash, A.K.A. Speed, Alliance Series, AllianceCORE, Bencher, ChipScope, Configurable Logic Cell, CORE Generator, CoreLINX, Dual Block, EZTag, Fast CLK, Fast CONNECT, Fast FLASH, FastMap, Fast Zero Power, Foundation, Gigabit Speeds...and Beyond!, HardWire, HDL Bencher, IRL, J Drive, JBits, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroBlaze, MicroVia, MultiLINX, NanoBlaze, PicoBlaze, PLUSASM, PowerGuide, PowerMaze, QPro, Real-PCI, RocketIO, SelectIO, SelectRAM, SelectRAM+, Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, SMARTswitch, System ACE, Testbench In A Minute, TrueMap, UIM, VectorMaze, VersaBlock, VersaRing, Virtex-II Pro, Virtex-II EasyPath, Wave Table, WebFITTER, WebPACK, WebPOWERED, XABEL, XACT­Floorplanner, XACT-Performance, XACTstep Advanced, XACTstep Foundry, XAM, XAPP, X-BLOX +, XC designated products, XChecker, XDM, XEPLD, Xilinx Foundation Series, Xilinx XDTV, Xinfo, XSI, XtremeDSP and ZERO+ are trademarks of Xilinx, Inc.
The Programmable Logic Company is a service mark of Xilinx, Inc.
All other trademarks are the property of their respective owners.
Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described herein other than circuitry entirely embodied in its products. Xilinx provides any design, code, or information shown or described herein “as is.” By providing the design, code, or information as one possible implementation of a feature, application, or standard, Xilinx makes no representation that such implementation is free from any claims of infringement. You are responsible for obtaining any rights you may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of any such implementation, including but not limited to any warranties or representations that the implementation is free from claims of infringement, as well as any implied warranties of merchantability or fitness for a particular purpose. Xilinx, Inc. devices and products are protected under U.S. Patents. Other U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown or products described herein are free from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability for the accuracy or correctness of any engineering or software support or assistance provided to a user.
Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in such applications without the written consent of the appropriate Xilinx officer is prohibited.
The contents of this manual are owned and copyrighted by Xilinx. Copyright 1994-2005 Xilinx, Inc. All Rights Reserved. Except as stated herein, none of the material may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx. Any unauthorized use of any material contained in this manual may violate copyright laws, trademark laws, the laws of privacy and publicity, and communications regulations and statutes.
XUP Virtex-II Pro Development System UG069 (v1.0) March 8, 2005
The following table shows the revision history for this document.
Version Revision
03/08/05 1.0 Initial Xilinx release. (DRAFT)
XUP Virtex-II Pro Development System www.xilinx.com UG069 (v1.0) March 8, 2005

Contents

Chapter 1: XUP Virtex-II Pro Development System
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Board Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Virtex-II Pro FPGA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Power Supplies and FPGA Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Multi-Gigabit Transceivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
System RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
System ACE Compact Flash Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Fast Ethernet Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Serial Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
User LEDs, Switches, and Push Buttons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Expansion Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
XSGA Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
AC97 Audio CODEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
CPU Trace and Debug Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
USB 2 Programming Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Chapter 2: Using the System
Configuring the Power Supplies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Configuring the FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Clock Generation and Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Using the DIMM Module DDR SDRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Using the XSGA Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Using the AC97 Audio CODEC and Power Amp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Using the LEDs and Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Using the Expansion Headers and Digilent Expansion Connectors . . . . . . . . . . . 44
Using the CPU Debug Port and CPU Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Using the Serial Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Using the Fast Ethernet Network Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Using System ACE Controllers for Non-Volatile Storage. . . . . . . . . . . . . . . . . . . . . 65
Using the Multi-Gigabit Transceivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
UG069 (v1.0) March 8, 2005 www.xilinx.com XUP Virtex-II Pro Development System
Appendix A: Configuring the FPGA from the Embedded USB
Configuration Port
Appendix B: Programming the Platform FLASH PROM User Area
Appendix C: Restoring the Golden FPGA Configuration
Appendix D: Using the Golden FPGA Configuration for System Self-
Test
Hardware-Based Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Power Supply and RESET Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Additional Hardware Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Test Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Clock, Push Button, DIP Switch, LED, and Audio Amp Test . . . . . . . . . . . . . . . . . . . . 99
Additional Hardware Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Test Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
SVGA Gray Scale Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Additional Hardware Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Test Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
SVGA Color Output Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Additional Hardware Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Test Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Silicon Serial Number and PS/2 Serial Port Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Additional Hardware Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Test Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Processor-Based Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Additional Hardware Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
MGT Serial ATA Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Additional Hardware Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
EMAC Web Server Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Additional Hardware Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
EMAC Web Server Test Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
AC97 Audio Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Additional Hardware Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Digital Passthrough Test Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
FIFO Loopback Test Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Game Sounds Test Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
System ACE Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
System ACE Test Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
DDR SDRAM Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Additional Hardware Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Test Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Expansion Port Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Additional Hardware Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Test Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
XUP Virtex-II Pro Development System www.xilinx.com UG069 (v1.0) March 8, 2005
Appendix E: User Constraint Files (UCF)
Appendix F: Links to the Component Data Sheets
FPGA Related Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Configuration Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
DDR SDRAM Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Audio Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
XSGA Video Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Ethernet Networking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
UG069 (v1.0) March 8, 2005 www.xilinx.com XUP Virtex-II Pro Development System
XUP Virtex-II Pro Development System www.xilinx.com UG069 (v1.0) March 8, 2005

