19.1Coring function adjustment by subaddress 06H
to affect band filter output adjustment
20LUMINANCE FILTER GRAPHS
21I2C-BUS START SET-UP
21.1Remarks to Table 66
22APPLICATION INFORMATION
23START-UP, SOURCE SELECT AND
STANDARD DETECTION FLOW EXAMPLE
23.1CODE 0 STARTUP and STANDARD
Procedure
23.2MODE 0 Source Select Procedure
23.3MODE 1 Source Select Procedure
23.4MODE 2 Source Select Procedure
23.5MODE 3 Source Select Procedure
23.6MODE 4 Source Select Procedure
23.7MODE 5 Source Select Procedure
23.8MODE 6 Source Select Procedure
23.9MODE 7 Source Select Procedure
23.10MODE 8 Source Select Procedure
24PACKAGE OUTLINE
25SOLDERING
25.1Introduction
25.2Reflow soldering
25.3Wave soldering
25.4Repairing soldered joints
26DEFINITIONS
27LIFE SUPPORT APPLICATIONS
28PURCHASE OF PHILIPS I2C COMPONENTS
1995 Oct 182
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
1FEATURES
• Six analog inputs (6 × CVBS or 3 × Y/C or
combinations)
• Three analog processing channels
• Three built-in analog anti-aliasing filters
• Analog signal adding of two channels
• Two 8-bit video CMOS analog-to-digital converters
• Fully programmable static gain for the main channels or
automatic gain control for the selected CVBS/Y channel
• Selectable white peak control signal
• Luminance and chrominance signal processing for
PAL B/G, NTSC M and SECAM
• Full range HUE control
• Automatic detection of 50/60 Hz field frequency, and
automatic switching between standards PAL and NTSC,
SECAM forceable
• Horizontal and vertical sync detection for all standards
• Cross-colour reduction by chrominance comb filtering
for NTSC or special cross-colour cancellation for
SECAM
• UV signal delay lines for PAL to correct chrominance
phase errors
• The YUV-bus supports a data rate of:
– 780 × fh= 12.2727 MHz for 60 Hz (NTSC)
– 944 × fh= 14.75 MHz for 50 Hz (PAL/SECAM)
• Square pixel format with 768/640 active samples per
line on the YUV-bus
• CCIR 601 level compatible
• 4:2:2 and 4:1:1 YUV output formats in 8-bit
resolution
• User programmable luminance peaking for aperture
correction
• Compatible with memory-based features
(line-locked clock, square pixel)
• Requires only one crystal (26.8 MHz) for all standards
• Real time status information output (RTCO)
• Brightness Contrast Saturation (BCS) control for the
YUV-bus
• Negation of picture possible
• One user programmable general purpose switch on an
output pin
• Switchable between on-chip Clock Generation Circuit
(CGC) and external CGC (SAA7197)
• Power-on control
2
• I
C-bus controlled.
2APPLICATIONS
• Desktop video
• Multimedia
• Digital television
• Image processing
• Video phone
• Video picture grabbing.
3GENERAL DESCRIPTION
The one chip front-end SAA7110; SAA7110A is a digital
multistandard colour decoder (OCF1) on the basis of the
DIG-TV2 system with two integrated Analog-to-Digital
Converters (ADCs), a Clock Generation Circuit (CGC) and
Brightness Contrast Saturation (BCS) control.
The CMOS circuit SAA7110; SAA7110A, analog front-end
and digital video decoder, is a highly integrated circuit for
desktop video applications. The decoder is based on the
principle of line-locked clock decoding. It operates
square-pixel frequencies to achieve correct aspect ratio.
Monitor controls are provided to ensure best display. The
circuit is I2C-bus controlled.
4QUICK REFERENCE DATA
SYMBOLPARAMETERMIN.MAX.UNIT
V
DDA
V
DDD
T
amb
1995 Oct 183
analog supply voltage4.755.25V
digital supply voltage4.55.5V
operating ambient temperature070°C
SP1test pin input; (shift pin) connect to ground for normal operation
AP2test pin input; (action pin) connect to ground for normal operation
RTCO3Real Time Control Output. This pin is used to fit serially the increments of the HPLL and
FSC-PLL and information of the PAL or SECAM sequence.
2
SA4I
SDA5I
SCL6I
i.c.7reserved pin; do not connect
i.c.8reserved pin; do not connect
i.c.9reserved pin; do not connect
V
SSA4
10ground for analog input 4
AI4211analog input 42
V
DDA4
12supply voltage (+5 V) for analog input 4
AI4113analog input 41
V
SSA3
14ground for analog input 3
AI3215analog input 32
V
DDA3
16supply voltage (+5 V) for analog input 3
AI3117analog input 31
V
SSA2
18ground for analog input 2
AI2219analog input 22
V
DDA2
20supply voltage (+5 V) for analog input 2
AI2121analog input 21
V
SS(S)
22substrate ground
AOUT23analog test output; do not connect
V
V
DDA0
SSA0
24supply voltage (+5 V) for internal CGC (Clock Generation Circuit)
25ground for internal CGC
LFCO26Line Frequency Control output; this is the analog clock control signal driving the external
V
DD
V
SS
27supply voltage (+5 V)
28ground
LLC29Line-Locked Clock input/output (CGCE = 1, output; CGCE = 0, input). This is the system
LLC230Line-Locked Clock
CREF31Clock reference input/output (CGCE = 1, output; CGCE = 0, input). This is a clock qualifier
C-bus slave address select input. LOW: slave address = 9CH for write, 9DH for read;
HIGH = 9DH for write, 9FH for read.
2
C-bus serial data input/output
2
C-bus serial clock input
CGC. The frequency is a multiple of the actual line frequency (nominally 7.375/6.13636 MHz).
The signal has a triangular form with 4-bit accuracy.
clock, its frequency is 1888 × f
for 50 Hz/625 lines per field systems and 1560 × fh for
h
60 Hz/525 lines per field systems; or variable input clock up to 32 MHz in input mode.
1
⁄2output; f
LLC2
= 0.5 × f
(CGCE = 1, output; CGCE = 0, high
LLC
impedance).
signal distributed by the internal or an external clock generator circuit (CGC). Using CREF all
interfaces on the YUV-bus are able to generate a bus timing with identical phase.
1995 Oct 186
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
SYMBOLPINDESCRIPTION
RESET32Reset active LOW input/output (CGCE = 1, output; CGCE = 0, input); sets the device into a
defined state. All data outputs are in high impedance state. The I2C-bus is reset (waiting for
START condition). Using the external CGC, the LOW period must be maintained for at least
30 LLC clock cycles.
CGCE33CGC Enable active HIGH input (CGCE = 1, on-chip CGC active; CGCE = 0, external CGC
mode, use SAA7197).
V
DD
V
SS
HCL36Horizontal Clamping input/output pulse (programmable via I
HSY37Horizontal Synchronization input/output indicator (programmable via I
HS38Horizontal Synchronization output (programmable; the HIGH period is 128 LLC clock cycles).
PLIN (HL)39PAL Identifier Not output; marks for demodulated PAL signals the inverted line (PLIN = LOW)
ODD (VL)40ODD/EVEN field identification output; a HIGH state indicates the odd field. Select ODD
VS41Vertical Synchronization input/output (programmable via I
HREF42Horizontal Reference output; this signal is used to indicate data on the digital YUV-bus. The
V
SS
V
DD
34supply voltage (+5 V)
35ground
output; PULIO = 0, input). This signal is used to indicate the black level clamping period for
the analog input interface. The beginning and end of its HIGH period (only in the output mode)
can be programmed via the I2C-bus registers 03H, 04H in 50 Hz mode and registers 16H,
17H in 60 Hz mode, active HIGH.
PULIO = 1, output; PULIO = 0, input). This signal is fed to the analog interface. The beginning
and end of its HIGH period (only in the output mode) can be programmed via the I2C-bus
registers 01H, 02H in 50 Hz mode and registers 14H, 15H in 60 Hz mode, active HIGH.
The position of the positive slope is programmable in 8 LLC increments over a complete line
2
(64 µs) via the I
C-bus register 05H in 50 Hz mode or register 18H in 60 Hz mode.
and a non-inverted line (PLIN = HIGH) and for demodulated SECAM the DR line
(PLIN = LOW) and the DB line (PLIN = HIGH). Select PLIN function via I
(H-PLL locked output; a HIGH state indicates that the internal PLL has locked. Select HL
function via I2C-bus bit RTSE = 1).
2
function via I
C-bus bit RTSE = 0.
(Vertical Locked output; a HIGH state indicates that the internal Vertical Noise Limiter (VNL)
is in a locked state. Select VL function via I2C-bus bit RTSE = 1).
output; OEHV = 0, input). This signal indicates the vertical synchronization with respect to the
YUV output. The high period of this signal is approximately six lines if the VNL function is
active. The positive slope contains the phase information for a deflection controller, for
example the TDA9150. In input mode this signal is used to synchronize the vertical gain and
clamp blanking stage, active HIGH.
positive slope marks the beginning of a new active line. The HIGH period of HREF is either
768 Y samples or 640 Y samples long depending on the detected field frequency
(50/60 Hz mode). HREF is used to synchronize data multiplexer/demultiplexers. HREF is also
present during the vertical blanking interval.
