This manual describes the operation of the XBee/XBee-PRO ZB RF module, which
consists of ZigBee firmware loaded onto XBee S2 and S2B hardware, models:
XBEE2, XBEEPRO2 and PRO S2B. The XBee/XBee-PRO ZB RF Modules are
designed to operate within the ZigBee protocol and support the unique needs of
low-cost, low-power wireless sensor networks. The modules require minimal
power and provide reliable delivery of data between remote devices.
The modules operate within the ISM 2.4 GHz frequency band and are compatible
with the following:
•XBee RS-232 Adapter
•XBee RS-485 Adapter
•XBee Analog I/O Adapter
•XBee Digital I/O Adapter
•XBee Sensor
•XBee USB Adapter
•XStick
•ConnectPort X Gateways
•XBee Wall Router.
The XBee/XBee-PRO ZB firmware release can be installed on XBee ZNet or ZB modules. The XBee ZB firmware is based
on the EmberZNet 3.x ZigBee PRO Feature Set mesh networking stack, while the XBee ZNet 2.5 firmware is based on
Ember's proprietary "designed for ZigBee" mesh stack (EmberZNet 2.5.x). ZB and ZNet 2.5 firmware are similar in
nature, but not over-the-air compatible. Devices running ZNet 2.5 firmware cannot talk to devices running the ZB firmware.
What's New in 2x7x
Firmware
XBee/XBee-PRO ZB firmware includes the following new features (compared with 2x6x):
•Using Ember stack version 3.4.1.
•Support for the PRO S2B with temperature compensation and an overvoltage check. Within 15 seconds of
the supply voltage exceeding 3.9V, the API will emit a 0x08 modem status (Overvoltage) message, and
then the AT/API versions will do a watchdog reset.
•ZDO pass-through added. If AO=3, then ZDO requests which are not supported by the stack will be
passed out the UART.
•An attempt to send an oversized packet (256+ bytes) will result in a Tx Status message with a status code
of 0x74.
•End devices have two speed polling. 7.5 seconds is the slow rate, which switches to the fast rate to transact with its parent. When transactions are done, it switches back to the slow rate.
•A new receive option bit (0x40) indicates if the packet came from an end device.
•Added extended timeout option since end devices need more time than routers to ack their packets.
•An option bit (0x01) was added to disable APS retries.
•If an end device has not had its polls answered for 5 secs, it will leave and attempt to rejoin the network.
•XBee S2B has a new TP command which returns the temperature compensation sensor reading in units of
Celsius degrees.
•The PP command returns the power dBm setting when PL4 is selected.
•The PO command sets the slow polling rate on end devices. Range is 1-0x1770 in units of 10 msec (10
msec to 60 sec). Default is 0 which invokes a 100 msec delay.
•Rejoining now can proceed without a NR or NRO command after a Mgmt_Leave_req is processed.
•Command ranges were changed for the SC, IR, and LT commands.
•A PAN ID corruption problem was fixed.
See the 2x7x release notes for a complete list of new features and bug fixes at www.digi.com/support.
The following specifications need to be added to the current measurement of the previous table if the module
has the programmable secondary processor. For example, if the secondary processor is running and
constantly collecting DIO samples at a rate while having the RF portion of the XBEE sleeping the new current
will be I
of the RF portion of the module of the XBEE-PRO (S2B) listed in the table below.
The XBee/XBee-PRO ZB modules include a SIF programming header that can be used with Ember's
programming tools to upload custom firmware images onto the XBee module. The SIF header orientation and
pinout are shown below.
A male header can be populated on the XBee that mates with Ember's 2x5 ribbon cable. The male header and
ribbon cables are available from Samtec:
The XBee module was designed to mount into a receptacle (socket) and therefore does not require any
soldering when mounting it to a board. The XBee-PRO Development Kits contain RS-232 and USB interface
boards which use two 20-pin receptacles to receive modules.
The receptacles used on Digi development boards are manufactured by Century Interconnect. Several other
manufacturers provide comparable mounting solutions; however, Digi currently uses the following
receptacles:
The following table shows how the EM250 pins are used on the XBee.
EM250 Pin Number XBee Pin NumberOther Usage
13 (Reset)5*Connected to pin 8 on 2x5 SIF header.