Figures

Chapter 1: XUP Virtex-II Pro Development System
Figure 1-1: XUP Virtex-II Pro Development System Block Diagram . . . . . . . . . . . . . . . . . 14
Figure 1-2: XUP Virtex-II Pro Development System Board Photo. . . . . . . . . . . . . . . . . . . . 15
Figure 1-3: I/O Bank Connections to Peripheral Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Chapter 2: Using the System
Figure 2-1: Typical Switching Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 2-2: MGT Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 2-3: Configuration Data Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 2-4: External Differential Clock Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 2-5: Alternate Clock Input Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 2-6: Definition of Start and Stop Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 2-7: Acknowledge Response from Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 2-8: EEPROM Sequential Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 2-9: EEPROM Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 2-10: Clock Generation for the DDR SDRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 2-11: XSGA Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 2-12: AC97 Audio CODEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 2-13: Audio Power Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 2-14: Expansion Headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 2-15: CPU Debug Connector Pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 2-16: RELOAD and CPU RESET Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 2-17: RS-232 Serial Port Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 2-18: PS/2 Serial Port Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 2-19: 10/100 Ethernet Interface Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 2-20: SMA-based MGT Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 2-21: 1.5 Gb/s Serial Data Transmission over 0.5 meter of SATA Cable . . . . . . . . 70
Figure 2-22: 1.5 Gb/s Serial Data Transmission over 1.0 meter of SATA Cable . . . . . . . . 70
Appendix A: Configuring the FPGA from the Embedded USB
Configuration Port
Figure A-1: Device Manager Cable Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure A-2: iMPACT Cable Selection Drop-Down Menu . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure A-3: iMPACT Cable Communication Setup Dialog . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure A-4: Initializing the JTAG Chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure A-5: Properly Identified JTAG Configuration Chain . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure A-6: Assigning Configuration Files to Devices in the JTAG Chain . . . . . . . . . . . . 75
Figure A-7: Assigning a Configuration File to the FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
UG069 (v1.0) March 8, 2005 www.xilinx.com XUP Virtex-II Pro Development System
Figure A-8: Programming the FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Appendix B: Programming the Platform FLASH PROM User Area
Figure B-1: Operation Mode Selection: Prepare Configuration Files . . . . . . . . . . . . . . . . . 77
Figure B-2: Selecting PROM File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure B-3: Selecting a PROM with Design Revisioning Enabled . . . . . . . . . . . . . . . . . . . 79
Figure B-4: Selecting an XCF32P PROM with Two Revisions . . . . . . . . . . . . . . . . . . . . . . . 79
Figure B-5: Adding a Device File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure B-6: Adding the Design File to Revision 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure B-7: iMPACT Startup Clock Warning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure B-8: Adding the Design File to Revision 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure B-9: Generating the MCS File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure B-10: Switching to Configuration Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure B-11: Initializing the JTAG Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure B-12: Assigning the MCS File to the PROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure B-13: Programming the PROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure B-14: PROM Programming Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure B-15: iMPACT PROM Programming Transcript Window . . . . . . . . . . . . . . . . . . . . 85
Appendix C: Restoring the Golden FPGA Configuration
Figure C-1: Operation Mode Selection: Configure Devices . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure C-2: Selecting Boundary Scan Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure C-3: Boundary Scan Mode Selection: Automatically Connect to the Cable
and Identify the JTAG Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure C-4: Assigning New PROM Configuration File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure C-5: Erasing the Existing PROM Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure C-6: Transcript Window for the Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure C-7: Selecting the Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure C-8: PROM Programming Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure C-9: iMPACT PROM Programming Transcript Window. . . . . . . . . . . . . . . . . . . . . 95
Appendix D: Using the Golden FPGA Configuration for System Self-
Test
Figure D-1: XUP Virtex-II Pro Development System BIST Block Diagram . . . . . . . . . . . 97
Figure D-2: Built-In Self-Test Main Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Figure D-3: Testing the SATA 0 HOST to SATA 1 TARGET Connection. . . . . . . . . . . . 103
Figure D-4: Testing the SATA 2 HOST to SATA 1 TARGET Connection. . . . . . . . . . . . 103
Figure D-5: Selecting the SATA Port Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure D-6: Selecting the Specific SATA Port to Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure D-7: Resetting the MGTs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure D-8: No Link Established Error Message. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure D-9: SATA Test Running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure D-10: SATA Loopback Test PASSED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
XUP Virtex-II Pro Development System www.xilinx.com UG069 (v1.0) March 8, 2005
Figure D-11: Specifying IP Address for XUP Virtex-II Pro Development System. . . . . 107
Figure D-12: Web Server Running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure D-13: Web Server Display. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure D-14: Web Server Stopped . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure D-15: Selecting the Specific AC97 Audio Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure D-16: Digital Passthrough Test Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure D-17: FIFO Loopback Test Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure D-18: Game Sounds Test Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure D-19: System ACE Test Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure D-20: DDR SDRAM Test Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure D-21: Confirming Start of the Expansion Port Walking Ones Test . . . . . . . . . . . 114
Appendix E: User Constraint Files (UCF)
Appendix F: Links to the Component Data Sheets
UG069 (v1.0) March 8, 2005 www.xilinx.com XUP Virtex-II Pro Development System
XUP Virtex-II Pro Development System www.xilinx.com UG069 (v1.0) March 8, 2005

Tables

Chapter 1: XUP Virtex-II Pro Development System
Chapter 2: Using the System
Table 1-1: XC2VP20 and XC2VP30 Device Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 2-1: System Configuration Status LEDs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 2-2: Clock Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 2-3: SPD EEPROM Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 2-4: Qualified SDRAM Memory Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 2-5: DDR SDRAM Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 2-6: DCM and XSGA Controller Settings for Various XSGA Formats . . . . . . . . . . 37
Table 2-7: XSGA Output Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 2-8: AC97 Audio CODEC Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 2-9: User LED and Switch Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 2-10: Top Expansion Header Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 2-11: Upper Middle Expansion Header Pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 2-12: Lower Middle Expansion Header Pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 2-13: Bottom Expansion Header Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 2-14: Left Digilent Expansion Connector Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 2-15: Right Digilent Expansion Connector Pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 2-16: High-Speed Digilent Expansion Connector Pinout. . . . . . . . . . . . . . . . . . . . . . 56
Table 2-17: CPU Debug Port Connections and CPU Reset . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 2-18: Keyboard, Mouse, and RS-232 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 2-19: 10/100 ETHERNET Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 2-20: System ACE Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 2-21: SATA and MGT Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
UG069 (v1.0) March 8, 2005 www.xilinx.com XUP Virtex-II Pro Development System
Appendix A: Configuring the FPGA from the Embedded USB
Configuration Port
Appendix B: Programming the Platform FLASH PROM User Area
Appendix C: Restoring the Golden FPGA Configuration
Appendix D: Using the Golden FPGA Configuration for System Self-
Test
Appendix E: User Constraint Files (UCF)
Appendix F: Links to the Component Data Sheets
XUP Virtex-II Pro Development System www.xilinx.com UG069 (v1.0) March 8, 2005
R
Chapter 1
XUP Virtex-II Pro Development System