63Fast Enable input (active LOW); this signal is used to control fast switching on the digital
(MUXC)
GPSW
64General Purpose Switch output; the state of this signal is programmable via I
(VBLK)
XTALO65Crystal oscillator output (to 26.8 MHz crystal); not used if TTL clock is used.
XTALI66Crystal oscillator input (from 26.8 MHz crystal) or connection of external oscillator with TTL
V
SS
V
DD
67ground
68supply voltage (+5 V)
Upper 6 bits of the 8-bit luminance (Y) digital output. As part of the digital YUV-bus
(data rate LLC/2), or A/D2(3) output (data rate LLC/2) selectable via I
2
C-bus bit SQPB = 1.
Lower 2 bits of the 8-bit luminance (Y) digital output. As part of the digital YUV-bus
2
(data rate LLC/2), or A/D2(3) output (data rate LLC/2) selectable via I
C-bus bit SQPB = 1.
8-bit digital UV (colour difference) output; multiplexed colour difference signal for U and V
component of demodulated CVBS or chrominance signal. The format and multiplexing
2
scheme can be selected via I
C-bus control. These signals are part of the digital YUV-bus
(data rate LLC/2), or A/D3(2) output (data rate LLC/2) selectable via I2C-bus bit SQPB = 1.
YUV-bus. A high at this input forces the IC to set its Y and UV outputs to the high impedance
state. To use this function set I2C-bus bits MS24 and MS34 and MUYC to LOW.
(Multiplex Components input; control signal for the analog multiplexers for fast switching
between locked Y/C signals or locked CVBS signals. FEIN automatically fixed to LOW (digital
YUV-bus enabled), if one of the three MUXC functions are selected (MS24 or MS34 or
MUYC = HIGH).
2
C-bus register
0Dh, bit 1. Select GPSW function via I2C-bus bit VBLKA = 0. (Vertical Blank test output; select
VBLK via I2C-bus bit VBLKA = 1).
The SAA7110; SAA7110A offers six analog signal inputs,
two analog main channels with clamping circuit, analog
amplifier, anti-alias filter and video CMOS ADC. A third
analog channel also with clamping circuit, analog amplifier
and anti-alias filter can be added or switched to both main
channels directly before the ADCs.
9.2Analog control circuits
The clamping control circuit controls the correct clamping
of the analog input signals. The coupling capacitor is also
used to store and filter the clamping voltage. The normal
digital clamping level for luminance or CVBS signals is 64
and for chrominance signals is128.
2
The gain control circuits generate via I
C-bus the static
gain levels for the three analog amplifiers or controls one
of these amplifiers automatically via a built-in Automatic
Gain Control (AGC). The AGC is used to amplify a
CVBS or Y signal to the required signal amplitude,
matched to the ADCs input voltage range.
The anti-alias filters are adapted to the clock frequency.
The vertical blanking control circuit generates an I2C-bus
programmable vertical blanking pulse. During the vertical
blanking time gain and clamping control are frozen.
The fast switch control circuit is used for special
applications.
9.2.1C
LAMPING
The coupling capacitor is used as clamp capacitance for
each input. An internal digital clamp comparator generates
the information concerning clamp-up or clamp-down. The
clamping levels for the two ADC channels are adjustable
over the 8-bit range (1 to 254). Clamping time in normal
use is set with the HCL pulse at the back porch of the video
signal. The clamping pulse HCL is user adjustable.
9.2.2G
AIN CONTROL (see Fig.4)
The luminance AGC can be used for every channel were
luminance or CVBS is being received. AGC active time is
the sync tip of the video signal. The sync tip pulse HSY is
user adjustable. The AGC can be switched off and the gain
for the three main input channels can be adjusted
independently. Signal (white) peak control limits the gain
at signal overshoots. The flow charts (see Figs 8 and 9)
show more details of the AGC. The influence of supply
voltage variation within the specified range is automatically
eliminated by clamp and automatic gain control.
handbook, halfpage
analog input level
+2.8 dB
−6 dB
maximum
0 dB
minimum
range 8.8 dB
Fig.4 Automatic gain control range.
9.3Chrominance processing (see Fig.6)
The 8-bit chrominance signal passes the input interface,
the chrominance bandpass filter to eliminate DC
components, and is finally fed to the multiplication inputs
of a quadrature demodulator, where two subcarrier signals
from the local oscillator DTO1 with 90 degrees phase shift
are applied. The frequency is dependent on the present
colour standard.
The multiplier operates as a quadrature demodulator for all
PAL and NTSC signals; it operates as a frequency down
mixer for SECAM signals.
The two multiplier output signals are converted to a serial
UV data stream and applied to two low-pass filter stages,
then to a gain controlled amplifier. A final multiplexed
low-pass filter achieves, together with the preceding
stages, the required bandwidth performance.
The PAL and NTSC originated signals are applied to a
comb filter.
The signal originated from SECAM is fed through a Cloche
filter (0 Hz centre frequency), a phase demodulator and a
differentiator to obtain frequency demodulated colour
difference signals. The SECAM signal is fed after
de-emphasis to a cross-over switch, to provide both the
serial transmitted colour difference signals. These signals
are fed to the BCS control and finally to the output fomatter
stage and to the output interface.
controlled
ADC input level
0 dB
MGC823
1995 Oct 1810
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
9.4Luminance processing (see Fig.7)
The 8-bit luminance signal, a digital CVBS format or a
luminance format (S-VHS, HI8), is fed through a
switchable prefilter. High frequency components are
emphasized to compensate for loss. The following
chrominance trap filter (fc= 4.43 or 3.58 MHz centre
frequency selectable) eliminates most of the colour carrier
signal, therefore, it must be bypassed for S-Video (S-VHS,
HI8) signals.
The high frequency components of the luminance signal
can be peaked (control for sharpness improvement via
I2C-bus) in two bandpass filters with selectable transfer
characteristics.
A coring circuit with selectable characteristics improves
the signal once more. This signal is then added to the
original (unpeaked) signal. A switchable amplifier achieves
common DC amplification, because the DC gains are
different in both chrominance trap modes.
The improved luminance signal is fed via the variable
delay to the BCS control and the output interface.
9.5YUV-bus (digital outputs)
The 16-bit YUV-bus transfers digital data from the output
interfaces to a feature box, or a field memory, a digital
colour space converter (SAA 7192 DCSC) or a video
enhancement and digital-to-analog processor (SAA7165
VEDA2). The outputs are controlled by an output enable
FEIN on pin 63).
chain (
The YUV data rate equals LLC2. Timing is achieved by
marking each second positive rising edge of the clock LLC
in conjunction with CREF (clock reference).
The synchronization pulses are sliced and fed to the phase
detectors where they are compared with the sub-divided
clock frequency. The resulting output signal is applied to
the loop filter to accumulate all phase deviations.
Adjustable output signals HCL and HSY are generated in
accordance with analog front end requirements. The
output signals HS, VS, and PLIN are locked to the timing
reference, guaranteed between the input signal and the
HREF signal, as further improvements to the circuit may
change the total processing delay. It is therefore not
recommended to use them for applications which require
absolute timing accuracy to the input signals. The loop
filter signal drives an oscillator to generate the line
frequency control signal LFCO.
9.7Clock generation circuit
The internal CGC generates all clock signals required for
the one chip front-end. The output signal LFCO is a
digital-to-analog converted signal provided by the
horizontal PLL. It is the multiple of the line frequency
(7.38 MHz = 472 × f
6.14 MHz = 360 × fh in 60 Hz systems). Internally the
LFCO signal is multiplied by a factor of 2 or 4 in the PLL
circuit (including phase detector, loop filtering, VCO and
frequency divider) to obtain the LLC and LLC2 output clock
signals. The rectangular output clocks have a 50% duty
factor.
It is also possible to operate the OCF1 with an external
CGC (SAA7197) providing the signals LLC and CREF.
The selection of the internal/external CGC will be
controlled by the CGCE input signal.
9.8Power-on reset
in 50 Hz systems and
h
The output signals Y7 to Y0 are the bits of the digital
luminance signal. The output signals UV7 to UV0 are the
bits of multiplexed colour difference signals (B−Y) and
(R−Y). The frame in the format tables is the time, required
to transfer a full set of samples. In the event of 4 :2:2
format two luminance samples are transmitted in
comparison to one U and one V sample within the frame.
The time frames are controlled by the HREF signal.
Fast enable is achieved by setting inputFEIN to LOW. The
signal is used to control fast switching on the digital
YUV-bus. HIGH on this pin forces the Y and UV outputs to
a high-impedance state.
