DATASHEETS saa7167 DATASHEETS (Philips)

INTEGRATED CIRCUITS
DATA SH EET
SAA7167
YUV-to-RGB Digital-to-Analog Converter (DAC)
Preliminary specification Supersedes data of 1995 Jun 13 File under Integrated Circuits, IC22
1995 Nov 03
Philips Semiconductors Preliminary specification
YUV-to-RGB Digital-to-Analog Converter (DAC)

FEATURES

On-chip mixing of digital video data and analog RGB signals
Supports video input format of YUV 4 :2:2, 4:1:1, 2:1:1 and RGB 5:6:5
Video input rate up to 50 MHz
Allows for both binary and two’s complement video
input data
Triple 8-bit DACs for video output
Built-in voltage output amplifier
Provide keying control with external key and internal
8-bit, 2 × 8-bit and 3 × 8-bit pixel colour key
2
Programmable via the I
5 V CMOS device; LQFP48 package.

GENERAL DESCRIPTION

The SAA7167 is a mixed-mode designed IC containing a video data path, keying control block, analog mixer, and a
C-bus
SAA7167
voltage output amplifier, capable of converting digital video data to analog RGB video, and then mixing video and external analog RGB inputs.
The video data path contains a data re-formatter, YUV-to-RGB colour space matrix as well as triple DACs for video data processing. An analog mixer performs multiplexing between DAC outputs of the video path and external analog RGB inputs.
The final analog outputs are buffered with built-in voltage output amplifiers to provide the direct driving capability for a 150 load. Figure 1 shows the overall block diagram.
2
The operation of SAA7167 is controlled via the I
C-bus.

QUICK REFERENCE DATA

SYMBOL PARAMETER MIN. MAX. UNIT
V
DDD
V
DDA
T
amb

ORDERING INFORMATION

TYPE
NUMBER
SAA7167 LQFP48 plastic low profile quad flat package; 48 leads; body 7 × 7 × 1.4 mm SOT313-2
digital supply voltage 4.75 5.25 V analog supply voltage 4.75 5.25 V operating ambient temperature 0 70 °C
PACKAGE
NAME DESCRIPTION VERSION
1995 Nov 03 2
Philips Semiconductors Preliminary specification
YUV-to-RGB Digital-to-Analog Converter (DAC)

BLOCK DIAGRAM

handbook, full pagewidth
YUV7 to YUV0
UV7 to UV0
HREF
SDA
SCL
RES
38 to 45
46 to 48, 1 to 5
9
22 23 24
RE-
FORMATTER
2
C-BUS
I
CONTROL
YUV
TO
RGB
MATRIX
SAA7167
C
ref(h)
Bin Gin Rin
2936 31 33
MIXER
8-BIT
MUX
CLOCK
GENERATOR
VCLK PCLK EXTKEY P7 to P0
DAC
(3×)
MIXER
MIXER
KEYING CONTROL
8
13 to 2021106
OPAMP
OPAMP
OPAMP
SAA7167
Rout
32
Gout
30
Bout
28
MGB743
Fig.1 Block diagram.
1995 Nov 03 3
Philips Semiconductors Preliminary specification
YUV-to-RGB Digital-to-Analog
SAA7167
Converter (DAC)