Features

Virtex™-II Pro FPGA with PowerPC™ 405 cores
Up to 2 GB of Double Data Rate (DDR) SDRAM
System ACE™ controller and Type II CompactFlash™ connector for FPGA
configuration and data storage
Embedded Platform Cable USB configuration port
High-speed SelectMAP FPGA configuration from Platform Flash In-System
Programmable Configuration PROM
Support for “Golden” and “User” FPGA configuration bitstreams
On-board 10/100 Ethernet PHY device
Silicon Serial Number for unique board identification
RS-232 DB9 serial port
Two PS-2 serial ports
Four LEDs connected to Virtex-II Pro I/O pins
Four switches connected to Virtex-II Pro I/O pins
Five push buttons connected to Virtex-II Pro I/O pins
Six expansion connectors joined to 80 Virtex-II Pro I/O pins with over-voltage
protection
High-speed expansion connector joined to 40 Virtex-II Pro I/O pins that can be used differentially or single ended
AC-97 audio CODEC with audio amplifier and speaker/headphone output and line level output
Microphone and line level audio input
On-board XSGA output, up to 1200 x 1600 at 70 Hz refresh
Three Serial ATA ports, two Host ports and one Target port
Off-board expansion MGT link, with user-supplied clock
100 MHz system clock, 75 MHz SATA clock
Provision for user-supplied clock
On-board power supplies
Power-on reset circuitry
PowerPC 405 reset circuitry
XUP Virtex-II Pro Development System www.xilinx.com 13
UG069 (v1.0) March 8, 2005
R

General Description

The XUP Virtex-II Pro Development System provides an advanced hardware platform that consists of a high performance Virtex-II Pro Platform FPGA surrounded by a comprehensive collection of peripheral components that can be used to create a complex system and to demonstrate the capability of the Virtex-II Pro Platform FPGA.

Block Diagram

Figure 1-1 shows a block diagram of the XUP Virtex-II Pro Development System.
Chapter 1: XUP Virtex-II Pro Development System
External Power
Internal Power Supplies
4.5-5.5V
CPU Debug Port
100 MHz System Clock
75 MHz SATA Clock
User Clocks (2)
Platform Flash Configurations (2)
Compact Flash Configurations (8)
USB2 High Speed Configuration
3.3V
2.5V
1.5V
Figure 1-1: XUP Virtex-II Pro Development System Block Diagram

Board Components

Virtex-II Pro
FPGA
AC97 Audio CODEC & Stereo Amp
XSGA Video Output
User LEDs (4)
User Switches (4)
User Push-button Switches (5)
10/100 Ethernet PHY
RS-232 & PS/2 Ports (2)
Serial ATA Por ts (3)
Multi-Gigabit Transceiver Port
2 GB DDR SDRAM DIMM Module
5V Tolerant Expansion Headers
High Speed Expansion Port
UG069_01_012105
This section contains a concise overview of several important components on the XUP Virtex-II Pro Development System (see Figure 1-2). The most recent documentation for the system can be obtained from the XUP Virtex-II Pro Development System support website at: http://www.xilinx.com/univ/xup2vp.html
14 www.xilinx.com XUP Virtex-II Pro Development System
UG069 (v1.0) March 8, 2005
General Description
R
Figure 1-2: XUP Virtex-II Pro Development System Board Photo
Virtex-II Pro FPGA
U1 is a Virtex-II Pro FPGA device packaged in a flip-chip-fine-pitch FF896 BGA package. Two different capacity FPGAs can be used on the XUP Virtex-II Pro Development System with no change in functionality. Ta bl e 1-1 lists the Virtex-II Pro device features.
Table 1-1: XC2VP20 and XC2VP30 Device Features
Features XC2VP20 XC2VP30
Slices 9280 13969
Array Size 56 x 46 80 x 46
Distributed RAM 290 Kb 428 Kb
Multiplier Blocks 88 136
XUP Virtex-II Pro Development System www.xilinx.com 15
UG069 (v1.0) March 8, 2005
R
Chapter 1: XUP Virtex-II Pro Development System
Table 1-1: XC2VP20 and XC2VP30 Device Features (Continued)
Features XC2VP20 XC2VP30
Block RAMs 1584 Kb 2448 Kb
DCMs 8 8
PowerPC RISC Cores 2 2
Multi-Gigabit Transceivers 8 8
Figure 1-3 identifies the I/O banks that are used to connect the various peripheral devices
to the FPGA.
AC97 Audio SXGA port
10/100 Ethernet
1
0
2
7
OVER VOLTAGE CLAMPS
EXPANSION CONNECTORS
LEDs & SWITCHES
PS/2 KBD & MOUSE
PUSH BUTTONS
RS-232
System ACE port
Figure 1-3: I/O Bank Connections to Peripheral Devices