9.6Synchronization (see Fig.7)
The pre-filtered luminance signal is fed to the
synchronization stage. It's bandwidth is reduced to 1 MHz
in a low-pass filter.
1995 Oct 1811
Power-on reset is activated at power-on (using only
internal CGC), when the supply voltage decreases below
3.5 V. The indicator output
RESET signal can be applied to reset other circuits of the
digital TV system.
9.9RTCO output
The real time control and status output signal contains
serial information about actual system clock, subcarrier
frequency and PAL/SECAM sequence. The signal can be
used for various applications in external circuits, for
example, in a digital encoder to achieve clean encoding.
RESET is LOW for a time. The
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
AOUT
23
MGC824
TEST
SELECTOR
SWITCH
BYPASS
FILTER
ANTI-ALIAS
ANALOG
AMPLIFIER
CLAMP
CIRCUIT
AOSL
FUSE
REFS4AINS4
ADC
FAST
ADDER
SWITCH
SWITCH
BYPASS
FILTER
ANTI-ALIAS
ANALOG
AMPLIFIER
CLAMP
CIRCUIT
FUSE
REFS3
ADC
FAST
ADDER
SWITCH
SWITCH
BYPASS
FILTER
ANTI-ALIAS
ANALOG
AMPLIFIER
CLAMP
CIRCUIT
FUSE
GAS2
GAS3
IVAL
WISL
GAD2
WVAL
REFS2
GAD3
WRSE
WIRS
GUDL
FAST
SWITCH
CONTROL
VERTICAL
CONTROL
BLANKING
CONTROL
ANTI-ALIAS
GAIN
CONTROL
CLAMP
CONTROL
GAI2
GACO
HOLD
GLIM
WIPA
CLL2n
MX24
MX34
MS24
MUYC
VBPS
VBPR
GAI3
WIPE
CLL3n
MUD1
MS34
VBCO
IWIP
GAI4
SBOT
MUD2
IGAI
GASL
CROSS
TWO2
TWO3
YSEL
CSEL
MULTIPLEXER
handbook, full pagewidth
Fig.5 Analog input processing and analog control part.
X = system variable (start with logic 0).
Y = IAGV-FGVI > GUDL.
VBLK = vertical blanking pulse.
HSY = horizontal sync pulse.
SBOT = sync bottom level (adjustable).
WIPE = white peak level (adjustable).
IVAL = integration value gain (adjustable).
WVAL = integration value WIPE (adjustable).
IGAI = integration factor gain (adjustable).
IWIP = integration factor WIPE (adjustable).
AGV = actual gain value.
FGV = frozen gain value.
GUDL = gain update level (adjustable).
WRSE = white peak reset enable.
WIRS = white peak reset select.
L = line.
F = field.
*IWIP*IGAI*IWIP
gain accumulator (20 bits)
actual gain value 8-bit (AGV) [−3/+6 dB]
1
AGV
0
X
1
gain value 8-bit
HSY
update
0
1
Fig.9 Luminance AGC flow chart.
+/− 0
0
Y
FGV
MGC828
1995 Oct 1816
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
11 LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134); all ground pins and all supply pins connected
together.
SYMBOLPARAMETERCONDITIONSMIN.MAX.UNIT
V
DDA
V
DDD
V
I(A)
V
I(D)
V
diff
T
stg
T
amb
T
amb(bias)
P
tot
V
esd
analog supply voltage−0.5+7.0V
digital supply voltage−0.5+7.0V
analog input voltage−0.5+7.0V
digital input voltage−0.5+7.0V
voltage difference between V
SSAall
and V
SSall
−100mV
storage temperature−65+150°C
operating ambient temperature070°C
operating ambient temperature under bias−10+80°C
total power dissipationV
DDA=VDDD
= 7 V; note 1 −2.5W
electrostatic discharge all pinsnote 2−2000+2000V
Note
1. Compare with typical total power consumption in Chapter “Characteristics”.
2. Equivalent to discharging a 100 pF capacitor through a 1.5 kΩ series resistor.
12 CHARACTERISTICS
V
DDD
=5V; V
DDA
=5V; T
=25°C; unless otherwise specified.
amb
SYMBOLPARAMETERCONDITIONSMIN.TYP.MAX.UNIT
Supplies
V
DDA
V
DDD
I
DDA(tot)
I
DDD(tot)
P
tot
analog supply voltage4.755.05.25V
digital supply voltage4.55.05.5V
total analog supply current−−150mA
total digital supply current−−250mA
total power dissipation−1.21.7W
Analog part
I
clamp
V
i(p-p)
clamping currentVI= 1.25 V DC−2−+2µA
input voltage (peak-to-peak
1. The LFCO output level must be measured with a load circuit of 10 kΩ in parallel with 15 pF.
2. The levels must be measured with load circuits, the loads depend on the type of output stage. Control outputs (except
HREF and VS); 1.2 kΩ at 3 V (TTL load); CL= 25 pF: data outputs (plus HREF and VS); 1.2 kΩ at 3 V (TTL load);
CL=50pF.
3. Other control input signals are CGCE, VS, SA, HCL and HSY.
4. Data output signals are YUV (15 to 0). Control output signals are HREF, VS, HS, HSY, HCL, RTCO, PLIN (HL),
ODD (VL) and GPSW0 (VBLK). The effects of rise and fall times are included in the calculation of t
t
PDZ
5. The minimum propagation delay from 3-state to data active related to falling edge of LLC is 0 ns.
6. LLC2 is not active while CGCE = 0.
7. Philips catalogue number 9922 520 30004.
nominal frequency3rd harmonic−26.8−MHz
permissible frequency deviation−50 × 10−6−+50 × 10
permissible frequency deviation
−20 × 10−6−+20 × 10
with temperature
operating ambient temperature0−70°C
load capacitance8−− pF
series resonance resistance−5080Ω
HD;DAT
. Timings and levels refer to drawings and conditions illustrated in Fig.10.
−6
−6
, tPD and
Table 1 Processing delay
FUNCTION
TYPICAL ANALOG DELAY
AI21 TO ADCIN (AOUT) (ns)
Without amplifier or anti-alias filter10
With amplifier, without anti-alias filter30
With amplifier plus anti-alias filter (50 Hz)30 + 40
With amplifier plus anti-alias filter (60 Hz)30 + 50
1995 Oct 1820
DIGITAL DELAY
ADCIN (AOUT) TO YUVOUT
(1/LLC)
(YDEL = 0; CAD2/3 = 1)
248
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
13 TIMING
T
handbook, full pagewidth
CLOCK INPUT LLC
t
SU;DAT
t
LLCH
t
HD;DAT
cy
2.4 V
1.5 V
0.6 V
t
f
t
r
INPUTS CONTROL
INPUT CREF
OUTPUTS YUV, HREF, VS AND HS
OUTPUTS YUV (to 3-state)
CLOCK OUTPUT LLC
t
OHD
t
OHD
t
OHD
t
LLCH
2.0 V
0.8 V
t
SU;DAT
t
PD
t
PDZ
T
cy
t
LLCL
t
f
t
PD
t
HD;DAT
t
r
t
OHD
t
HD;DAT
2.0 V
0.8 V
2.4 V
0.6 V
2.6 V
1.5 V
0.6 V
OUTPUT CREF
CLOCK OUTPUT LLC2
1995 Oct 1821
t
dLLC2
Fig.10 Clock/data timing.
MGC829
2.4 V
0.6 V
2.6 V
1.5 V
0.6 V
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
handbook, full pagewidth
CVBS
HSY
HSY
programming range
(step size: 2/LLC)
HCL
HCL
programming range
(step size: 2/LLC)
Y output
HREF (50 Hz)
PLIN (50 Hz)
HS (50 Hz)
+191
+127
62 × 2/LLC
768 × 2/LLC
30 × 2/LLC
0
burst
−64
processing delay CVBS−>YUV
18 × 2/LLC
176 × 2/LLC
94 × 2/LLC
4/LLC
−128
(1)
HS (50 Hz)
programming range
(step size: 8/LLC)
HREF (60 Hz)
HS (60 Hz)
HS (60 Hz)
programming range
(step size: 8/LLC)
(1) See Table 1.
HRMV = 1 and HRFS = 0.
+117
+97
0
640 × 2/LLC
0
Fig.11 Horizontal timing.
1995 Oct 1822
64 × 2/LLC
−118
18 × 2/LLC
140 × 2/LLC
64 × 2/LLC
−97
MGC830
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
handbook, full pagewidth
LL27
CREF
INTERNAL
BUS CLOCK
HREF
Yn
UVn
HREF
Yn
(50 Hz)
UVn
START OF ACTIVE LINE
01234
U0V0U1V1U2
ONE BUS CYCLE
END OF ACTIVE LINE
767766765764763
U766V766V764U764V762
Yn
(60 Hz)
UVn
1995 Oct 1823
V636U636V634
Fig.12 HREF timing.