PINNING

SYMBOL PIN DESCRIPTION I/O
UV4 1 digital video UV (of YUV format 4:1:1 and 4:2:2) input data, or digital G and R
input data
UV3 2 digital video UV (of YUV format 4:1:1 and 4:2:2) input data, or digital G and R
input data
UV2 3 digital video UV (of YUV format 4:1:1 and 4:2:2) input data, or digital G and R
input data
UV1 4 digital video UV (of YUV format 4:1:1 and 4:2:2) input data, or digital G and R
input data
UV0 5 digital video UV (of YUV format 4:1:1 and 4:2:2) input data, or digital G and R
input data VCLK 6 video clock input I V
DDD
V
SSD
HREF 9 horizontal reference input signal I PCLK 10 pixel clock input I AP 11 test pins, normally connected to ground I SP 12 test pins, normally connected to ground I P7 13 pixel bus input 7 (for keying control) I P6 14 pixel bus input 6 (for keying control) I P5 15 pixel bus input 5 (for keying control) I P4 16 pixel bus input 4 (for keying control) I P3 17 pixel bus input 3 (for keying control) I P2 18 pixel bus input 2 (for keying control) I P1 19 pixel bus input 1 (for keying control) I P0 20 pixel bus input 0 (for keying control) I EXTKEY 21 external key signal input I SDA 22 I SCL 23 I RES 24 set to LOW to reset the I2C-bus I n.c. 25 not connected V
SSA2
V
DDA2
Bout 28 analog Blue signal output O Bin 29 analog Blue signal input I Gout 30 analog Green signal output O Gin 31 analog Green signal input I Rout 32 analog Red signal output O Rin 33 analog Red signal input I V
SSA1
V
DDA1
C
ref(h)
7 digital supply voltage I/O 8 digital ground I/O
2
C-bus data line I/O
2
C-bus clock line I
26 analog ground 2 I/O 27 analog supply voltage 2 I/O
34 analog ground 1 I/O 35 analog supply voltage 1 I/O 36 capacitor for reference high voltage output (2.25 V) I/O
I
I
I
I
I
1995 Nov 03 4
Philips Semiconductors Preliminary specification
YUV-to-RGB Digital-to-Analog
SAA7167
Converter (DAC)
SYMBOL PIN DESCRIPTION I/O
n.c. 37 not connected YUV7 38 digital video Y or UV (of YUV format 2:1:1) input data, or digital G and B input data I YUV6 39 digital video Y or UV (of YUV format 2:1:1) input data, or digital G and B input data I YUV5 40 digital video Y or UV (of YUV format 2:1:1) input data, or digital G and B input data I YUV4 41 digital video Y or UV (of YUV format 2:1:1) input data, or digital G and B input data I YUV3 42 digital video Y or UV (of YUV format 2:1:1) input data, or digital G and B input data I YUV2 43 digital video Y or UV (of YUV format 2:1:1) input data, or digital G and B input data I YUV1 44 digital video Y or UV (of YUV format 2:1:1) input data, or digital G and B input data I YUV0 45 digital video Y or UV (of YUV format 2:1:1) input data, or digital G and B input data I UV7 46 digital video UV (of YUV format 4:1:1 and 4:2:2) input data, or digital G and R
input data UV6 47 digital video UV (of YUV format 4:1:1 and 4:2:2) input data, or digital G and R
input data UV5 48 digital video UV (of YUV format 4:1:1 and 4:2:2) input data, or digital G and R
input data
I
I
I
UV4 UV3 UV2 UV1 UV0
VCLK
V
DDD
V
SSD
HREF
PCLK
index corner
AP SP
UV7
UV6 47
14
P6
YUV0
YUV1
46
45
44
SAA7167
15
16
17
P5
P4
P3
UV5
48
1 2 3 4 5 6 7 8
9 10 11 12
13
P7
YUV2 43
18 P2
YUV3 42
19
P1
YUV4 41
20
P0
YUV5
YUV6
40
39
21
22
SDA
EXTKEY
YUV7 38
23
SCL
n.c.
24 37
RES
36 35 34 33 32 31 30 29 28 27 26 25
MGB744
C
ref(h)
V
DDA1
V
SSA1 Rin Rout Gin Gout Bin Bout V
DDA2 V
SSA2 n.c.
Fig.2 Pin configuration.
1995 Nov 03 5
Philips Semiconductors Preliminary specification
YUV-to-RGB Digital-to-Analog Converter (DAC)

FUNCTIONAL DESCRIPTION

The SAA7167 contains a video data path, 3 analog mixers and voltage output amplifiers for the RGB channels respectively, a keying control block as well as an I2C-bus control block.