Power Supplies and FPGA Configuration

The XUP Virtex-II Pro Development System is powered from a 5V regulated power supply. On-board switching power supplies generate 3.3V, 2.5V, and 1.5V for the FPGA, and peripheral components and linear regulators power the MGTs.
The board has provisioning for current measurement for all of the FPGA digital power supplies, as well as application of external power if the capacity of the on-board switching power supplies is exceeded.
3
6
45
256M x 64/72 DDR SDRAM DIMM MODULE
3.3V IO
2.5V IO
UG069_03_012105
The XUP Virtex-II Pro Development System provides several methods for the configuration of the Virtex-II Pro FPGA. The configuration data can originate from the internal Platform Flash PROM (two potential configurations), the internal CompactFlash storage media (eight potential configurations), and external configurations delivered from the embedded Platform Cable USB or parallel port interface.
16 www.xilinx.com XUP Virtex-II Pro Development System
UG069 (v1.0) March 8, 2005
General Description

Multi-Gigabit Transceivers

System RAM

R
Four of the eight Multi-Gigabit Transceivers (MGTs) that are present in the Virtex-II Pro FPGA are brought out to connectors and can be utilized by the user. Three of the bidirectional MGT channels are terminated at Serial Advanced Technology Attachment (SATA) connectors and the fourth channel terminates at user-supplied Sub-Miniature A (SMA) connectors. The MGT transceivers are equipped with a 75 MHz clock source that is independent for the system clock to support standard SATA communication. An additional MGT clock source is available through a differential user-supplied (SMA) connector pair. Two of the ports with SATA connectors are configured as Host ports and the third SATA port is configured as a Target port to allow for simple board-to-board networking.
The XUP Virtex-II Pro Development System has provision for the installation of user­supplied JEDEC-standard 184-pin dual in-line Double Data Rate Synchronous Dynamic RAM memory module. The board supports buffered and unbuffered memory modules with a capacity of 2 GB or less in either 64-bit or 72-bit organizations. The 72-bit organization should be used if ECC error detection and correction is required.

System ACE Compact Flash Controller

The System Advanced Configuration Environment (System ACE™) Controller manages FPGA configuration data. The controller provides an intelligent interface between an FPGA target chain and various supported configuration sources. The controller has several ports: the Compact Flash port, the Configuration JTAG port, the Microprocessor (MPU) port and the Test JTAG port. The XUP Virtex-II Pro Development System supports a single System ACE Controller. The Configuration JTAG ports connect to the FPGA and front expansion connectors. The Test JTAG port connects to the JTAG port header and USB2 interface CPLD, and the MPU ports connect directly to the FPGA.

Fast Ethernet Interface

The XUP Virtex-II Pro Development System provides an IEEE-compliant Fast Ethernet transceiver that supports both 100BASE-TX and 10BASE-T applications. It supports full duplex operation at 10 Mb/s and 100 Mb/s, with auto-negotiation and parallel detection. The PHY provides a Media Independent Interface (MII) for attachment to the 10/100 Media Access Controller (MAC) implemented in the FPGA. Each board is equipped with a Silicon Serial Number that uniquely identifies each board with a 48-bit serial number. This serial number is retrieved using “1-Wire” protocol. This serial number can be used as the system MAC address.

Serial Ports

The XUP Virtex-II Pro Development System provides three serial ports: a single RS-232 port and two PS/2 ports. The RS-232 port is configured as a DCE with hardware handshake using a standard DB-9 serial connector. This connector is typically used for communications with a host computer using a standard 9-pin serial cable connected to a COM port. The two PS/2 ports could be used to attach a keyboard and mouse to the XUP Virtex-II Pro Development System. All of the serial ports are equipped with level-shifting circuits, because the Virtex-II Pro FPGAs cannot interface directly to the voltage levels required by RS-232 or PS/2.
XUP Virtex-II Pro Development System www.xilinx.com 17
UG069 (v1.0) March 8, 2005
R
Chapter 1: XUP Virtex-II Pro Development System

User LEDs, Switches, and Push Buttons

A total of four LEDs are provided for user-defined purposes. When the FPGA drives a logic 0, the corresponding LED turns on. A single four-position DIP switch and five push buttons are provided for user input. If the DIP switch is up, closed, or on, or the push button is pressed, a logic 0 is seen by the FPGA, otherwise a logic 1 is indicated.

Expansion Connectors

A total of 80 Virtex-II Pro I/O pins are brought out to four user-supplied 60-pin headers and two 40-pin right angle connectors for user-defined use. The 60-pin headers are designed to accept ribbon-cable connectors, with every second signal a ground for signal integrity. Some of these signals are shared with the front-mounted right-angle connectors. The front-mounted connectors support Digilent expansion modules. In addition, a high­speed connector is provided to support Digilent high-speed expansion modules. This connector provides 40 single-ended or differential I/O signals in addition to three clocks. Consult the Digilent website at www.diglentinc.com compatible with the XUP Virtex-II Pro Development System.

XSGA Output

The XUP Virtex-II Pro Development System includes a video DAC and 15-pin high­density D-sub connector to support XSGA output. The video DAC can operate with a pixel clock of up to 180 MHz. This allows for a VESA-compatible output of 1280 x 1024 at 75 Hz refresh and a maximum resolution of 1600 x 1200 at 70 Hz refresh.
for a list of expansion boards that are

AC97 Audio CODEC

An audio CODEC and stereo power amplifier are included on the XUP Virtex-II Pro Development System to provide a high-quality audio path and provide all of the analog functionality in a PC audio system. It features a full-duplex stereo ADC and DAC, with an analog mixer, combining the line-level inputs, microphone input, and PCM data.

CPU Trace and Debug Port

The FPGA is equipped with a CPU debugging interface and a 16-pin header. This connector can be used in conjunction with third party tools, the Xilinx Parallel Cable IV, or the Xilinx Platform Cable USB to debug software as it runs on either PowerPC 405 processor core.
ChipScope Pro™ can also be used to perform real-time debug and verification of the FPGA design. ChipScope Pro inserts logic analyzer, bus analyzer, and Virtual I/O low-profile software cores into the FPGA design. These cores allow the designer to view all the internal signals and nodes within the FPGA including the Processor Local Bus (PLB) or On-Chip Peripheral Bus (OPB) supporting the PowerPC 405 cores. Signals are captured and brought out through the embedded Platform Cable USB programming interface for analysis using the ChipScope Pro Logic Analyzer tool.