639638637636635
U638V638
MGC831
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
handbook, full pagewidth
a: 1st field
input CVBS
HREF
ODD
b: 2nd field
input CVBS
HREF
ODD
a: 1st field
input CVBS
HREF
ODD
VS
VS
VS
(1)
(1)
(2)
123456789625
533 × 2/LLC
2 × 2/LLC
314315316317318319320321313
61 × 2/LLC
2 × 2/LLC
123456789525
441 × 2/LLC
2 × 2/LLC
(1) Nominal input signal 50 Hz.
(2) Nominal input signal 60 Hz.
HRMV = 1 and HRFS = 0.
1995 Oct 1824
b: 2nd field
input CVBS
HREF
ODD
VS
(2)
264265266267268269270271263
51 × 2/LLC
2 × 2/LLC
MGC832
Fig.13 Vertical timing.
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
handbook, full pagewidth
LLC
CREF
HREF
t
SU;DAT
FEIN
t
OHD
YUV
Fig.14 FEIN timing.
Table 2 Digital output control
OEYCFEINYUV (15 : 0)
00Z
10active
X1Z
t
HD;DAT
from 3-stateto 3-state
t
PD
MGC833
handbook, full pagewidth
BIT NO.:
TIME SLOT:
RTCO sequence is generated in LLC/4.
For transmission LLC/2 timing is required.
data ratesample frequencydata ratesample frequency
LLC2
LLC2
LLC2
LLC2
1995 Oct 1826
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
handbook, full pagewidth
CCIR 601 digital levels.
+255
+235
LUMINANCE 100%
+128
+16
0
+255
+240
+212+212
+128
U-COMPONENT
+44
+16
0
blue 100%
blue 75%
yellow 75%
yellow 100%
+255
+240
+128
+44
+16
V-COMPONENT
0
red 100%
red 75%
cyan 75%
cyan 100%
MGC835
a. Y output range.b. U output range (B−Y).c. Y output range (R−Y).
Fig.16 YUV output signal range.
handbook, full pagewidth
quartz (3rd harmonic)
26.8 MHz
C =
10 pF
C =
10 pF
XTALO
XTALI
L = 10 µH +/-20%
C =
1 nF
65
SAA7110
SAA7110A
66
a. with quartz crystal.b. with external clock.
Fig.17 Oscillator application.
1995 Oct 1827
XTALO
XTALI
65
SAA7110
SAA7110A
66
MGC836
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
15 CLOCK SYSTEM
15.1Clock generation circuit
The internal CGC generates the system clocks LLC, LLC2
and the clock reference signal CREF. The internally
generated LFCO (triangular waveform) is multiplied by
four via the analog PLL (including phase detector, loop
filter, VCO and frequency divider). The rectangular output
signals have a 50% duty factor.
Power-on reset is activated at power-on (using only internal CGC) and if the supply voltage falls below 3.5 V. TheRESET
signal can be applied to reset other circuits of the digital TV system.
handbook, full pagewidth
Table 5 Power-on control sequence
INTERNAL POWER-ON
CONTROL SEQUENCE
Directly after power-on
asynchronous reset
Y7 to Y0, UV7 to UV0, RTCO, PLIN, ODD,
GPSW, SDA, HREF, HS, VS, HCL and HSY
in high impedance state
CGCE
LLC
POC V
DD
ANALOG
POC
LOGIC
CLOCK I/O
CONTROL
POC V
DD
DIGITAL
DELAY
CONTROL
CLOCK
OUTPUT
ACTIVE
CONTROL
RESET
MGC838
Fig.19 Power-on control circuit.
PIN OUTPUT STATUSFUNCTION
direct switching to high impedance (outputs)
or input mode (I/Os) for 20 to 200 ms
Start synchronous
2
C-bus reset sequence
I
Status after I
2
C-bus reset Y7 to Y0, UV7 to UV0, HREF and HS held
Status after power-on
control sequence
1995 Oct 1829
LLC, LLC2 and CREF in HIGH state
LLC, LLC2 and CREF activestarting I2C-bus reset sequence
SA0DH = 7DH (VTRC = 0, RTSE = 1,
in high impedance state
VS, HCL and HSY held in input function
1. ID7 to ID0 indicates the version number of the IC, for example SAA7110A V1 = 01H.
Table 9 OCF1 TRANSMITTER: Byte number 1 (transmitted if SSTB = 1)
Slave address 10011101b, 9DH (SA = 0) and 10011111b, 9FH (SA = 1)
STATUS BYTE FUNCTIOND7D6D5D4D3D2D1D0
See Table 10 for explanation of bitsSTTCHLCKFIDTGLIMXXXWIPAALTDCODE
1995 Oct 1833
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
Table 10 Explanation of bits shown in Table 9
BITDESCRIPTION
STTCStatus bit for horizontal time constant: LOW = TV time constant; HIGH = VCR time constant.
HLCKStatus bit for locked horizontal frequency: LOW = locked; HIGH = unlocked.
FIDTIdentification bit for detected field frequency: LOW = 50 Hz; HIGH = 60 Hz.
GLIMGain value for active luminance is limited (maximum or minimum), active HIGH.
XXXreserved
WIPAWhite peak loop is activated, active HIGH.
ALTDStatus HIGH: line alternating colour burst has been detected (PAL or SECAM).
CODEStatus HIGH: any colour signal has been detected.
2
16.3I
The I2C-bus receiver slave address is 9CH/9EH.
DMSD-SQP slave receiver (SU 00H to 19H).
C-bus detail
16.3.1S
UBADDRESS 00 (DATA BYTE 007 to 000)
Table 11 Increment delay IDEL
DECIMAL
MULTIPLIER
DELAY TIME
(STEP SIZE = 4/LLC)
CONTROL BITS
IDEL7IDEL6IDEL5IDEL4IDEL3IDEL2IDEL1IDEL0
(1)
−1−411111111
↓↓↓↓↓↓↓↓↓↓
−195−780
00111101
max. value for 60 Hz
↓↓↓↓↓↓↓↓↓↓
−236−944
00010100
max. value for 50 Hz
↓↓↓↓↓↓↓↓↓↓
−256−1024
outside central counter
00000000
(2)
Notes
1. A sign bit, designated A08 and internally set to HIGH, indicates values are always negative.
2. The horizontal PLL does not operate in this condition. The system clock frequency is set to a value fixed by the last
update and is within ±7.1% of the nominal frequency.
1995 Oct 1834
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
16.3.2SUBADDRESS 01 (DATA BYTE 015 to 008)
Table 12 Horizontal synchronization begin 50 Hz (HSYB)
CLAAn and CLAUn adjusted via CLL32 value for testing
(do not use)
Fast digital multiplexing channel 2/3 active (MUYC); data bit D3
Normal mode on CHR channelMUYC = 0
Multiplex mode on CHR channel for test purposes only
(do not use)
CLTS = 1
MUYC = 1
Luminance select (YSEL); data bit D4
ADC 2 to CVBSYSEL = 0
ADC 3 to CVBSYSEL = 1
Chrominance select (CSEL); data bit D5
ADC 3 to CHR (MUXC not inverse; MUYC = 1)CSEL = 0
ADC 2 to CHR (MUXC inverse; MUYC = 1)CSEL = 1
Automatic gain control (GACO); data bits D7 and D6
Automatic gain control offGACO1 = 0; GACO0 = 0
Automatic gain control channel 2GACO1 = 0; GACO0 = 1
Automatic gain control channel 3GACO1 = 1; GACO0 = 0
Automatic gain control channel 4GACO1 = 1; GACO0 = 1
16.4.4S
Table 40 Clamping level control 21 CLL21
DECIMAL CLAMP LEVEL
UBADDRESS 23 (DATA BYTE 031 to 024)
CONTROL BITS
CLL217CLL216CLL215CLL214CLL213CLL212CLL211CLL210
100000001
↓↓↓↓↓↓↓↓↓
6401000000
↓↓↓↓↓↓↓↓↓
12810000000
↓↓↓↓↓↓↓↓↓
25411111110
1995 Oct 1846
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
16.4.5SUBADDRESS 24 (DATA BYTE 039 to 032)
Table 41 Clamping level control 22 CLL22
DECIMAL CLAMP LEVEL
100000001
↓↓↓↓↓↓↓↓↓
6401000000
↓↓↓↓↓↓↓↓↓
12810000000
↓↓↓↓↓↓↓↓↓
25411111110
16.4.6S
Table 42 Clamping level control 31 CLL31
DECIMAL CLAMP LEVEL
UBADDRESS 25 (DATA BYTE 047 to 040)
100000001
↓↓↓↓↓↓↓↓↓
6401000000
↓↓↓↓↓↓↓↓↓
12810000000
↓↓↓↓↓↓↓↓↓
25411111110
CLL227CLL226CLL225CLL224CLL223CLL222CLL221CLL220
CLL317CLL316CLL315CLL314CLL313CLL312CLL311CLL310
CONTROL BITS
CONTROL BITS
16.4.7S
Table 43 Clamping level control 32 CLL32
DECIMAL CLAMP LEVEL
1995 Oct 1847
UBADDRESS 26 (DATA BYTE 055 to 048)
CLL327CLL326CLL325CLL324CLL323CLL322CLL321CLL320
100000001
↓↓↓↓↓↓↓↓↓
6401000000
↓↓↓↓↓↓↓↓↓
12810000000
↓↓↓↓↓↓↓↓↓
25411111110
CONTROL BITS