19 (GPIO 11)16*
20 (GPIO 12)12*
21 (GPIO 0)
22 (GPIO 1)
24 (GPIO 2)
25 (GPIO 3)13
26 (GPIO 4 / ADC 0)20Connected to pin 9 on 2x5 SIF header.
27 (GPIO 5 / ADC 1)19Connected to pin 10 on 2x5 SIF header.
29 (GPIO 6 /ADC 2)18
30 (GPIO 7 / ADC 317
31 (GPIO 8)4
32 (GPIO 9)2*
33 (GPIO 10)3*
34 (SIF_CLK)Connected to pin 6 on 2x5 SIF header.
35 (SIF_MISO)Connected to pin 2 on 2x5 SIF header.
36 (SIF_MOSI)Connected to pin 4 on 2x5 SIF header.
37 (SIF_LOAD)Connected to pin 7 on 2x5 SIF header.
40 (GPIO 16)7
41 (GPIO 15)6
42 (GPIO 14)9
43 (GPIO 13)11
15
XBee
Tied to ground (module identification)
XBee-PRO (S2)
Low-asserting shutdown line for output power compensation circuitry.
XBee-PRO (S2B)
Used to communicate with Temp Sensor and control Shutdown for low power mode.
XBee
Not connected. Configured as output low.
XBee-PRO (S2)
Powers the output power compensation circuitry.
XBee-PRO (S2B)
Used to communicate with Temp Sensor and control Shutdown for low power mode.
* NOTE: These lines may not go to the external XBEE pins of the module if the programmable secondary processor
is populated.
Design Notes
The XBee modules do not specifically require any external circuitry or specific connections for proper
operation. However, there are some general design guidelines that are recommended for help in
troubleshooting and building a robust design.
Power Supply Design
Poor power supply can lead to poor radio performance especially if the supply voltage is not kept within
tolerance or is excessively noisy. To help reduce noise a 1uF and 8.2pF capacitor are recommended to be
placed as near to pin1 on the PCB as possible. If using a switching regulator for your power supply, switching
frequencies above 500kHz are preferred. Power supply ripple should be limited to a maximum 250mV peak to
peak.
Note – For designs using the programmable modules an additional 10uF decoupling cap is recommended near
pin 1 of the module. The nearest proximity to pin 1 of the 3 caps should be in the following order: 8.2pf, 1uF
followed by 10uF.
The only required pin connections are VCC, GND, DOUT and DIN. To support serial firmware updates, VCC,
GND, DOUT, DIN, RTS, and DTR should be connected.
All unused pins should be left disconnected. All inputs on the radio can be pulled high with 30k internal pull-up
resistors using the PR software command. No specific treatment is needed for unused outputs.
For applications that need to ensure the lowest sleep current, inputs should never be left floating. Use internal
or external pull-up or pull-down resistors, or set the unused I/O lines to outputs.
Other pins may be connected to external circuitry for convenience of operation including the Associate LED pin
(pin 15) and the Commissioning pin (pin 20). The Associate LED pin will flash differently depending on the
state of the module to the network, and a pushbutton attached to pin 20 can enable various join functions
without having to send UART commands. Please see the commissioning pushbutton and associate LED section
in chapter 7 for more details. The source and sink capabilities are limited to 4mA for all pins on the module.
The VRef pin (pin 14) is not used on this module. For compatibility with other XBee modules, we recommend
connecting this pin to a voltage reference if analog sampling is desired. Otherwise, connect to GND.
Board Layout
XBee modules do not have any specific sensitivity to nearby processors, crystals or other PCB components.
Other than mechanical considerations, no special PCB placement is required for integrating XBee radios except
for those with integral antennas. In general, Power and GND traces should be thicker than signal traces and be
able to comfortably support the maximum currents.
The radios are also designed to be self sufficient and work with the integrated and external antennas without
the need for additional ground planes on the host PCB. However, considerations should be taken on the choice
of antenna and antenna location. Metal objects that are near an antenna cause reflections and may reduce the
ability for an antenna to efficiently radiate. Using an integral antenna (like a wire whip antenna) in an enclosed
metal box will greatly reduce the range of a radio. For this type of application an external antenna would be a
better choice.