Video data path

The video data path includes a video data re-formatter, a YUV-to-RGB colour space conversion matrix, and triple 8-bit DACs.
E-FORMATTER
R The re-formatter de-multiplexes the different video formats
YUV 4 :1:1, 4:2:2 or 2:1:1 to internal YUV 4 : 4 : 4, which can then be processed by the RGB matrix. The pixel byte sequences of those video input formats are shown in Tables 1 to 4.
Table 1 Pixel byte sequence of 4:2:2
INPUT
YUV0 (LSB) YUV1 YUV2 YUV3 YUV4 YUV5 YUV6 YUV7 (MSB) UV0 (LSB) UV1 UV2 UV3 UV4 UV5 UV6 UV7 (MSB) Y data UV data
PIXEL BYTE SEQUENCE OF
4:2:2
Y0 Y0 Y0 Y0 Y0 Y0 Y1 Y1 Y1 Y1 Y1 Y1 Y2 Y2 Y2 Y2 Y2 Y2 Y3 Y3 Y3 Y3 Y3 Y3 Y4 Y4 Y4 Y4 Y4 Y4 Y5 Y5 Y5 Y5 Y5 Y5 Y6 Y6 Y6 Y6 Y6 Y6 Y7 Y7 Y7 Y7 Y7 Y7 U0 V0 U0 V0 U0 V0 U1 V1 U1 V1 U1 V1 U2 V2 U2 V2 U2 V2 U3 V3 U3 V3 U3 V3 U4 V4 U4 V4 U4 V4 U5 V5 U5 V5 U5 V5 U6 V6 U6 V6 U6 V6 U7 V7 U7 V7 U7 V7
012345
024
SAA7167
Table 2 Pixel byte sequence of 4:1:1
INPUT PIXEL BYTE SEQUENCE OF 4:1:1
YUV0 YUV1 YUV2 YUV3 YUV4 YUV5 YUV6 YUV7 UV0 UV1 UV2 UV3 UV4 UV5 UV6 UV7 Y data UV data
Table 3 Pixel byte sequence of 2:1:1
INPUT PIXEL BYTE SEQUENCE OF 2:1:1
YUV0 YUV1 YUV2 YUV3 YUV4 YUV5 YUV6 YUV7 Y data UV data
Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7
XXXXXXXX XXXXXXXX XXXXXXXX
XXXXXXXX V6 V4 V2 V0 V6 V4 V2 V0 V7 V5 V3 V1 V7 V5 V3 V1 U6 U4 U2 U0 U6 U4 U2 U0 U7 U5 U3 U1 U7 U5 U3 U1
01234567
04
U0 Y0 V0 Y0 U0 Y0 V0 Y0 U1 Y1 V1 Y1 U1 Y1 V1 Y1 U2 Y2 V2 Y2 U2 Y2 V2 Y2 U3 Y3 V3 Y3 U3 Y3 V3 Y3 U4 Y4 V4 Y4 U4 Y4 V4 Y4 U5 Y5 V5 Y5 U5 Y5 V5 Y5 U6 Y6 V6 Y6 U6 Y6 V6 Y6 U7 Y7 V7 Y7 U7 Y7 V7 Y7
X0X2X4X6
0X0X4X4X
1995 Nov 03 6
Philips Semiconductors Preliminary specification
YUV-to-RGB Digital-to-Analog Converter (DAC)
Table 4 Pixel byte sequence of 5:6:5
INPUT
UV7 UV6 UV5 UV4 UV3 UV2 UV1 UV0 YUV7 YUV6 YUV5 YUV4 YUV3 YUV2 YUV1 YUV0 RGB data
For RGB 5 :6:5 video inputs, the video data are just directly bypassed to triple DACs.
The input video data can be selected to either two’s complement (I (DRP-bit = 1). The video input format is selected by I2C-bus bits FMTC1 and FMTC0.
The rising edge of HREF input defines the start of active video data. When HREF is inactive, the video output will be blanked.
YUV-
TO-RGB MATRIX
The matrix converts YUV data, in accordance with CCIR-601, to RGB data with approximately 1.5 LSB deviation to the theoretical values for 8-bit resolution.
T
RIPLE 8-BIT DACS
Three identical DACs for R, G and B video outputs are designed with voltage-drive architecture to provide high-speed operation of up to 50 MHz conversion data rate. A C
ref(h)
de-coupling capacitor to be connected between the internal reference voltage source and ground.
PIXEL BYTE SEQUENCE OF RGB
5:6:5
G0 G0 G0 G0 R4 R4 R4 R4 R3 R3 R3 R3 R2 R2 R2 R2 R1 R1 R1 R1 R0 R0 R0 R0 G5 G5 G5 G5 G4 G4 G4 G4 G3 G3 G3 G3 G2 G2 G2 G2 G1 G1 G1 G1 B4 B4 B4 B4 B3 B3 B3 B3 B2 B2 B2 B2 B1 B1 B1 B1 B0 B0 B0 B0
0123
2
C-bus DRP-bit = 0) or binary offset
pin is provided to allow for one external
SAA7167