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
16.4.8SUBADDRESS 27 (DATA BYTE 063 to 056); GAIN CONTROL ANALOG #1
Table 44 Static gain control channel 2 (GAI2); data bits D5 to D0
DECIMAL
MULTIPLIER
0−2.82 dB000000
↓↓↓↓↓↓↓↓
150dB001111
↓↓↓↓↓↓↓↓
313dB011111
↓↓↓↓↓↓↓↓
476dB101111
↓↓↓↓↓↓↓↓
639dB111111
Table 45 Gain mode select (GASL); data bit D6
Difference value integration0
Table 46 Automatic control integration (HOLD); data bit D7
AGC integration hold (freeze)1
(step size = 0.19 dB)
FUNCTIONCONTROL BIT GASL
Fix value integration1
FUNCTIONCONTROL BIT HOLD
AGC active0
GAIN
GAI25GAI24GAI23GAI22GAI21GAI20
CONTROL BITS
16.4.9S
Table 47 White peak control WIPE
DECIMAL WHITE PEAK LEVEL
16.4.10 SUBADDRESS 29 (DATA BYTE 079 to 072)
Table 48 Sync bottom control SBOT
DECIMAL SYNC BOTTOM LEVEL
1995 Oct 1848
UBADDRESS 28 (DATA BYTE 071 to 064)
CONTROL BITS
WIPE7WIPE6WIPE5WIPE4WIPE3WIPE2WIPE1WIPE0
12810000000
↓↓↓↓↓↓↓↓↓
25411111110
255 (white peak control off)11111111
CONTROL BITS
SBOT7 SBOT6SBOT5SBOT4SBOT3SBOT2SBOT1SBOT0
100000001
↓↓↓↓↓↓↓↓↓
25411111110
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
16.4.11 SUBADDRESS 2A (DATA BYTE 087 to 080); GAIN CONTROL ANALOG #2
Table 49 Static gain control channel 3 (GAI3); data bits D5 to D0
DECIMAL MUL TIPLIER
0−2.82 dB000000
↓↓↓↓↓↓↓↓
150dB001111
↓↓↓↓↓↓↓↓
313dB011111
↓↓↓↓↓↓↓↓
476dB101111
↓↓↓↓↓↓↓↓
639dB111111
Table 50 Integration factor white peak (IWIP); data bits D7 and D6
FUNCTIONCONTROL BITS
Fast selectionIWIP1 = 0; IWIP0 = 0
Slow selectionIWIP1 = 1; IWIP0 = 1
16.4.12 SUBADDRESS 2B (DATA BYTE 095 to 088); GAIN CONTROL ANALOG #3
(step size = 0.19 dB)
|IWIP1 = 0; IWIP0 = 1
|IWIP1 = 1; IWIP0 = 0
GAIN
GAI35GAI34GAI33GAI32GAI31GAI30
CONTROL BITS
Table 51 Static gain control channel 4 (GAI4); data bits D5 to D0
DECIMAL MUL TIPLIER
0−2.82 dB000000
↓↓↓↓↓↓↓↓
150dB001111
↓↓↓↓↓↓↓↓
313dB011111
↓↓↓↓↓↓↓↓
476dB101111
↓↓↓↓↓↓↓↓
639dB111111
Table 52 Integration factor normal gain (IGAI); data bits D7 and D6
FUNCTIONCONTROL BITS
Slow selectionIGAI1 = 0; IGAI0 = 0
Fast selectionIGAI1 = 1; IGAI0 = 1
(step size = 0.19 dB)
|IGAI1 = 0; IGAI0 = 1
|IGAI1 = 1; IGAI0 = 0
GAIN
GAI45GAI44GAI43GAI42GAI41GAI40
CONTROL BITS
1995 Oct 1849
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
16.4.13 SUBADDRESS 2C (DATA BYTE 103 to 096)
Table 53 Mixer control #2
FUNCTIONCONTROL BITS
Two’s complement channel 2 (TWO2); data bit D0
UnipolarTWO2 = 0
Two’s complement (normal mode)TWO2 = 1
Two’s complement channel 3 (TWO3); data bit D1
UnipolarTWO3 = 0
Two’s complement (normal mode)TWO3 = 1
Clamping level select channel 2 (CLS2); data bit D4
CLL21 activeCLS2 = 0
CLL22 activeCLS2 = 1
Clamping level select channel 3 (CLS3); data bit D5
CLL31 activeCLS3 = 0
CLL32 activeCLS3 = 1
Clamping level select channel 4 (CLS4); data bit D7
CLL2n activeCLS4 = 0
CLL3n activeCLS4 = 1
16.4.14 S
UBADDRESS 2D (DATA BYTE 111 to 104)
Table 54 Integration value gain (IVAL)
CONTROL BITS
DECIMAL INTEGRATION VALUE GAIN
IVAL7IVAL6IVAL5IVAL4IVAL3IVAL2IVAL1IVAL0
100000001
↓↓↓↓↓↓↓↓↓
25511111111
16.4.15 S
UBADDRESS 2E (DATA BYTE 119 to 112)
Table 55 Blanking pulse VBLK-set (VBPS)
DECIMAL
MULTIPLIER
SET LINE NUMBER
(step size = 2)
VBPS7 VBPS6 VBPS5 VBPS4 VBPS3 VBPS2 VBPS1 VBPS0
CONTROL BITS
00 after rising edge of VS00000000
↓↓↓↓↓↓↓↓↓↓
131
(1)
262 after rising edge of VS10000011
↓↓↓↓↓↓↓↓↓↓
156
(2)
312 after rising edge of VS10011100
Notes
1. Maximum for 60 Hz.
2. Maximum for 50 Hz.
1995 Oct 1850
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
16.4.16 SUBADDRESS 2F (DATA BYTE 127 to 120)
Table 56 Blanking pulse VBLK-reset (VBPR)
DECIMAL
MULTIPLIER
RESET LINE NUMBER
(step size = 2)
VBPR7 VBPR6 VBPR5 VBPR4 VBPR3 VBPR2 VBPR1 VBPR0
CONTROL BITS
00 after rising edge of VS00000000
↓↓↓↓↓↓↓↓↓↓
131
(1)
262 after rising edge of VS10000011
↓↓↓↓↓↓↓↓↓↓
156
(2)
312 after rising edge of VS10011100
Notes
1. Maximum for 60 Hz.
2. Maximum for 50 Hz.
16.4.17 S
UBADDRESS 30 (DATA BYTE 135 to 128)
Table 57 ADCs gain control
FUNCTIONCONTROL BITS
Fix gain ADC channel 2 (GAD2); data bits D1 and D0
0 dBGAD21 = 0; GAD20 = 0
0.05 dBGAD21 = 0; GAD20 = 1
0.10 dBGAD21 = 1; GAD20 = 0
0.15 dBGAD21 = 1; GAD20 = 1
Gain ADC select channel 2 (GAS2); data bit D2
2
Fix gain via I
C-bus GAD2GAS2 = 0
Automatic gain via loopGAS2 = 1
Fix gain ADC channel 3 (GAD3); data bits D4 and D3
0 dBGAD31 = 0; GAD30 = 0
0.05 dBGAD31 = 0; GAD30 = 1
0.10 dBGAD31 = 1; GAD30 = 0
0.15 dBGAD31 = 1; GAD30 = 1
Gain ADC select channel 3 (GAS3); data bit D5
2
Fix gain via I
C-bus GAD3GAS3 = 0
Automatic gain via loopGAS3 = 1
White peak mode select (WISL); data bit D6
Difference value integrationWISL = 0
Fix value integrationWISL = 1
1995 Oct 1851
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
16.4.18 SUBADDRESS 31 (DATA BYTE 143 to 136)
Table 58 Mixer control #3
FUNCTIONCONTROL BITS
Pulses I/O control (PULIO); data bit D0
HCL and HSY to input pinsPULIO = 0
HCL and HSY to output pinsPULIO = 1
Pin function switch (VBLKA); data bit D1
GPSW active (normal)VBLKA = 0
VBLK test output activeVBLKA = 1
DMSD-SQP bypassed (SQPB); data bit D3
DMSD data to YUV outputSQPB = 0
A/D data to YUV output
for test purposes only (do not use)
SQPB = 1
White peak slow up integration enable (WRSE); data bit D4
Hold in white peak modeWRSE = 0
Slow up integration with 1 value in H or
V (dependent on WIRS)
White peak slow up integration select (WIRS); data bit D5
Slow up integration with 1 value per lineWRIS = 0
Slow up integration with 1 value per fieldWRIS = 1
Analog test select (AOSL); data bits D7 and D6
AOUT connected to groundAOSL1= 0; AOSL0 = 0
AOUT connected to input AD2AOSL1 = 0; AOSL0 = 0
AOUT connected to input AD3AOSL1 = 1; AOSL0 = 1
AOUT connected to channel 4AOSL1 = 1; AOSL0 = 1
16.4.19 S
Table 59 Integration value white peak (WVAL)
UBADDRESS 32 (DATA BYTE 151 to 144)
DECIMAL INTEGRATION VALUE
WHITE PEAK
100000001
↓↓↓↓↓↓↓↓↓
127 (max.)01111111
WVAL7 WVAL6 WVAL5 WVAL4 WVAL3 WVAL2 WVAL1 WVAL0
WRSE = 1
CONTROL BITS
1995 Oct 1852
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
16.4.20 SUBADDRESS 33 (DATA BYTE 159 to 152)
Table 60 Mixer control #4
FUNCTIONCONTROL BITS
Clock select AD2 (CAD2); data bit D2
LLC for test purposes only (do not use)CAD2 = 0
LLC/2CAD2 = 1
Clock select AD3 (CAD3); data bit D3
LLC for test purposes only (do not use)CAD3 = 0
LLC/2CAD3 = 1
Change sign bit UV data (CHSB); data bit D5
UV output unipolarCHSB = 0
UV output two’s complementCHSB = 1
Output format select (OFTS); data bit D7
4 : 1 : 1 formatOFTS = 0
4 : 2 : 2 formatOFTS = 1
16.4.21 S
Table 61 Gain update level (GUDL; data bits D5 to D0
DECIMAL
Table 62 MUXC phase delay (MUD2); data bits D7 and D6
19.1Coring function adjustment by subaddress 06H
to affect band filter output adjustment
The thresholds are related to the 13-bit word width in the
luminance processing part and influence the 1 to 3 LSB
(Yo to Y2) with respect to the 8-bit luminance output.