External antennas should be positioned away from metal objects as much as possible. Metal objects next to
the antenna or between transmitting and receiving antennas can often block or reduce the transmission
distance. Some objects that are often overlooked are metal poles, metal studs or beams in structures,
concrete (it is usually reinforced with metal rods), metal enclosures, vehicles, elevators, ventilation ducts,
refrigerators and microwave ovens.
The Wire Whip Antenna should be straight and perpendicular to the ground plane and/or chassis. It should
reside above or away from any metal objects like batteries, tall electrolytic capacitors or metal enclosures. If
the antenna is bent to fit into a tight space, it should be bent so that as much of the antenna as possible is
away from metal. Caution should be used when bending the antenna, since this will weaken the solder joint
where the antenna connects to the module. Antenna elements radiate perpendicular to the direction they
point. Thus a vertical antenna emits across the horizon.
Embedded PCB or Chip Antennas should not have any ground planes or metal objects above or below the
module at the antenna location. For best results the module should be in a plastic enclosure, instead of metal
one. It should be placed at the edge of the PCB to which it is mounted. The ground, power and signal planes
should be vacant immediately below the antenna section (See drawing for recommended keepout area).
Note – The signal-ended ADC measurements are limited in their range and only guaranteed for accuracy in
the range 0 to VREFI. The nature of the ADC’s internal design allows for measurements outside of this range
(+/- 200mV), but the accuracy of such measurements are not guaranteed.
Input Low VoltageAll Digital Inputs-- 0.2 * VCCV
Input High VoltageAll Digital Inputs0.8 * VCC- -V
Output Low VoltageVCC >= 2.7 V--0.18*VCCV
Output High Voltage VCC >= 2.7 V0.82*VCC--V
Input Leakage Current
Output source current (standard)
Output source current (high
current)
Output sink current (standard
Output sink current (high current)RSSI/PWM, DIO10, DIO4 digital outputs8mA
Total output current for all I/O pinsAll digital outputs40mA
VREF Internal
ADC input voltage range0VREFIV
Input impedanceWhen taking a sample1M Ohm
Input ImpedanceWhen not taking a sample10M Ohm
= VCC or GND, all inputs, per pin
V
IN
All digital outputs except
RSSI/PWM, DIO10, DIO4
--0.5uAuA
4mA
RSSI/PWM, DIO10, DIO4 digital outputs8mA
All digital inputs except
RSSI/PWM, DIO10, DIO4
EM250 has an internal reference that is
fixed
1.191.21.21V
4mA
Module Operation for Programmable Variant
The S2B modules that have the programmable option populated have a secondary processor with 32k of flash
and 2k of RAM. This allows module integrators to put custom code on the XBEE module to fit their own unique
needs. The DIN, DOUT, RTS, CTS, and RESET lines are intercepted by the secondary processor to allow it to be
in control of the data transmitted and received. All other lines are in parallel and can be controlled by either
the EM250 or the MC9S08QE micro (see Block Diagram for details). The EM250 by default has control of
certain lines. These lines can be released by the EM250 by sending the proper command(s) to disable the
desired DIO line(s) (see XBEE Command Reference Tables).
In order for the secondary processor to sample with ADCs, the XBEE pin 14 (VREF) needs to be connected to
a reference voltage.
Digi provides a bootloader that can take care of programming the processor over the air or through the serial
interface. This means that over the air updates can be supported through an XMODEM protocol. The processor
can also be programmed and debugged through a one wire interface BKGD (Pin 8).
The Xbee Programmable module is equipped with a Freescale MC9S08QExx application processor. This
application processor comes with a supplied bootloader. The following section describes how to interface the
customer's application code running on this processor to the XBee Programmable module's supplied
bootloader.
This section discusses how to initiate firmware updates using the supplied bootloader for wired and over-theair updates.
Bootloader Software Specifics
Memory Layout
Figure 1 shows the memory map for the MC9S08QE32 application processor.
The supplied bootloader occupies the bottom pages of the flash from 0xF200 to 0xFFFF. Application
code cannot write to this space.