USB 2 Programming Interface

The XUP Virtex-II Pro Development System includes an embedded USB 2.0 microcontroller capable of communications with either high-speed (480 Mb/s) or full­speed (12 Mb/s) USB hosts. This interface is used for programming or configuring the Virtex-II Pro FPGA in Boundary-Scan (IEEE 1149.1/IEEE 1532) mode. Target clock speeds are selectable from 750 kHz to 24 MHz. The USB 2.0 microcontroller attaches to a desktop or laptop PC with an off-the-shelf high-speed A-B USB cable.
18 www.xilinx.com XUP Virtex-II Pro Development System
UG069 (v1.0) March 8, 2005
R

Using the System

Configuring the Power Supplies

The XUP Virtex-II Pro Development System supports the independent creation of the power supplies for the core voltage of 1.5V (FPGA_VINT), 2.5V general-purpose power, I/O and/or VCCAUX supplies (VCC2V5), and 3.3V I/O and general-purpose power (VCC3V3). These voltages are created by synchronous buck-switching regulators derived from the 4.5V-5.5V power input provided at the center-positive barrel-jack power input (J26) or the terminal block pair (J34-J35). Each of these supplies can be disabled through the insertion of jumpers (JP2, JP4, and JP6), and the external application of power from the terminal blocks (J28-J33). If external power is supplied, the associated internal power supply must be disabled (through the insertion of JP6, JP2, or JP4) and the associated on­board power delivery jumpers (JP5, JP1, or JP3) must be removed. The power consumption from each of the on-board power supplies can be monitored through the removal of JP5, JP1, or JP3 and the insertion of a current monitor. If any of the power supplies are outside the recommended tolerance, internally or externally provided, the system enters a RESET state indicated by the illumination of the RESET_PS_ERROR LED (D6) and the assertion of the RESET_Z signal. A typical switching power supply is shown in Figure 2-1.
Chapter 2
ug069_04_021505
Figure 2-1: Typical Switching Power Supply
XUP Virtex-II Pro Development System www.xilinx.com 19
UG069 (v1.0) March 8, 2005
VCC3V3
R
Chapter 2: Using the System
Because of the analog nature of the MGTs, the power for those elements are created by low noise, low dropout linear regulators. Figure 2-2 shows the power supply for the MGTs.
U20
FIXED 2.5V LDO
TA B
TA B
4
3
+
6
4
3
6
C428 330UF 6.3V
C433
+
330UF 6.3V
C430
0.1UF
C434
0.1UF
VCC_MGT
C427
1000PF
VTT_MGT
C432
1000PF
UG069_05_010605
C431
+
33OUF 6.3V
C429
+
33OUF 6.3V
FERRITE BEAD 2961666671
L32
2
IN OUT
1
SHDN GND
5
SENSE
LT1963AEQ-25
U21
FIXED 2.5V LDO
2
IN OUT
1
SHDN GND
5
SENSE
LT1963AEQ-25
GND_MGT