Table 65 CORI control settings a, b and c of Fig.32
CONTROL BITS
CORI1CORI0
a01
b10
c11
+64
handbook, halfpage
+32
0
−32
−64
−64−320+64
MGC851
c
b
a
a
b
c
+32
Fig.32 Coring function.
1995 Oct 1859
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
20 LUMINANCE FILTER GRAPHS
18
handbook, full pagewidth
VY
(dB)
6
−6
−18
−30
0246
Fig.33 Luminance control: SU06H, 50 Hz/CVBS mode, prefilter on and coring off (40 to 63H).
63H
73H
53H
43H
40H
43H
53H
73H
63H
40H
f
Y (MHz)
MGC852
8
18
handbook, full pagewidth
VY
(dB)
6
−6
−18
−30
0246
Fig.34 Luminance control: SU06H, 50 Hz/CVBS mode, prefilter on and coring off (40 to 43H).
43H
42H
41H
40H
43H
42H
41H
40H
f
Y (MHz)
MGC853
8
1995 Oct 1860
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
18
handbook, full pagewidth
VY
(dB)
6
−6
−18
−30
0246
23H
33H
13H
03H
00H
03H
13H
33H
23H
00H
f
Y (MHz)
Fig.35 Luminance control: SU06H, 50 Hz/CVBS mode, prefilter off and coring off.
MGC854
8
18
handbook, full pagewidth
VY
(dB)
6
−6
−18
−30
0246
83H
82H
81H
80H
f
Y (MHz)
Fig.36 Luminance control: SU06H, 50 Hz/Y + C mode, prefilter off and coring off.
MGC855
8
1995 Oct 1861
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
18
handbook, full pagewidth
VY
(dB)
6
−6
−18
−30
0246
C3H
C2H
C1H
C0H
f
Y (MHz)
Fig.37 Luminance control: SU06H, 50 Hz/Y + C mode, prefilter on and coring off.
MGC856
8
18
handbook, full pagewidth
VY
(dB)
6
−6
−18
−30
0246
63H
73H
53H
43H
40H
43H
53H
73H
63H
40H
f
Y (MHz)
Fig.38 Luminance control: SU06H, 60 Hz/CVBS mode, prefilter on and coring off.
MGC857
1995 Oct 1862
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
18
handbook, full pagewidth
VY
(dB)
6
−6
−18
−30
0246
43H
42H
41H
40H
f
Y (MHz)
Fig.39 Luminance control: SU06H, 60 Hz/CVBS mode, prefilter on and coring off.
43H
42H
41H
40H
MGC858
18
handbook, full pagewidth
VY
(dB)
6
−6
−18
−30
0246
23H
33H
13H
03H
00H
f
Y (MHz)
Fig.40 Luminance control: SU06H, 60 Hz/CVBS mode, prefilter off and coring off.
03H
13H
33H
23H
00H
MGC859
1995 Oct 1863
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
18
handbook, full pagewidth
VY
(dB)
6
−6
−18
−30
0246
83H
82H
81H
80H
f
Y (MHz)
Fig.41 Luminance control: SU06H, 60 Hz/Y + C mode, prefilter off and coring off.
MGC860
8
18
handbook, full pagewidth
VY
(dB)
6
−6
−18
−30
0246
C3H
C2H
C1H
C0H
fY (MHz)
Fig.42 Luminance control: SU06H, 60 Hz/Y + C mode, prefilter on and coring off.
MGC861
8
1995 Oct 1864
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
21 I2C-BUS START SET-UP
The values shown in Table 66 are optimized for the EBU colour bar (100% white and 75% chrominance amplitude)
signal. The decoder output signal level fulfils the CCIR 601 specification. The input of 100% colour bar level is possible,
but the signal (white) peak function reduces the digital luminance output. With a different set-up it is possible to proceed
100% colour bar signal without luminance colour bar reduction. The method is to modify the AD input range for this input
level by reducing the gain reference value (SBOT > 06h) and adjusting the digital Y output level with contrast and
brightness control.
2
Table 66 I
C-bus start set-up
SUNAMEFUNCTION
00IDEL7 to IDEL0increment delay01001100 4C
01HSYB7 to HSYB0horizontal sync (HSY) begin 50 Hz00111100 3C
02HSYS7 to HSYS0horizontal sync (HSY) stop 50 Hz00001101 0D
03HCLB7 to HCLB0horizontal clamp (HCL) begin 50 Hz 11101111 EF
04HCLS7 to HCLS0horizontal clamp (HCL) stop 50 Hz10111101 BD
05HPHI7 to HPHI0horizontal sync after PHI1 50 Hz11110000 F0
BYPS, PREF,
BPSS1 to BPSS0,
06
CORI1 to CORI0,
APER1 to APER0
07HUEC7 to HUEC0hue control00000000 00
08CKTQ4 to CKTQ0, XXXcolour killer threshold PAL11111XXX F8
09CKTS4 to CKTS0, XXXcolour killer threshold SECAM11111XXX F8
0APLSE7 to PLSE0PAL switch sensitivity01100000 60
0BSESE7 to SESE0SECAM switch sensitivity01100000 5B
COLO, LFIS1 to LFIS0,
0C
XXXXX
VTRC, XXX, RTSE, HRMV,
0D
SSTB, SECS
HPLL, XX, OEHV, OEYC,
0E
CHRS, X, GPSW
AUFD, FSEL, SXCR, SCEN,
0F
X, YDEL2 to YDEL0
XXXXX, HRFS,
10
VNOI1 to VNOI0
CHCV7 to CHCV0 PAL
11
CHCV7 to CHCV0 NTSC00101100 2C
12SATN7 to SATN0chrominance saturation01000000 40
13CONT7 to CONT0luminance contrast01000110 46
14HS6B7 to HS6B70horizontal sync (HSY) begin 60 Hz01000010 42
15HS6S7 to HS6S0horizontal sync (HSY) stop 60 Hz00011010 1A
16HC6B7 to HC6B0horizontal clamp (HCL) begin 60 Hz 11111111 FF
17HC6S7 to HC6S0horizontal clamp (HCL) stop 60 Hz11011010 DA
18HP6I7 to HP6I0horizontal sync after PHI1 60 Hz11110000 F0
19BRIGI7 to BRIG0luminance brightness10001011 8B
luminance control00000000 00
gain control chrominance
standard/mode control0XXX0110 06
I/O and clock control0XX110X018
control #11001X000 90
control #2
chrominance gain reference
76543210start
000XXXXX 00
XXXXX000 00
01011001 59
BINARYHEX
1995 Oct 1865
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
SUNAMEFUNCTION
1A-1F reserved
AIND4, AIND3, AIND2,
20
FUSE1 to FUSE0, AINS4,
AINS3, AINS2
VBCO, MS34,
21
MX241 to MX240, MS24,
REFS4, REFS3, REFS2
GACO1 to GACO0, CSEL,
22
YSEL, MUYC, CLTS,
MX341 to MX340
23CLL217 to CLL210clamping level control channel 2101000001 41
24CLL227 to CLL220clamping level control channel 2210000000 80
25CLL317 to CLL310clamping level control channel 3101000001 41
26CLL327 to CLL320clamping level control channel 3210000000 80
HOLD, GASL,
27
GAI25 to GAI20
28WIPE7 to WIPE0white peak control11111110 FE
29SBOT7 to SBOT0sync bottom control00000001 01
IWIP1 to IWIP0,
2A
GAI35 to GAI30
IGAI1 to IGAI0,
2B
GAI45 to GAI40
CLS4, X, CLS3, CLS2,
2C
TWO3, TWO2
2DIVAL7 to IVAL0integration value gain00000001 01
VBPS7 to VBPS0; 50 Hz
2E
VBPS7 to VBPS0; 60 Hz10000001 81
VBPR7 to VBPR0; 50 Hz
2F
VBPR7 to VBPR0; 60 Hz00000011
X, WISL, GAS3,
30
GAD31 to GAD30, GAS2,
GAD21 to GAD20
AOSL1 to AOSL0, WIRS,
31
WRSE, SQPB, X, VBLKA,
PULIO
32WVAL7 to WVAL0integration value white peak00000010 02
OFTS, X, CHSB, X, CAD3,
33
CAD2, XX
MUD2, MUD1,
34
GUDL5 to GUDL0
analog control #111011001 D9
analog control #200010110 16
mixer control #101000000 40
gain control analog #1
gain control analog #2
gain control analog #3
mixer control #20X00XX1103
vertical blanking pulse SET
vertical blanking pulse RESET
ADCs gain controlX1000000 44
mixer control #301110X*01 71
mixer control #41X0X11XX8C
gain update level
76543210start
01001111 4F
11001111 CF
00001111 0F
10011010 9A
00000011
00000011 03
BINARYHEX
03
21.1Remarks to Table 66
Values recommended for a CVBS (PAL or NTSC) signal, input AI21 via A/D channel 2 (MODE 0), and 4 : 2 : 2 CCIR
output signal level; all X values must be set LOW, X* value is don’t care; HPHI and HP6I are application dependent.