The application code can exist in Flash from address 0x8400 to 0xF1BC. 1k of Flash from 0x8000 to
0x83FF is reserved for Non Volatile Application Data that will not be erased by the bootloader during a
flash update.
A portion of RAM is accessible by both the application and the bootloader. Specifically, there is a
shared data region used by both the application and the bootloader that is located at RAM address
0x200 to 0x215. Application code should not write anything to AppResetCause or BLResetCause unless
informing the bootloader of the impending reset reason.
Upon reset of any kind, the execution control begins with the bootloader.
If the reset cause is Power-On reset (POR), Pin reset (PIN), or Low Voltage Detect(LVD) reset the
bootloader will not jump to the application code if the override bits are set to RTS(D7)=1, DTR(D5)=0,
and DIN(B0)=0. Otherwise, the bootloader writes the reset cause "NOTHING" to the shared data
region, and jumps to the Application.
Reset causes are defined in the file common. h in an enumeration with the following definitions:
// 0x0000 to 0x00FF are considered valid for APP use.
APP_CAUSE_USE255 = 0x00FF,
APP_CAUSE_FIRMWARE_UPDATE = 0x5981,
APP_CAUSE_BYPASS_MODE = 0x4682,
APP_CAUSE_BOOTLOADER_MENU = 0x6A18,
} APP_RESET_CAUSES;
Otherwise, if the reset cause is a "watchdog" or other reset, the bootloader checks the shared memory
region for the APP_RESET_CAUSE. If the reset cause is:
1."APP_CAUSE_NOTHING" or 0x0000 to 0x00FF, the bootloader increments the
BL_RESET_CAUSES, verifies that it is still less than BL_CAUSE_BAD_APP, and jumps back to
the application. If the Application does not clear the BL_RESET_CAUSE, it can prevent an
infinite loop of running a bad application that continues to perform illegal instructions or
watchdog resets.
2."APP_CAUSE_FIRMWARE_UPDATE", the bootloader has been instructed to update the
application "over-the-air" from a specific 64 bit address. In this case, the bootloader will
attempt to initiate an Xmodem transfer from the 64 bit address located in Shared RAM.
3."APP_CAUSE_BYPASS_MODE", the bootloader executes bypass mode. This mode passes the
local UART data directly to the EM250 allowing for direct communication with the EM250.
The only way to exit bypass mode is to reset or power cycle the module.
If none of the above is true, the bootloader will enter "Command mode". In this mode, users can
initiate firmware downloads both wired and over-the-air, check application/bootloader version strings,
and enter Bypass mode.
Application version string
Figure 1 shows an "Application version string pointer" area in application flash which holds the pointer
to where the application version string resides. The application's linker command file ultimately
determines where this string is placed in application flash.
It is preferable that the application version string be located at address 0x8400 for MC9S08QE32 parts.
The application string can be any characters terminated by the NULL character (0x00). There is not a
strict limit on the number of characters in the string, but for practical purposes should be kept under
100 bytes including the terminating NULL character. During an update the bootloader erases the entire
application from 0x8400 on. The last page has the vector table specifically the redirected reset vector.
The version string pointer and reset vector are used to determine if the application is valid.
Application Interrupt Vector table and Linker Command File
Since the bootloader flash region is read-only, the interrupt vector table is redirected to the region
0xF1C0 to 0xF1FD so that application developers can use hardware interrupts. Note that in order for
Application interrupts to function properly, the Application's linker command file (*.prm extension)
must be modified appropriately to allow the linker to place the developers code in the correct place in
memory. For example, the developer desires to use the serial communications port SCI1 receive
interrupt. The developer would add the following line to the Codewarrior linker command file for the
project…
VECTOR ADDRESS 0x0000F1E0 vSci1Rx
This will inform the linker that the interrupt function "vSci1Rx()" should be placed at address
0x0000F1E0. Next, the developer should add a file to their project "vector_table.c" that creates an
array of function pointers to the ISR routines used by the application…Eg.
extern void _Startup(void);/* _Startup located in Start08.c */
The interrupt routines themselves can be defined in separate files. The "vDummyIsr" function is used
in conjunction with "iWritetoSci1" for debugging purposes.