Configuring the FPGA

At power up, or when the RESET_RELOAD push button (SW1) is pressed for longer than 2 seconds, the FPGA begins to configure. The two configuration methods supported, JTAG and master SelectMAP, are determined by the CONFIG SOURCE switch, the most significant switch (left side) of SW9.
If the CONFIG SOURCE switch is closed, on, or up, a high-speed SelectMap byte-wide configuration from the on-board Platform Flash configuration PROM (U3) is selected as the configuration source. This is identified to the user through the illumination of the PROM CONFIG LED (D19).
The Platform Flash configuration PROM supports two different FPGA configurations (versions) selected by the position of the PROM VERSION switch, the least significant switch (right side) of SW9.
If the PROM VERSION switch is closed, on, or up, the GOLDEN configuration from the on­board Platform Flash configuration PROM is selected as the configuration data. This is identified to the user through the illumination of the GOLDEN CONFIG LED (D14). This configuration can be a board test utility provided by Xilinx, or another safe default configuration. It is important to note that the PROM VERSION switch is only sampled on board powerup and after a complete system reset. This means that if this switch is changed after board powerup, the RESET_RELOAD pushbutton (SW1) must be pressed for more than 2 seconds for the new state of the switch to be recognized.
Figure 2-2: MGT Power
If the PROM VERSION switch is open, off, or down, a User configuration from the on-board Platform Flash configuration PROM is selected as the configuration data. This configuration must be programmed into the Platform Flash PROM from the JTAG Platform Cable USB interface or the USB interface following the instructions in Appendix
B, “Programming the Platform FLASH PROM User Area.”
20 www.xilinx.com XUP Virtex-II Pro Development System
UG069 (v1.0) March 8, 2005
Configuring the FPGA
The Platform Flash is normally disabled after the FPGA is finished configuring and has asserted the DONE signal. If additional data is made available to the FPGA after the completion of configuration, jumper JP9 must be moved from the NORMAL to the EXTENDED position to permanently enable the PROM and allow the FPGA to clock out the additional data using the FPGA_PROM_CLOCK signal. The process of loading additional non-configuration data into the FPGA is outlined in application note:
XAPP694:
Reading User Data from Configuration PROMs.
If the CONFIG SOURCE switch is open, off, or down, a lower speed JTAG-based configuration from Compact Flash or external JTAG source is selected as the configuration source. This is identified to the user through the illumination of the JTAG CONFIG LED (D20).
The JTAG-based configuration can originate from several sources: the Compact Flash card, a PC4 cable connection through J27, and a USB to PC connection through J8 the embedded Platform Cable USB interface.
If a JTAG-based configuration is selected, the default source is from the Compact Flash port (J7). The System ACE controller checks the associated Compact Flash socket and storage device for the existence of configuration data. If configuration data exists on the storage device, the storage device becomes the source for the configuration data. The file structure on the Compact Flash storage device supports up to eight different configuration data files, selected by the triple CF CONFIG SELECT DIP switch (SW8). During JTAG configuration, the SYSTEMACE STATUS LED (D12) flashes until the configuration process is completed, and the FPGA asserts the FPGA_DONE signal and illuminates the DONE LED (D4). At any time, the RESET_RELOAD pushbutton (SW1) can be used to load any of the eight different configuration data files by pressing the switch for more than 2 seconds.
R
If a JTAG-based configuration is selected and a valid configuration file is not found on the Compact Flash card by the System ACE controller (U2), the SYSTEMACE ERROR LED (D11) flashes, and the System ACE controller connects to an external JTAG port for FPGA configuration.
The default external source for FPGA configuration is the high-speed embedded Platform Cable USB configuration port (J8) and is enabled when the System ACE controller does not find configuration data on the storage device. Detailed instructions on using the high­speed Platform Cable USB interface can be found in Appendix A, “Configuring the FPGA
from the Embedded USB Configuration Port.”
If a USB-equipped host PC is not available as a configuration source, then a Parallel Cable 4 (PC4) interface can be used instead by connecting a PC4 cable to J27.
It should be noted that if SelectMap byte-wide configuration from the on-board Platform Flash configuration PROM is enabled, the FPGA Start-Up Clock should be set to CCLK in the Startup Options section of the Process Options for the generation of the programming file, otherwise JTAG Clock should be selected.
XUP Virtex-II Pro Development System www.xilinx.com 21
UG069 (v1.0) March 8, 2005
R
Chapter 2: Using the System
Figure 2-3 illustrates the configuration data path.
USB2 Microcontroller
& CPLD
GOLDEN
VERSION SELECT
USER
JTAG Port
JTAG Port
PLATFORM FLASH
SMAP Port
Test JTAG Port Config JTAG Port
SystemACE
Controller
PROM
CONFIG SOURCE
JTAG
CF Card/
MicroDrive
SMAP Port
Micro Port
CF CONFIG SELECT
FPGA
Micro PortJTAG Port
UG069_06_122704
Figure 2-3: Configuration Data Path
Four status LEDs show the configuration state of the XUP Virtex-II Pro Development System at all times. The user can see the configuration source, configuration version, and tell when the configuration has completed from the status LEDs shown in Tab le 2- 1.
Table 2-1: System Configuration Status LEDs
LED Status
System Status
D19 (Green)
PROM Config
D20 (Green)
CF Config
D14 (Amber)
GOLDEN Config
D4 (Red)
Done
SelectMAP USER LOADING ON OFF OFF OFF
SelectMAP USER COMPLETED ON OFF OFF ON
SelectMAP GOLDEN LOADING ON OFF ON OFF
SelectMAP GOLDEN
ON OFF ON ON
COMPLETED
JTAG COMPACT FLASH
OFF ON OFF OFF
LOADING
JTAG COMPACT FLASH
OFF ON OFF ON
COMPLETED
22 www.xilinx.com XUP Virtex-II Pro Development System
UG069 (v1.0) March 8, 2005

Clock Generation and Distribution

Table 2-1: System Configuration Status LEDs (Continued)
LED Status
System Status
D19 (Green)
PROM Config
D20 (Green)
CF Config
D14 (Amber)
GOLDEN Config
D4 (Red)
Done
JTAG USB or PC4 LOADING OFF ON OFF OFF
JTAG USB or PC4 COMPLETED OFF ON OFF ON
Clock Generation and Distribution
The XUP Virtex-II Pro Development System supports six clock sources:
A 100 MHz system clock (Y2),
A 75 MHz clock (U10) for the MGTs operating the Serial Advanced Technology
Attachment (SATA) ports,
A dual footprint through-hole user-supplied alternate clock (Y3),
An external clock for the MGTs (J23-J24),
A 32 MHz clock (Y4) for the System ACE interfaces, and
A clock from the Digilent high-speed expansion module.
R
The 75 MHz SATA clock is obtained from a high stability (20 ppm) 3.3V LVDSL differential output oscillator, and the external MGT clock is obtained from two user-supplied SMA connectors. The remaining three oscillators are all 3.3V single-ended LVTTL sources. Each of the oscillators is equipped with a power supply filter to reduce the noise on the clock outputs.
Tab le 2 -2 identifies the various clock connections for the FPGA.
Table 2-2: Clock Connections
Signal FPGA Pin I/O Type
SYSTEM_CLOCK AJ15 LVCMOS25
ALTERNATE_CLOCK AH16 LVCMOS25
HS_CLKIN (from high speed
B16 LVCMOS25
expansion port)
MGT_CLK_P F16 LVDS_25
MGT_CLK_N G16 LVDS_25
EXTERNAL_CLOCK_P G15 LVDS_25
EXTERNAL_CLOCK_N F15 LVDS_25
FPGA_SYSTEMACE_CLOCK AH15 LVCMOS25
For the user to take advantage of the external differential clock inputs, two SMA connectors must be installed at J23 and J24. These SMA connectors can be purchased from Digi-Key® under the part number A24691-ND. Figure 2-4 identifies the location of the external differential clock inputs.
XUP Virtex-II Pro Development System www.xilinx.com 23
UG069 (v1.0) March 8, 2005
R
Chapter 2: Using the System
Figure 2-4: External Differential Clock Inputs
The alternate clock input is obtained from a user-supplied 3.3V oscillator. The footprint on the printed circuit board supports either a full size (21mm x 13mm) or half size (13mm x 13mm) through-hole oscillator. Figure 2-5 identifies the location of the alternate clock input oscillator.
Figure 2-5: Alternate Clock Input Oscillator