Analog mixers and keying control

The analog mixers are controlled to switch between the outputs from the video DACs and analog RGB inputs by a keying signal. The analog RGB inputs need to interface with analog mixers in the way of DC-coupling, also these RGB inputs are limited to RGB signals without a sync level pedestal. The keying control can be enabled by setting I2C bit KEN = 1. Two kinds of keying are possible to generate: one is external key (from EXTKEY pin when KMOD2 to KMOD0 are logic 0), and the other is the internal pixel colour key (when KMOD2 to KMOD0 are not logic 0) generated by comparing the input pixel data with the internal I by KMOD2 to KMOD0 bits, there are 4 ways to compare the pixel data (see Table 5).
Table 5 KMOD2toKMOD0
KMOD2
to
KMOD0
100 8-bit pixel pseudo colour mode 101 2 × 8-bit pixel high colour mode 1 with
110 2 × 8-bit pixel high colour mode 2 with
111 3 × 8-bit pixel true colour mode
Since only one control register KD7 to KD0 provides the data value for pixel data comparison, when at 2 × 8-bit or 3 × 8-bit pixel input modes, it is presumed that all input bytes (lower, middle, or higher) of each pixel must be same as KD7 to KD0 in order to make graphics colour key active.
The polarity of EXTKEY can be selected with KINV. With KINV = 0, EXTKEY = HIGH switches analog mixers to select DAC outputs. Before the internal keying signal switches the analog multiplexers, it can be further delayed up to 7 PCLK cycles with the control bits KDLY2 to KDLY0.
2
C-bus register value KD7 to KD0. Controlled
PIXEL TYPE REMARK
pixels given at both rising and falling edges of PCLK
pixels given only at rising edges of PCLK
1995 Nov 03 7
Philips Semiconductors Preliminary specification
YUV-to-RGB Digital-to-Analog
SAA7167
Converter (DAC)
Voltage output amplifiers
Before the analog input enters the analog mixers, it passes through voltage output amplifiers. Level shifters are used internally to provide an offset of 0.2 V and an amplifier gain of 2 for analog inputs to match with the output levels from DACs. After buffering with voltage output amplifiers, the final RGB outputs can drive a 150 load directly (25 internal resistor, 50 external serial resistor, and 75 load resistor at monitor side (see Fig.9).
The output voltage level of DAC ranges from the lowest level 0.2 V (zero code) to the highest level 1.82 V (all one code).
Table 6 I2C-bus format
S slave address A subaddress A data A P
Notes
1. S = START condition.
2. Slave address = 1011 111X; this slave address is identical to the one for the SAA9065; X = R/ a) X = 0; order to write. b) X = 1; order to read (not used for SAA7167).
3. A = acknowledge; generated by the slave.
4. Subaddress = subaddress byte.
5. Data = data byte.
6. P = STOP condition.
With the digital input YUV video data in accordance with CCIR-601, the RGB output of 8-bit DAC actually ranges from the 16th step (black) to the 235th step (white). Therefore, after the voltage divider with external serial resistor and monitor load resistor, the output voltage range to monitor is approximately 0.7 V (peak-to-peak).
2
C-bus control
I
Only one control byte is needed for the SAA7167. The I2C-bus format is shown in Table 6.
W control bit:
Table 7 Control data byte
SUBADDRESS D7 D6 D5 D4 D3 D2 D1 D0
00 KMOD2 KMOD1 KMOD0 DRP KEN KINV FMTC1 FMTC0 01 00000KDLY2KDLY1KDLY0 02 KD7 KD6 KD5 KD4 KD3 KD2 KD1 KD0
1995 Nov 03 8
Philips Semiconductors Preliminary specification
YUV-to-RGB Digital-to-Analog Converter (DAC)
Table 8 Bit functions in data byte; notes1and2
BIT DESCRIPTION
FMTC1 and FMTC0 video format control:
00; YUV 4 :2:2 01; YUV 4 :1:1 10; YUV 2:1:1/CCIR 656 11; RGB 5 :6:5
KINV key polarity:
KINV = 0: EXTKEY = HIGH for analog mixer to select DAC outputs KINV = 1: EXTKEY = HIGH for analog mixer to select analog RGB inputs
KEN key enable:
0 = disable
1 = enable DRP UV input data code: 0 = two’s complement; 1 = binary offset KMOD2 to KMOD0 keying mode:
000; external key
100; 8-bit pixel colour key
101; 2 × 8-bit pixel colour key (with two-edge clock latching for pixel input)
110; 2 × 8-bit pixel colour key (with one-edge clock latching for pixel input)
111; 3 × 8-bit pixel colour key (with one-edge clock latching for pixel input)
all other combinations are reserved KDLY2 to KDLY0 added keying delay cycles (from 0 to 7 PCLK) KD7 to KD0 the data value compared for 8, 16 or 24-bit pixel colour key
SAA7167
Notes
1. All I
2
C-bus control bits are initialized to logic 0 after RES is activated.
2. PCLK should be active in any event to allow for correct operation of I2C-bus programming.