Bootloader Menu Commands
The bootloader accepts commands from both the local UART and OTA. All OTA commands sent must be
Unicast with only 1 byte in the payload for each command. A response will be returned to the sender. All
Broadcast and multiple byte OTA packets are dropped to help prevent general OTA traffic from being
interpreted as a command to the bootloader while in the menu.
The bootloader provides a "bypass" mode of operation that essentially connects the SCI1 serial
communications peripheral of the freescale mcu to the EM250's serial Uart channel. This allows direct
communication to the EM250 radio for the purpose of firmware and radio configuration changes. Once
in bypass mode, the XCTU utility can change modem configuration and/or update EM250 firmware.
Bypass mode automatically handles any baud rate up to 115.2kbps. Note that this command is
unavailable when module is accessed remotely.
Update Firmware - "F"
The "F" command initiates a firmware download for both wired and over-the-air configurations.
Depending on the source of the command (received via Over the Air or local UART), the download will
proceed via wired or over-the-air respectively.
Adjust Timeout for Update Firmware - "T"
The "T" command changes the timeout before sending a NAK by Base-Time*2^(T). The Base-Time for
the local UART is different than the Base-Time for Over the Air. During a firmware update, the
bootloader will automatically increase the Timeout if repeat packets are received or multiple NAKs for
the same packet without success occur.
Application Version String - "A"
The "A" command provides the version of the currently loaded application. If no application is present,
"Unkown" will be returned.
Bootloader Version String - "V"
The "V" command provides the version of the currently loaded bootloader.
The version will return a string in the format BLFFF-HHH-XYZ_DDD where FFF represents the Flash size
in kilo bytes, HHH is the hardware, XYZ is the version, and DDD is the preferred XMODEM packet size
for updates. Double the preferred packet size is also possible, but not guaranteed. For example
"BL032-2B0-023_064" will take 64 byte CRC XMODEM payloads and may take 128 byte CRC XMODEM
payloads also. In this case, both 64 and 128 payloads are handled, but the 64 byte payload is
preferred for better Over the Air reliability.
A user can update their application using the bootloader in a wired configuration with the following
steps…
a. Plug XBee programmable module into a suitable serial port on a PC.
b. Open a hyperterminal (or similar dumb terminal application) session with 9600 baud, no parity,
and 8 data bits with one stop bit.
c. Hit Enter to display the bootloader menu.
d. Hit the "F" key to initiate a wired firmware update.
e. A series of "C" characters Will be displayed within the hyperterminal window. At this point,
select the "transfer->send file" menu item. Select the desired flat binary output file. (The file
should start at 0x8400 not 0x0000).
f. Select "Xmodem" as the protocol.
g. Click "Send" on the "Send File" dialog. The file will be downloaded to the XBee Programmable
module. Upon a successful update, the bootloader will jump to the newly loaded application.
Over-The-Air updates
A user can update their application using the bootloader in an "over-the-air" configuration with the
following steps…(This procedure assumes that the bootloader is running and not the application. The
EM250 baud rate must be set to 9600 baud. The bootloader only operates at 9600 baud. The
application must be programmed with some way to support returning to the bootloader in order to
support Over the Air (OTA) updates without local intervention.)
a. The XBee module sending the file OTA (Host module) should be set up with a series 2 Xbee
module with transparent mode firmware.
b. The XBee Programmable module receiving the update (remote module) is configured with API
firmware.
c. Open a hyperterminal session to the host module with 9600 baud, no parity, no hardwareflow
control, 8 data bits and 1 stop bit.
d.Enter 3 pluses "+++" to place the EM250 in command mode.
e. Set the Host Module destination address to the target module’s 64 bit address that the host
module will update (ATDH aabbccdd, ATDL eeffgghh, ATCN, where aabbccddeeffgghh is the hexadecimal 64 bit address of the target module).
f. Hit Enter and the bootloader command menu will be displayed from the remote module. (Note
that the option "B" doesn't exist for OTA)
g. Hit the "F" key to cause the remote module to request the new firmware file over-the-air.
h. The host module will begin receiving "C" characters indicating that the remote module is
requesting an Xmodem CRC transfer. Using XCTU or another terminal program, Select "XMODEM"
file transfer. Select the Binary file to upload/transfer. Click Send to start the transfer. At the conclusion of a successful transfer, the bootloader will jump to the newly loaded application.