1995 Oct 1866
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
22 APPLICATION INFORMATION
V
handbook, full pagewidth
Q1(26.8 MHz)
V
DDA
AI42
AI41
AI32
AI31
AI22
AI21
V
DD
SCL
SDA
FEIN (MUXC)
10
L1
µH
C16
1 nF
DD
V
SSA
R6
R5
R4
R3
R2
R1
R7
C17
10 pF
Unused analog inputs should not be connected.
R8
1 kΩ
C6
10 nF
75 Ω
V
SSA
C5
10 nF
75 Ω
V
SSA
C24
10 nF
75 Ω
V
SSA
C3
10 nF
75 Ω
V
SSA
C2
10 nF
75 Ω
V
SSA
C1
10 nF
75 Ω
V
SSA
1 kΩ
V
XTALO
XTALI
C18
10 pF
CGCE
SS
V
SS
C10
100 nF
C9
100 nF
C8
100 nF
C7
100 nF
20
24
16 12
11
13
15
17
19
SAA7110
SAA7110A
21
33
6
5
63
65
66
67
51
43
25
22
14 10
18
V
SSA
28
35
V
SS
Fig.43 Application diagram.
68
52
421
SA AP SP
C15
V
DD1
100 nF
C14
V
DD2
100 nF
C13
V
DD3
100 nF
V
C12
DD4
100 nF
V
C11
DD5
100 nF
27
3444
7
8
i.c.
V
SS
i.c.
V
SS
MGC862
Y7
Y6
Y5
Y4
Y7 to Y0
Y3
Y2
Y1
Y0
UV7
UV6
UV5
UV4
UV7 to UV0
UV3
UV2
UV1
UV0
HREF
HS
VS
RTCO
AOUT
GPSW (VBLK)
PLIN (HL)
ODD (VL)
LLC
LLC2
CREF
RESET
LFCO
HCL
HSY
45
46
47
48
49
50
53
54
55
56
57
58
59
60
61
62
42
38
41
3
23
64
39
40
29
30
31
32
26
36
37
9
i.c.
1995 Oct 1867
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
LLC2A
LLC2B
0.1
µF
C20
LLCB
MGC863
n.c.
ODD (VL)
RESET
CREF
LLC2
LLC
4030293132
LFCO
26
HCL
36
HSY
37
SAAPSP
V
SS
i.c. i.c. i.c.
RESET
CREF
SS
V
LFCO2 LFCO RESN CREF LLCA
102014
SSD
6, 9
13, 18
34
16
LFCOSEL
V
SSA
V
ORD
P
198,17 51112157
SAA7197
1
2
CE
MS
1 kΩ
63
CGCE
R7
1 kΩ
FEIN (MUXC)
SAA7110
SAA7110A
33
65
XTALO
XTALI
(26.8 MHZ)
Q1
SS
V
SS
V
SS
V
51 43 35 28 4 2 1789
SS
V
SS(S)
V
SSA4
V
SSA3
V
14221067
SSA2
V
1825
SSA0
V
66
C16C17C18
10 µH
L1
10 pF10 pF
1 nF
V
V
V
SS
SSA
SS
DDAVDDD
V
R10
C21C22
100 nF 100 nF
handbook, full pagewidth
Fig.44 Application diagram with external Clock Generator Circuit (CGC).
1995 Oct 1868
The OCF1 supports for special applications the use of an external CGC (SAA7197). For normal operation the built-in CGC fulfils all requirements.
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
23 START-UP, SOURCE SELECT AND STANDARD DETECTION FLOW EXAMPLE
handbook, full pagewidth
without standard routine
standard automatic
yes
B&W50?
power on
initializationstart source select
REFS active
mode select
REFS off
clamp active
?status byte?
no
mode 0 set-up
precharge clamping capacitor
mode 0 to 7
B&W50? yes = XX0XXX00
B&W60? yes = XX1XXX00
NTSC? yes = XX1XXXXX
SECAM? yes = XX0XXX01
yes
B&W60?
yes
NTSC set-upB&W50 set-up
B&W60 set-up
stop
Fig.45 Software flow example.
1995 Oct 1869
no
NTSC?
no
no
PAL set-up
SECAM?
yes
SECAM set-up
MGC864
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
23.1CODE 0 STARTUP and STANDARD Procedure
SLAVE 9C!OCF1 NTSC-setup
SUB 00 WRITE
4C 3C 0D EF BD F0 00 00
F8 F8 60 60 00 06 18 90
00 2C 40 46 42 1A FF DA
F0 8B 00 00 00 00 00 00
D9 17 40 41 80 41 80 4F
FE 01 CF 0F 03 01 81 03
44 75 01 8C 03
SUB 21 WRITE 16!REFS OFF CLAMP AKTIV
READ 1!Status?