Using the DIMM Module DDR SDRAM

The XUP Virtex-II Pro Development System is equipped with a 184-pin Dual In-line Memory Module (DIMM) socket that provides access up to 2 GB of Double Data Rate SDRAM. The DDR SDRAM is an enhancement to the traditional Synchronous DRAM. It supports data transfer on both edges of each clock cycle, effectively doubling the data throughput of the memory device.
The DDR SDRAM operates with a differential clock: CLK and CLK_Z (the transition of CLK going high and CLK_Z going low is considered the positive edge of the CLK) commands (address and control signals) are registered at every positive edge of the CLK. Input data is registered on both edges of the data strobe (DQS), and output data is referenced to both edges of DQS, as well as both edges of CLK.
A bidirectional data strobe is transmitted by the DDR SDRAM during Reads and by the FPGA DDR SDRAM memory controller during Writes. DQS is edge-aligned with the data for Reads and center-aligned with the data for Writes.
24 www.xilinx.com XUP Virtex-II Pro Development System
UG069 (v1.0) March 8, 2005
Using the DIMM Module DDR SDRAM
Read and Write accesses to the DDR SDRAM are burst oriented: accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an Active command, which is followed by a Read or Write command. The address bits registered coincident with the Read or Write command are used to select the bank and starting column location for the burst address.
DDR SDRAM provides for 2, 4, 8, or full-page programmable Read or Write burst lengths. The allowable burst lengths depend on the specific DDR SDRAM used on the DIMM module. This information can be obtained from the serial presence detect (SPD) EEPROM. An auto-precharge function can be enabled to provide a self-timed precharge that is initiated at the end of the burst sequence. As with standard SDRAMs, the pipelined multibank architecture of DDR SDRAMs allows for concurrent operation, thereby, providing high effective bandwidth by hiding row precharge and activation time.
The modules incorporate a serial presence detect (SPD) function implemented using a 2048-bit EEPROM. The first 128 bytes of the EEPROM are programmed by the module manufacturer to identify the module type and various SDRAM timing parameters. The remaining 128 bytes of EEPROM are available for use as non-volatile memory. The EEPROM is accessed using a standard I clock) and SDRAM_SDA (serial data) signals.
Data on the SDRAM_SDA signal can change only when the clock signal SDRAM_SCL is low. Changes in the SDRAM_SDA data signal when SDRAM_SCL is high; this indicates a start or stop bit condition as shown in Figure 2-6. A high-to-low transition of SDRAM_SDA when SDRAM_SCL is high indicates a start bit condition, the start of all commands. A low-to-high transition of SDRAM_SDA when SDRAM_ SCL is high indicates a stop bit condition, terminating the command placing the SPD device into a low power mode.
2
C bus protocol using the SDRAM_SCL (serial
R
SDRAM_SCL
SDRAM_SDA
START BIT STOP BIT
UG069_07_082604
Figure 2-6: Definition of Start and Stop Conditions
All commands commence with a start bit, followed by eight data bits. The transmitting device, either the bus master or slave, releases the bus after transmitting eight bits. During the ninth clock cycle, the receiver pulses the SDA data signal low to acknowledge that it received the eight bits of data as shown in Figure 2-7.
XUP Virtex-II Pro Development System www.xilinx.com 25
UG069 (v1.0) March 8, 2005
R
SCL FROM MASTER
SDA OUTPUT FROM TRANSMITTER
SDA OUTPUT FROM RECEIVER
Chapter 2: Using the System
1289
START BIT ACKNOWLEDGE
UG069_08_021405
Figure 2-7: Acknowledge Response from Receiver
The SPD device always responds with an acknowledge after recognition of a start condition and its slave address (100). If a read command was issued, the SPD device transmits eight bits of data, releases the SDRAM_SDA data line, and monitors the SDRAM_SDA data line for an acknowledge. If an acknowledge is detected and no stop bit is generated by the master, the SPD device continues to transmit data. If no acknowledge is detected, the SPD device terminates further data transmission and waits for the stop bit condition to return to low power mode.
MASTER (FPGA)
SDRAM_SDA
SLAVE (SPD EEPROM)
MASTER (FPGA)
SDRAM_SDA
SPD device read and write operations are shown in Figure 2-8 and Figure 2-9.
SLAVE ADDRESS
READ DATA n DATA n+1
START
0011 00011
A2A1A0
R/W
ACK
ACK
Figure 2-8: EEPROM Sequential Read
SLAVE ADDRESS
WRITE WORD ADDRESS DATA
START
0011 00011
A2
A1A0R/W
ACK
STOP
UG069_09_021405
STOP
SLAVE (SPD EEPROM)
ACK
ACK
ACK
UG069_10_021405
Figure 2-9: EEPROM Write
26 www.xilinx.com XUP Virtex-II Pro Development System
UG069 (v1.0) March 8, 2005
Using the DIMM Module DDR SDRAM
The ability to read the SPD EEPROM is important because the module specific timing parameters are included in the EEPROM data and are required by the DDR SDRAM controller to provide the highest memory throughput. The definitions of the SPD data bytes are outlined in Tab le 2 -3.
Table 2-3: SPD EEPROM Contents
Byte Description
0 Number of used bytes in SPD EEPROM
1 Total number of bytes on SPD EEPROM
2 Memory type (DDR SDRAM = 07h)
3Number of row addresses