Output File configuration
BKGD Programming
P&E Micro provides a background debug tool that allows flashing applications on the MC9S08QE parts
through their background debug mode port. By default, the Codewarrior tool produces an "ABS"
output file for use in programming parts through the background debug interface. The programmable
XBee from the factory has the BKGD debugging capability disabled. In order to debug, a bootloader
with the debug interface enabled needs to be loaded on the secondary processor or a stand-alone app
needs to be loaded.
The supplied bootloader requires files in a "flat binary" format which differs from the default ABS file
produced. The Codewarrior tool also produces a S19 output file. In order to successfully flash new
applications, the S19 file must be converted into the flat binary format. Utilities are available on the
web that will convert S19 output to "BIN" outputs. Often times, the "BIN" file conversion will pad the
addresses from 0x0000 to the code space with the same number. (Often 0x00 or 0xFF) These extra
bytes before the APP code starts will need to be deleted from the bin file before the file can be
transferred to the bootloader.
The XBee RF Modules interface to a host device through a logic-level asynchronous serial port. Through its serial
port, the module can communicate with any logic and voltage compatible UART; or through a level translator to any
serial device (for example: through a RS-232 or USB interface board).
UART Data Flow
Devices that have a UART interface can connect directly to the pins of the RF module as shown in the figure
below.
Data enters the module UART through the DIN (pin 3) as an asynchronous serial signal. The signal should
idle high when no data is being transmitted.
Each data byte consists of a start bit (low), 8 data bits (least significant bit first) and a stop bit (high). The
following figure illustrates the serial bit pattern of data passing through the module.
Serial communications depend on the two UARTs (the microcontroller's and the RF module's) to be
configured with compatible settings (baud rate, parity, start bits, stop bits, data bits).
The UART baud rate, parity, and stop bits settings on the XBee module can be configured with the BD, NB,
and SB commands respectively. See the command table in chapter 10 for details.
Serial Buffers
The XBee modules maintain small buffers to collect received serial and RF data, which is illustrated in the figure
below. The serial receive buffer collects incoming serial characters and holds them until they can be processed.
The serial transmit buffer collects data that is received via the RF link that will be transmitted out the UART.
When serial data enters the RF module through the DIN Pin (pin 3), the data is stored in the serial receive
buffer until it can be processed. Under certain conditions, the module may not be able to process data in
the serial receive buffer immediately. If large amounts of serial data are sent to the module, CTS
control may be required to avoid overflowing the serial receive buffer.
Cases in which the serial receive buffer may become full and possibly overflow:
1. If the module is receiving a continuous stream of RF data, the data in the serial receive buffer
will not be transmitted until the module is no longer receiving RF data.
2. If the module is transmitting an RF data packet, the module may need to discover the destination address or establish a route to the destination. After transmitting the data, the module may
need to retransmit the data if an acknowledgment is not received, or if the transmission is a broadcast. These issues could delay the processing of data in the serial receive buffer.
flow
Serial Transmit Buffer
When RF data is received, the data is moved into the serial transmit buffer and sent out the UART. If the
serial transmit buffer becomes full enough such that all data in a received RF packet won’t fit in the serial
transmit buffer, the entire RF data packet is dropped.
Serial Flow Control
The RTS and CTS module pins can be used to provide RTS and/or CTS flow control. CTS flow control provides an
indication to the host to stop sending serial data to the module. RTS flow control allows the host to signal the
module to not send data in the serial transmit buffer out the uart. RTS
the D6 and D7 commands.
CTS Flow Control
If CTS flow control is enabled (D7 command), when the serial receive buffer is 17 bytes away from being
full, the module de-asserts CTS
re-asserted after the serial receive buffer has 34 bytes of space.
RTS Flow Control
If RTS flow control is enabled (D6 command), data in the serial transmit buffer will not be sent out the
DOUT pin as long as RTS
Cases in which the serial transmit buffer may become full resulting in dropped RF packets
1. If the RF data rate is set higher than the interface data rate of the module, the module could
receive data faster than it can send the data to the host.