DC CHARACTERISTICS

T
= 0 to 70 °C.
amb
SYMBOL PARAMETER MIN. TYP. MAX. UNIT
V
DDD
V
DDA
I
DDtot
V
IH
V
IL
V
IH
V
IL
V
in
V
out
digital supply voltage 4.75 5.0 5.25 V analog supply voltage 4.75 5.0 5.25 V total supply current (f HIGH level input voltage (pin SDA) 3 V
= 50 MHz) 100 mA
clk
+ 0.5 V
DDD
LOW level input voltage (pin SDA) 0.5 +1.5 V HIGH level digital input voltage 2 −− V LOW level digital input voltage −−0.8 V full-scale analog RGB inputs 0.7 V
full scale analog RGB outputs (for 150 load) 1.4 V DNL differential non-linearity error of video output −−1 LSB INL integral non-linearity error of video output −−1 LSB
1995 Nov 03 9
Philips Semiconductors Preliminary specification
YUV-to-RGB Digital-to-Analog
SAA7167
Converter (DAC)

AC CHARACTERISTICS

T
= 0 to 70 °C.
amb
SYMBOL PARAMETER MIN. TYP. MAX. UNIT
f
clk
δ duty factor of VCLK 50 % PCLK pixel clock rate (8-bit pixel colour key); see Fig.4 −− 50 MHz
t
su1
t
h1
t
su2
t
h2
t
su3
t
h3
t
sw
T
group
t
r
t
f
t
s
t
PD
video clock rate −− 50 MHz
pixel clock rate (2 × 8-bit pixel colour key; mode 1);
−− 40 MHz
see Fig.5 pixel clock rate (2 × 8-bit pixel colour key; mode 2);
−− 80 MHz
see Fig.6 pixel clock rate (3 × 8-bit pixel colour key); see Fig.7 −− 75 MHz duty factor of PCLK 40 50 60 % digital input set-up time to VCLK rising edge 3 −−ns digital input hold time to VCLK rising edge 3 −−ns digital input set-up time to PCLK rising edge 3 −−ns digital input hold time to PCLK rising edge 3 −−ns digital input set-up time to PCLK falling edge 3 −−ns digital input hold time to PCLK falling edge 3 −−ns switching time between video DAC/analog inputs;
−− 15 ns
note 1 overall group delay from digital video inputs to analog
outputs (see Fig.8):
YUV video input mode 20T RGB video input mode 12T
VCLK+tPD VCLK+tPD
ns
ns
DAC analog output rise time (see Fig.8); note 2 5 ns DAC analog output fall time (see Fig.8); note 2 5 ns DAC analog output settling time (see Fig.8); note 3 −− 15 ns DAC analog output propagation delay (see Fig.8);
15 ns
note 4
Analog outputs from analog inputs
G
v
voltage gain 2.0 B bandwidth (3 dB) 75 MHz SR slew rate 90 V/µs
Notes
1. Switching time measured from the 50% point of the EXTKEY transition edge to the 50% point of the selected analog output transition.