#STANDARD
IF 1 @XX0XXX00!NO COLOR
THEN GOTO BW_50Hz
ENDIF
IF 1 @XX1XXX00 !NO COLOR
THEN GOTO BW_60Hz
ENDIF
SUB 06 WRITE 00
ENDIF
IF 1 @XX1XXXXX !60Hz
THEN GOTO NTSC
ENDIF
IF 1 @XX0XXXXX !50Hz
THEN GOTO PAL
ENDIF
#BW_50Hz
PRINT "BLACK&WHITE"
SUB 06 WRITE 80
SUB 2E WRITE 9A !VBPS
GOTO STOP
#BW_60Hz
PRINT "BLACK&WHITE"
SUB 06 WRITE 80
SUB 2E WRITE 81 !VBPS
GOTO STOP
#NTSC
SUB 0D WRITE 06 !SECS -> 0
SUB 11 WRITE 2C !CHCV
SUB 2E WRITE 81 !VBPS
PRINT "NTSC"
GOTO STOP
#PAL
SUB 0D WRITE 06 !SECS -> 0
SUB 11 WRITE 59 !CHCV
SUB 2E WRITE 9A !VBPS
PAUSE %150 !150ms
IF 1 @XX0XXX01
THEN GOTO SECAM
ELSE PRINT "PAL"
GOTO STOP
SLAVE 9C !OCF1
SUB 06 WRITE 00 !CVBS MODE 0
SUB 20 WRITE D9 !AI21 ACTIVE
SUB 21 WRITE 17 !REFS ON
SUB 22 WRITE 40 !AD2->LUMA and CHROMA
SUB 2C WRITE 03 !CLAMP SELECT
SUB 30 WRITE 44 !Gain AD2 active
SUB 31 WRITE 75 !AOSL -> 01b
SUB 21 WRITE 16 !REFS OFF CLAMP AKTIV
23.3MODE 1 Source Select Procedure
SLAVE 9C !OCF1
SUB 06 WRITE 00 !CVBS MODE 1
SUB 20 WRITE D8 !AI22 ACTIVE
SUB 21 WRITE 17 !REFS ON
SUB 22 WRITE 40 !AD2->LUMA and CHROMA
SUB 2C WRITE 03 !CLAMP SELECT
SUB 30 WRITE 44 !Gain AD2 active
SUB 31 WRITE 75 !AOSL -> 01b
SUB 21 WRITE 16 !REFS OFF CLAMP AKTIV
23.4MODE 2 Source Select Procedure
SLAVE 9C !OCF1
SUB 06 WRITE 00 !CVBS MODE 2
SUB 20 WRITE BA !AI31 ACTIVE
SUB 21 WRITE 07 !REFS ON
SUB 22 WRITE 91 !AD3->LUMA and CHROMA
SUB 2C WRITE 03 !CLAMP SELECT
SUB 30 WRITE 60 !Gain AD3 active
SUB 31 WRITE B5 !AOSL -> 10b
SUB 21 WRITE 05 !REFS OFF CLAMP AKTIV
23.5MODE 3 Source Select Procedure
SLAVE 9C !OCF1
SUB 06 WRITE 00 !CVBS MODE 3
SUB 20 WRITE B8 !AI32 ACTIVE
SUB 21 WRITE 07 !REFS ON
SUB 22 WRITE 91 !AD3->LUMA and CHROMA
SUB 2C WRITE 03 !CLAMP SELECT
SUB 30 WRITE 60 !Gain AD3 active
SUB 31 WRITE B5 !AOSL -> 10b
SUB 21 WRITE 05 !REFS OFF CLAMP AKTIV
1995 Oct 1870
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
23.6MODE 4 Source Select Procedure
SLAVE 9C !OCF1
SUB 06 WRITE 00 !CVBS MODE 4
SUB 20 WRITE 7C !AI41 ACTIVE
SUB 21 WRITE 07 !REFS ON
SUB 22 WRITE D2 !AD3->LUMA and CHROMA
SUB 2C WRITE 83 !CLAMP SELECT
SUB 30 WRITE 60 !Gain AD3 active
SUB 31 WRITE B5 !AOSL -> 10b
SUB 21 WRITE 03 !REFS OFF CLAMP AKTIV
23.7MODE 5 Source Select Procedure
SLAVE 9C !OCF1
SUB 06 WRITE 00 !CVBS MODE 5
SUB 20 WRITE 78 !AI41 ACTIVE
SUB 21 WRITE 07 !REFS ON
SUB 22 WRITE D2 !AD3->LUMA and CHROMA
SUB 2C WRITE 83 !CLAMP SELECT
SUB 30 WRITE 60 !Gain AD3 active
SUB 31 WRITE B5 !AOSL -> 10b
SUB 21 WRITE 03 !REFS OFF CLAMP AKTIV
23.8MODE 6 Source Select Procedure
SUB 2C WRITE 23 !CLAMP SELECT
SUB 30 WRITE 44 !Gain AD2 active
SUB 31 WRITE 75 !AOSL -> 01
SUB 21 WRITE 21 !REFS OFF CLAMP AKTIV
SLAVE 9C !OCF1
SUB 06 WRITE 80 !Y+C MODE 6
SUB 20 WRITE 59 !AI21=Y, AI42=C
SUB 21 WRITE 17 !REFS ON
SUB 22 WRITE 42 !AD2->LUMA, AD3->CHR
SUB 2C WRITE A3 !CLAMP SELECT
SUB 30 WRITE 44 !Gain AD2 active
SUB 31 WRITE 75 !AOSL -> 01
SUB 21 WRITE 12 !REFS OFF CLAMP AKTIV
23.9MODE 7 Source Select Procedure
SLAVE 9C !OCF1
SUB 06 WRITE 80 !Y+C MODE 7
SUB 20 WRITE 9A !AI31=Y, AI22=C
SUB 21 WRITE 17 !REFS ON
SUB 22 WRITE B1 !AD3->LUMA, AD2->CHR
SUB 2C WRITE 13 !CLAMP SELECT
SUB 30 WRITE 60 !Gain AD3 active
SUB 31 WRITE B5 !AOSL -> 10b
SUB 21 WRITE 14 !REFS OFF CLAMP AKTIV
23.10 MODE 8 Source Select Procedure
SLAVE 9C !OCF1
SUB 06 WRITE 80 !Y+C MODE 8
SUB 20 WRITE 3C !AI41=Y, AI32=C
SUB 21 WRITE 27 !REFS ON
SUB 22 WRITE C1 !AD2->LUMA, AD3->CHR
1995 Oct 1871
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
24 PACKAGE OUTLINE
PLCC68: plastic leaded chip carrier; 68 leads
e
y
61
68
1
pin 1 index
D
X
SOT188-2
e
E
4460
43
A
Z
E
b
p
b
1
w M
H
E
E
e
A
A
1
A
4
(A )
3
k
9
β
1
27
k
1026
e
Z
D
H
D
D
v M
A
B
v M
B
0510 mm
scale
DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)
UNIT A
mm
inches
A
1
min.max.max.max. max.
4.57
0.51
4.19
0.180
0.020
0.165
A
0.25
0.01
A
4
3
3.30
0.13
b
p
0.53
0.33
0.021
0.013
b
0.81
0.66
0.032
0.026
1
D
24.33
24.13
0.958
0.950
(1)
(1)
E
eH
e
D
1.27
0.05
23.62
22.61
0.930
0.890
24.33
24.13
0.958
0.950
e
23.62
22.61
0.930
0.890
H
D
E
25.27
25.27
25.02
25.02
0.995
0.995
0.985
0.985
Note
1. Plastic or metal protrusions of 0.01 inches maximum per side are not included.
OUTLINE
VERSION
SOT188-2
IEC JEDEC EIAJ
112E10MO-047AC
REFERENCES
k
1
k
E
1.22
1.07
0.048
0.042
0.51
0.020
L
1.44
1.02
0.057
0.040
detail X
p
0.007 0.0040.007
EUROPEAN
PROJECTION
L
p
(1)(1)
Z
Z
E
D
ywvβ
0.18 0.100.18
2.16
0.085
2.16
0.085
o
45
ISSUE DATE
92-11-17
95-03-11
1995 Oct 1872
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
25 SOLDERING
25.1Introduction
There is no soldering method that is ideal for all IC
packages. Wave soldering is often preferred when
through-hole and surface mounted components are mixed
on one printed-circuit board. However, wave soldering is
not always suitable for surface mounted ICs, or for
printed-circuits with high population densities. In these
situations reflow soldering is often used.
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
“IC Package Databook”
our
25.2Reflow soldering
Reflow soldering techniques are suitable for all PLCC
packages.
The choice of heating method may be influenced by larger
PLCC packages (44 leads, or more). If infrared or vapour
phase heating is used and the large packages are not
absolutely dry (less than 0.1% moisture content by
weight), vaporization of the small amount of moisture in
them can cause cracking of the plastic body. For more
information, refer to the Drypack chapter in our
Reference Handbook”
Reflow soldering requires solder paste (a suspension of
fine solder particles, flux and binding agent) to be applied
to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement.
Several techniques exist for reflowing; for example,
thermal conduction by heated belt. Dwell times vary
between 50 and 300 seconds depending on heating
method. Typical reflow temperatures range from
215 to 250 °C.
(order code 9398 652 90011).
“Quality
(order code 9398 510 63011).
25.3Wave soldering
Wave soldering techniques can be used for all PLCC
packages if the following conditions are observed:
• A double-wave (a turbulent wave with high upward
pressure followed by a smooth laminar wave) soldering
technique should be used.
• The longitudinal axis of the package footprint must be
parallel to the solder flow.
• The package footprint must incorporate solder thieves at
the downstream corners.
During placement and before soldering, the package must
be fixed with a droplet of adhesive. The adhesive can be
applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the
adhesive is cured.
Maximum permissible solder temperature is 260 °C, and
maximum duration of package immersion in solder is
10 seconds, if cooled to less than 150 °C within
6 seconds. Typical dwell time is 4 seconds at 250 °C.
A mildly-activated flux will eliminate the need for removal
of corrosive residues in most applications.
25.4Repairing soldered joints
Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron
(less than 24 V) applied to the flat part of the lead. Contact
time must be limited to 10 seconds at up to 300 °C. When
using a dedicated tool, all other leads can be soldered in
one operation within 2 to 5 seconds between
270 and 320 °C.
Preheating is necessary to dry the paste and evaporate
the binding agent. Preheating duration: 45 minutes at
45 °C.
1995 Oct 1873
Philips SemiconductorsProduct specification
One Chip Front-end 1 (OCF1)SAA7110; SAA7110A
26 DEFINITIONS
Data sheet status
Objective specificationThis data sheet contains target or goal specifications for product development.
Preliminary specificationThis data sheet contains preliminary data; supplementary data may be published later.
Product specificationThis data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
27 LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
2
28 PURCHASE OF PHILIPS I
Purchase of Philips I
components in the I2C system provided the system conforms to the I2C specification defined by
Philips. This specification can be ordered using the code 9398 393 40011.
C COMPONENTS
2
C components conveys a license under the Philips’ I2C patent to use the
1995 Oct 1874
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.