2. If the host does not allow the module to transmit data out from the serial transmit buffer
because of being held off by hardware flow control.
and CTS flow control are enabled using
(sets it high) to signal to the host device to stop sending serial data. CTS is
is de-asserted (set high). The host device should not de-assert RTS for long
periods of time to avoid filling the serial transmit buffer. If an RF data packet is received, and the serial
transmit buffer does not have enough space for all of the data bytes, the entire RF data packet will be
discarded.
Note: If the XBee is sending data out the UART when RTS
up to 5 characters out the UART after RTS
Serial Interface Protocols
The XBee modules support both transparent and API (Application Programming Interface) serial interfaces.
Transparent Operation
When operating in transparent mode, the modules act as a serial line replacement. All UART data received
through the DIN pin is queued up for RF transmission. When RF data is received, the data is sent out
through the DOUT pin. The module configuration parameters are configured using the AT command mode
interface.
Data is buffered in the serial receive buffer until one of the following causes the data to be packetized and
transmitted:
•No serial characters are received for the amount of time determined by the RO (Packetization Timeout) parameter. If RO = 0, packetization begins when a character is received.
•The Command Mode Sequence (GT + CC + GT) is received. Any character buffered in the serial
receive buffer before the sequence is transmitted.
•The maximum number of characters that will fit in an RF packet is received.
RF modules that contain the following firmware versions will support Transparent Mode:
20xx (AT coordinator), 22xx (AT router), and 28xx (AT end device).
is de-asserted (set high), the XBee could send
is de-asserted.
API Operation
API operation is an alternative to transparent operation. The frame-based API extends the level to which a
host application can interact with the networking capabilities of the module. When in API mode, all data
entering and leaving the module is contained in frames that define operations or events within the module.
Transmit Data Frames (received through the DIN pin (pin 3)) include:
•RF Transmit Data Frame
•Command Frame (equivalent to AT commands)
Receive Data Frames (sent out the DOUT pin (pin 2)) include:
•RF-received data frame
•Command response
•Event notifications such as reset, associate, disassociate, etc.
The API provides alternative means of configuring modules and routing data at the host application layer. A
host application can send data frames to the module that contain address and payload information instead
of using command mode to modify addresses. The module will send data frames to the application
containing status packets; as well as source, and payload information from received data packets.
The API operation option facilitates many operations such as the examples cited below:
->Transmitting data to multiple destinations without entering Command Mode
->Receive success/failure status of each transmitted RF packet
->Identify the source address of each received packet
RF modules that contain the following firmware versions will support API operation: 21xx (API coordinator),
23xx (API router), and 29xx (API end device).
The following table compares the advantages of transparent and API modes of operation:
Simple InterfaceAll received serial data is transmitted unless the module is in command mode.
Easy to supportIt is easier for an application to support transparent operation and command mode
Easy to manage data
transmissions to multiple
destinations
Received data frames
indicate the sender's
address
Advanced ZigBee
addressing support
Advanced networking
diagnostics
Remote Configuration
Transparent Operation Features
API Operation Features
Transmitting RF data to multiple remotes only requires changing the address in the API frame. This
process is much faster than in transparent operation where the application must enter AT command
mode, change the address, exit command mode, and then transmit data.
Each API transmission can return a transmit status frame indicating the success or reason for
failure.
All received RF data API frames indicate the source address.
API transmit and receive frames can expose ZigBee addressing fields including source and
destination endpoints, cluster ID and profile ID. This makes it easy to support ZDO commands and
public profile traffic.
API frames can provide indication of IO samples from remote devices, and node identification
messages.
Set / read configuration commands can be sent to remote devices to configure them as needed
using the API.
As a general rule of thumb, API firmware is recommended when a device:
•sends RF data to multiple destinations
•sends remote configuration commands to manage devices in the network
•receives IO samples from remote devices
•receives RF data packets from multiple devices, and the application needs to know which device sent
which packet
•must support multiple ZigBee endpoints, cluster IDs, and/or profile IDs
•uses the ZigBee Device Profile services.
If the above conditions do not apply (e.g. a sensor node, router, or a simple application), then AT firmware
might be suitable. It is acceptable to use a mixture of devices running API and AT firmware in a network.