2. DAC output rise/fall time measured between the 10% and 90% points of full scale transition.
3. DAC settling time measured from the 50% point of full-scale transition to the output remaining within ±1 LSB.
4. DAC analog output propagation delay measured from the 50% point of the rising edge of VCLK to the 50% point of full-scale transition.
1995 Nov 03 10
Philips Semiconductors Preliminary specification
YUV-to-RGB Digital-to-Analog Converter (DAC)
handbook, full pagewidth
VCLK
t
su1
HREF
t
h1
YUV
t
su1
UV
SAA7167
MGB745
handbook, full pagewidth
PCLK
P7 to P0
Fig.3 Video data input timing.
t
su2
t
h2
pixel 1 pixel 2 pixel 3 pixel 4 pixel 5 pixel 6 pixel 7
MGB746
Fig.4 Pixel data timing; 8-bit pixel colour key.
1995 Nov 03 11
Philips Semiconductors Preliminary specification
YUV-to-RGB Digital-to-Analog Converter (DAC)
handbook, full pagewidth
PCLK
P7 to P0
t
su2
t
h2
pixel 1 pixel 2 pixel 3
t
su3
t
h3
SAA7167
MGB747
handbook, full pagewidth
PCLK
P7 to P0
Fig.5 Pixel data input timing; 2 × 8-bit pixel colour key; mode 1.
t
su2
t
h2
pixel 1
pixel 2 pixel 3
MGB748
Fig.6 Pixel data input timing; 2 × 8-bit pixel colour key; mode 2.
1995 Nov 03 12
Philips Semiconductors Preliminary specification
YUV-to-RGB Digital-to-Analog Converter (DAC)
handbook, full pagewidth
PCLK
P7 to P0
t
su2
t
h2
pixel 1
pixel 2
SAA7167
MGB749
handbook, full pagewidth
VCLK
YUV and UV
Rout, Bout and Gout
Fig.7 Pixel data input timing; 3 × 8-bit pixel colour key.
T
group
(full-scale transition)
t
s
t
PD
tr; t
f
MGB750
Fig.8 DAC output timing.
1995 Nov 03 13
Philips Semiconductors Preliminary specification
YUV-to-RGB Digital-to-Analog Converter (DAC)

APPLICATION INFORMATION

handbook, full pagewidth
digital YUV video data inputs
8
YUV7 to YUV0
8
UV7 to UV0
analog inputs from VGA
75 75
75
Rin
Gin
38 to 45
46 to 48, 1 to 5
33
31
SAA7167
36
32
30
C
ref(h)
0.1 µF
to PC monitor
47
Rout
47
Gout
SAA7167
75
47
28
Bout
MGB751
cable monitor side
75
Bin
29
Fig.9 Typical application diagram for analog circuits.
75
1995 Nov 03 14
Philips Semiconductors Preliminary specification
YUV-to-RGB Digital-to-Analog Converter (DAC)

PACKAGE OUTLINE

LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x 1.4 mm
c
y
X
36
37
25
Z
24
E
A
SAA7167