4 Number of column addresses
5 Number of ranks (01h)
6-7 Module data width
8 Module interface voltage (SSTL 2.5V = 04h)
R
9 SDRAM cycle time (tck) (CAS LATENCY = 2.5)
10 SDRAM access time (tac) (CAS LATENCY = 2.5)
11 Module configuration type
12 Refresh rate
13 Primary SDRAM component width
14 Error checking SDRAM component width
15 Minimum clock delay from
Back-to-Back Random Column Addresses
16 Supported burst lengths
17 Number of banks on SDRAM component
18 CAS latencies supported
19 CS latency
20 WE latency
21 SDRAM module attributes
22 SDRAM attributes
23 SDRAM cycle time (tck) (CAS LATENCY =2)
24 SDRAM access time (tac) (CAS LATENCY =2)
25 SDRAM cycle time (tck) (CAS LATENCY =1)
26 SDRAM access time (tac) (CAS LATENCY =1)
27 Minimum ROW PRECHARGE time (trp)
28 Minimum ROW ACTIVE to ROW ACTIVE (trrd)
XUP Virtex-II Pro Development System www.xilinx.com 27
UG069 (v1.0) March 8, 2005
R
Chapter 2: Using the System
Table 2-3: SPD EEPROM Contents (Continued)
Byte Description
29 Minimum RAS# to CAS# delay (trcd)
30 Minimum RAS# pulse width (tras)
31 Module rank density
32 Command and address setup time (tas, tcms)
33 Command and address hold time (tah, tcmh)
34 Data setup time (tds)
35 Data hold time (tdh)
36-40 Reserved
41 Minimum ACTIVE/AUTO REFRESH time
42 Minimum AUTO REFRESH to ACTIVE/AUTO REFRESH
command period
43 Max cycle time
44 Max DQS-DQ skew
45 Max READ HOLD time
46 Reserved
47 DIMM height
48-61 Reserved
62 SPD revision
63 CHECKSUM for bytes 0-62
64-71 Manufacturer's JEDEC ID code
72 Manufacturing location
73-90 Module part number (ASCII)
91-92 Module revision code
93 Year of manufacture (BCD)
94 Week of manufacturer (BCD)
95-98 Module serial number
99-127 Reserved
128-255 User defined contents
The DIMM module is supplied with three differential clocks. These three clock signals are matched in length to each other and the DDR SDRAM feedback signals to allow for fully synchronous operation across all banks of memory. The DDR SDRAM clocks are driven by Double Data Rate (DDR) output registers, connected to a Digital Clock Manager (DCM) with an optional external feedback connection. The DDR SDRAM controller logic is described in DS425
28 www.xilinx.com XUP Virtex-II Pro Development System
, PLB Double Data Rate (DDR) Synchronous DRAM (SDRAM) Controller.
UG069 (v1.0) March 8, 2005
Using the DIMM Module DDR SDRAM
The Xilinx PLB DDR SDRAM controller is a soft IP core designed for Xilinx FPGAs that support different CAS latencies and memory data widths set by design parameters.
The DDR SDRAM controller logic instantiates DDR input and output registers on the address, data, and control signals, so the clock to output delays match the clock output delay. The DDR SDRAM clocking structure as shown in Figure 2-10 is a simplified version of the clocking structure mentioned in DS425
R
.
ug069_23_021505
Figure 2-10: Clock Generation for the DDR SDRAM
XUP Virtex-II Pro Development System www.xilinx.com 29
UG069 (v1.0) March 8, 2005
R
Chapter 2: Using the System
Xilinx has qualified several different types of PC2100 memory modules for use in the XUP Virtex-II Pro Development System. These modules cover various densities, organizations, and features. The qualified memory modules are identified in Ta bl e 2-4 . For an updated list of supported modules, consult the XUP Virtex-II Pro Development System support Web site at:
http://www.xilinx.com/univ/xupv2p.html
The data bus width, number of ranks, address range, clock latency, and output type are all parameters that are used by the DDR memory controller design to create the correct memory controller for the user application.
Table 2-4: Qualified SDRAM Memory Modules
Crucial® Technology
Part Number
Memory
Organization
Number of
Ranks
Unbuffered or
Registered
CAS
Latency
CT6472Z265.18T* 512 MB 64M X 72 Dual Unbuffered 2.5
CT6464Z265.16T* 512 MB 64M X 64 Dual Unbuffered 2.5
CT6472Z265.9T* 512 MB 64M X 72 Single Unbuffered 2.5
CT6464Z265.8T* 512 MB 64M X 64 Single Unbuffered 2.5
CT1664Z265.4T* 128 MB 16M X 64 Single Unbuffered 2.5
Notes:
The * in the Crucial part number represents the revision number of the module, which is not required to order the module.
These memory modules are designed for a maximum clock frequency of at least 133 MHz and have a CAS latency of 2.5 (18.8 ns). The PLB Double Data Rate Synchronous DRAM Controller supports CAS latencies of two or three clock cycles.
If the memory system is to operate at 100 MHz, then set the CAS latency parameter in the controller design to 2 (20 ns). If full speed (133MHz) memory operation is required, then set the CAS latency parameter in the controller design to 3 (22.6 ns).
Tab le 2 -5 provides the details on the FPGA to DDR SDRAM DIMM module connections.
Table 2-5: DDR SDRAM Connections
Signal Direction
DIMM
Module Pin
FPGA
Pin
I/O Type
SDRAM_DQ[0] I/O 2 C27 SSTL2-II
SDRAM_DQ[1] I/O 4 D28 SSTL2-II
SDRAM_DQ[2] I/O 6 D29 SSTL2-II
SDRAM_DQ[3] I/O 8 D30 SSTL2-II
SDRAM_DQ[4] I/O 94 H25 SSTL2-II
SDRAM_DQ[5] I/O 95 H26 SSTL2-II
SDRAM_DQ[6] I/O 98 E27 SSTL2-II
SDRAM_DQ[7] I/O 99 E28 SSTL2-II
SDRAM_DQS[0] I/O 5 E30 SSTL2-II
SDRAM_DM[0] 0 97 U26 SSTL2-II
30 www.xilinx.com XUP Virtex-II Pro Development System
UG069 (v1.0) March 8, 2005
Loading...
+ 108 hidden pages