1300 Henley Court
Pullman, WA 99163
509.334.6306
www.digilentinc.com
JTAG-SMT2
Programming Module for Xilinx® FPGAs
Revised March 2, 2015
Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.
1
2
3
4 8
9
10
11
5
6
7
GND
TCK
TDI
TMS
GPIO1
GPIO2
GPIO0
TDO
VREF
GND
Vdd (3.3V)
Small, complete, all-in-one JTAG programming/debugging
solution for Xilinx FPGAs
Compatible with all Xilinx Tools
Compatible with IEEE 1149.7-2009 Class T0 – Class T4
(includes 2-Wire JTAG)
GPIO pin allows debugging software to reset the processor
core of Xilinx’s Zynq® platform
Single 3.3V supply
Separate Vref drives JTAG signal voltages; Vref can be any
voltage between 1.8V and 5V.
High-Speed USB2 port that can drive JTAG/SPI bus at up to
30Mbit/sec (frequency settable by user)
SPI programming solution (modes 0 and 2 up to 30Mbit/sec,
modes 1 and 3 up to 2Mbit/sec)
Uses micro-AB USB2 connector
Small form-factor surface-mount module can be directly
loaded on target boards
A similar circuit is available as a stand-alone programming
cable; see Digilent’s JTAG-HS2.
Overview
The Joint Test Action Group (JTAG)-SMT2 is a compact, complete and fully self-contained surface-mount
programming module for Xilinx field-programmable gate arrays (FPGAs). The module can be accessed directly from
all Xilinx Tools, including iMPACT, Chipscope™, and EDK. Users can load the module directly onto a target board
and reflow it like any other component.
The JTAG-SMT2 uses a 3.3V main power supply and a separate Vref supply to drive the JTAG signals. All JTAG
signals use high speed, 24mA, three-state buffers that allow signal voltages from 1.8V to 5V and bus speeds of up
to 30MBit/sec. The JTAG bus can be shared with other devices as systems hold JTAG signals at high-impedance,
except when actively driven during programming. The SMT2 module is CE certified and fully compliant with EU
RoHS and REACH directives. The module uses a standard Type-A to Micro-USB cable available for purchase from
Digilent, Inc.
Users can connect JTAG signals directly to the corresponding FPGA signals, as shown in Fig. 1. For best results,
mount the module adjacent to the edge of the host PCB over a ground plane. Although users may run signal traces
on top of the host PCB beneath the SMT2, Digilent recommends keeping the area immediately beneath the SMT2
clear.
Note: Keep the impedance between the SMT2 and FPGA below 100 Ohms to operate the JTAG at maximum speed.
JTAG-SMT2 Reference Manual
Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.
TCK
JTAG-SMT2 FPGA
TMS
TDI
TDO
GND
VREF
VIO
TMS
TCK
TDI
TDO
3.3V
V
IO
GND
Vdd
USB2
Port
2
4
3
8
1
9
11
TCK
JTAG-SMT2 FPGA
TMS
TDI
TDO
GND
VREF
VIO
SS
SCK
MOSI
MISO
3.3V
V
IO
GND
Vdd
USB2
Port
2
4
3
8
1
9
11
Figure 1. JTAG-SMT2 port connections.
The SMT2 improves upon the SMT1 with the addition of three general purpose IO pins (GPIO0 – GPIO2) and
support for interfacing IEEE 1149.7-2009 JTAG targets in both 2 and 4-wire modes.
In addition to supporting JTAG, the JTAG-SMT2 also features eight highly configurable Serial Peripheral Interface
(SPI) ports that allow communication with virtually any SPI peripheral (see Fig. 2). All eight SPI ports share the
same SCK, MOSI, and MISO pins, so users may enable only one port at any given time. Table 1 summarizes the
features supported by each port. The HS2 supports SPI modes 0, 1, 2, and 3.
JTAG-SMT2 Reference Manual
Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.
TMS
TDI
TCK
TDO
Host
+
JTAG-SMT2
(DTS)
TMS
TDI
TCK
TDO
Target
System 0
TMS
TDI
TCK
TDO
Target
System 1
TMS
TDI
TCK
TDO
Target
System N
Figure 3. 4-Wire series topology.
Note: The Xilinx Tools expect GPIO2/CS3 to be connected to the SRST_B pin on a Zynq chip. As a result, SPI ports 6
and 7 may not be used for SPI communication if the Xilinx Tools are going to be used to communicate with the
SMT2.
Software Support
In addition to working seamlessly with all Xilinx Tools, Digilent’s Adept software and the Adept software
development kit (SDK) support the SMT2 module. For added convenience, customers may freely download the
SDK from Digilent’s website. This Adept software includes a full-featured programming environment and a set of
public application programming interfaces (API) that allow user applications to directly drive the JTAG chain.
With the Adept SDK, users can create custom applications that will drive JTAG ports on virtually any device. Users
may utilize the APIs provided by the SDK to create applications that can drive any SPI device supporting those
modes. Please see the Adept SDK reference manual for more information.
IEEE 1149.7-2009 Compatibility
The JTAG-HS2 supports several scan formats, including the JScan0-JScan3, MScan, and OScan0 - OScan7. It is
capable of communicating in 4-wire and 2-wire scan chains that consist of Class T0 – T4 JTAG Target Systems (TS)
(see Figs. 3 & 4).
JTAG-SMT2 Reference Manual
Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.
2-Wire Star Topology
TMSC
TDIC
TCKC
TDOC
Target
System 0
Target
System 1
Target
System N
TMSC
TDIC
TCKC
TDOC
TMSC
TDIC
TCKC
TDOC
TMS
TDI
TCK
TDO
Host
+
JTAG-SMT2
(DTS)
VREF
Output Pin
(TMS, TDI, TCK)
100K
JtagEN
VREF
Input Pin
(TDO)
100K
TMSC
TDIC
TCKC
TDOC
Target
System 0
Target
System 1
Target
System N
4-Wire Star Topology
TMSC
TDIC
TCKC
TDOC
TMSC
TDIC
TCKC
TDOC
TMS
TDI
TCK
TDO
Host
+
JTAG-SMT2
(DTS)
Figure 4. 4-Wire and 2-Wire star topology.
Figure 5. Pull-ups on TMS, TDI, TDO, and TCK signals.
The IEEE 1149.7-2009 specification requires any device that functions as a debug and test system (DTS) to provide
a pull-up bias on the TMS and TDO pins. In order to meet this requirement, the JTAG-SMT2 features weak pull-ups
(100K ohm) on the TMS, TDI, TDO, and TCK signals. Though not required in the specifications, the pull-ups on the
TDI and TCK signals ensure that neither signal floats while another source is not driving them (see Fig. 5).
Users should place a current limiting resistor between the TMS pin of the SMT2 and the TMSC pin of the TS when
using the JTAG-SMT2 to interface with an 1149.7 compatible TS. If a drive conflict occurs, this resistor should
prevent damage to components by limiting the amount of current flowing between the pins of each device. A 200
ohm resistor will limit the maximum current to 16.5mA when using a 3.3V reference (see Figs. 6 & 7). While this
level of resistance should be sufficient for most applications, the value of the resistor may need to be adjusted to
meet the requirements of the TS.
In most cases users can avoid a drive conflict by having applications that use the SMT2 communicate with the TS in
two-wire mode. Use the applications to reconfigure the TS to use the JScan0, JScan1, JScan2, or JScan3 scan
format prior to disabling the SMT2’s JTAG port.