SOT313-2

e
w M
pin 1 index
48
1
e
DIMENSIONS (mm are the original dimensions)
mm
A
A1A2A3b
max.
0.20
1.60
0.05
1.45
1.35
UNIT
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
b
p
0.25
w M
D
H
D
p
0.27
0.17
12
Z
D
(1) (1)(1)
cE
D
0.18
7.1
0.12
6.9
b
p
13
v M
B
v M
0 2.5 5 mm
scale
(1)
eH
H
7.1
6.9
0.5
9.15
8.85
D
E
A
B
9.15
8.85
H
E
LLpQZywv θ
E
0.75
0.45
A
2
A
A
1
detail X
0.69
0.59
0.12 0.10.21.0
Q
(A )
3
θ
L
p
L
Z
E
D
0.95
0.55
0.95
0.55
o
7
o
0
OUTLINE VERSION
SOT313-2
IEC JEDEC EIAJ
REFERENCES
1995 Nov 03 15
EUROPEAN
PROJECTION
ISSUE DATE
93-06-15 94-12-19
Philips Semiconductors Preliminary specification
YUV-to-RGB Digital-to-Analog Converter (DAC)
SOLDERING Introduction
There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.
This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our
“IC Package Databook”
Reflow soldering
Reflow soldering techniques are suitable for all LQFP packages.
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.
Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.
Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.
Wave soldering
Wave soldering is not recommended for LQFP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices.
(order code 9398 652 90011).
SAA7167
If wave soldering cannot be avoided, the following conditions must be observed:
A double-wave (a turbulent wave with high upward
pressure followed by a smooth laminar wave) soldering technique should be used.
The footprint must be at an angle of 45° to the board
direction and must incorporate solder thieves downstream and at the side corners.
Even with these conditions, do not consider wave soldering LQFP packages LQFP48 (SOT313-2), LQFP64 (SOT314-2) or LQFP80 (SOT315-1).
During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.
Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.
A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.
Repairing soldered joints
Fix the component by first soldering two diagonally­opposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.
1995 Nov 03 16
Philips Semiconductors Preliminary specification
YUV-to-RGB Digital-to-Analog
SAA7167
Converter (DAC)

DEFINITIONS

Data sheet status
Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.
PURCHASE OF PHILIPS I
Purchase of Philips I components in the I2C system provided the system conforms to the I2C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.
2
C COMPONENTS
2
C components conveys a license under the Philips’ I2C patent to use the
1995 Nov 03 17
Philips Semiconductors Preliminary specification
YUV-to-RGB Digital-to-Analog Converter (DAC)
SAA7167
NOTES
1995 Nov 03 18
Philips Semiconductors Preliminary specification
YUV-to-RGB Digital-to-Analog Converter (DAC)
SAA7167
NOTES
1995 Nov 03 19
Philips Semiconductors – a worldwide company
Argentina: IEROD, Av. Juramento 1992 - 14.b, (1428)
BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. (02)805 4455, Fax. (02)805 4466
Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213,
Tel. (01)60 101-1236, Fax. (01)60 101-1211
Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands,
Tel. (31)40-2783749, Fax. (31)40-2788399
Brazil: Rua do Rocio 220 - 5
CEP: 04552-903-SÃO PAULO-SP, Brazil. P.O. Box 7383 (01064-970), Tel. (011)821-2333, Fax. (011)829-1849
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS:
Tel. (800) 234-7381, Fax. (708) 296-8556
Chile: Av. Santa Maria 0760, SANTIAGO,
Tel. (02)773 816, Fax. (02)777 6730
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. (852)2319 7888, Fax. (852)2319 7700
Colombia: IPRELENSO LTDA, Carrera 21 No. 56-17,
77621 BOGOTA, Tel. (571)249 7624/(571)217 4609, Fax. (571)217 4549
Denmark: Prags Boulevard 80, PB 1919, DK-2300
COPENHAGEN S, Tel. (032)88 2636, Fax. (031)57 1949
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. (358)0-615 800, Fax. (358)0-61580 920
France: 4 Rue du Port-aux-Vins, BP317,
92156 SURESNES Cedex, Tel. (01)4099 6161, Fax. (01)4099 6427
Germany: P.O. Box 10 63 23, 20043 HAMBURG,
Tel. (040)3296-0, Fax. (040)3296 213.
Greece: No. 15, 25th March Street, GR 17778 TAVROS,
Tel. (01)4894 339/4894 911, Fax. (01)4814 240
India: Philips INDIA Ltd, Shivsagar Estate, A Block,
Dr. Annie Besant Rd. Worli, Bombay 400 018 Tel. (022)4938 541, Fax. (022)4938 722
Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4,
P.O. Box 4252, JAKARTA 12950, Tel. (021)5201 122, Fax. (021)5205 189
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. (01)7640 000, Fax. (01)7640 200
Italy: PHILIPS SEMICONDUCTORS S.r.l.,
Piazza IV Novembre 3, 20124 MILANO, Tel. (0039)2 6752 2531, Fax. (0039)2 6752 2557
Japan: Philips Bldg13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. (03)3740 5130, Fax. (03)3740 5077
Korea: Philips House, 260-199 Itaewon-dong,
Yongsan-ku, SEOUL, Tel. (02)709-1412, Fax. (02)709-1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA,
SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TX 79905,
Tel. 9-5(800)234-7381, Fax. (708)296-8556
th
floor, Suite 51,
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. (040)2783749, Fax. (040)2788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. (09)849-4160, Fax. (09)849-7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. (022)74 8000, Fax. (022)74 8341
Pakistan: Philips Electrical Industries of Pakistan Ltd.,
Exchange Bldg. ST-2/A, Block 9, KDA Scheme 5, Clifton, KARACHI 75600, Tel. (021)587 4641-49, Fax. (021)577035/5874546
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. (63) 2 816 6380, Fax. (63) 2 817 3474
Portugal: PHILIPS PORTUGUESA, S.A.,
Rua dr. António Loureiro Borges 5, Arquiparque - Miraflores, Apartado 300, 2795 LINDA-A-VELHA, Tel. (01)4163160/4163333, Fax. (01)4163174/4163366
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. (65)350 2000, Fax. (65)251 6500
South Africa: S.A. PHILIPS Pty Ltd.,
195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430, Johannesburg 2000, Tel. (011)470-5911, Fax. (011)470-5494
Spain: Balmes 22, 08007 BARCELONA,
Tel. (03)301 6312, Fax. (03)301 42 43
Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM,
Tel. (0)8-632 2000, Fax. (0)8-632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. (01)488 2211, Fax. (01)481 77 30
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West
Road, Sec. 1. Taipeh, Taiwan ROC, P.O. Box 22978, TAIPEI 100, Tel. (886) 2 382 4443, Fax. (886) 2 382 4444
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, Bangkok 10260, THAILAND, Tel. (66) 2 745-4090, Fax. (66) 2 398-0793
Turkey:Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. (0212)279 27 70, Fax. (0212)282 67 07
Ukraine: Philips UKRAINE, 2A Akademika Koroleva str., Office 165,
252148 KIEV, Tel.380-44-4760297, Fax. 380-44-4766991
United Kingdom: Philips Semiconductors LTD.,
276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. (0181)730-5000, Fax. (0181)754-8421
United States:811 East Arques Avenue, SUNNYVALE,
CA 94088-3409, Tel. (800)234-7381, Fax. (708)296-8556
Uruguay: Coronel Mora 433, MONTEVIDEO,
Tel. (02)70-4044, Fax. (02)92 0601
Internet: http://www.semiconductors.philips.com/ps/ For all other countries apply to: Philips Semiconductors,
International Marketing and Sales, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Telex 35000 phtcnl, Fax. +31-40-2724825
SCD45 © Philips Electronics N.V. 1995
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
483061/1100/01/pp20 Date of release: 1995 Nov 03 Document order number: 9397 750 00416
Loading...