Datasheet TSM102 Datasheet (SGS Thomson Microelectronics)

Page 1
DUAL OPERATIONALAMPLIFIER - DUALCOMPARATOR
AND ADJUSTABLE VOLTAGE REFERENCE
OPERATIONALAMPLIFIERS
.
LOW SUPPLYCURRENT: 200µA/amp.
.
MEDIUMSPEED: 2.1MHz
.
-
V
: 0.1Vtyp.
CC
.
INPUTCOMMON MODE VOLTAGERANGE INCLUDESGROUND
COMPARATORS
.
LOW SUPPLYCURRENT: 200µA/amp.
= 5V)
(V
CC
.
INPUTCOMMON MODE VOLTAGERANGE INCLUDESGROUND
.
LOW OUTPUT SATURATIONVOLTAGE: 250mV (I
REFERENCE
.
ADJUSTABLEOUTPUT VOLTAGE : V
ref
.
SINK CURRENTCAPABILITY :1 to 100mA
.
1%and 0.4%VOLTAGEPRECISION
.
LACTH-UP IMMUNITY
to 32V
= 4mA)
o
TSM102/A
N
DIP16
(Plastic Package)
D
SO16
(Plastic Micropackage)
ORDER CODES
Part number Temperature Range
o
TSM102I -40 TSM102AI -40
C, +85oC ••
o
C, +85oC ••
Package
ND
PIN CONNECTIONS
Output 1
1
Inverting Input 1
Non-inve rting Input 1
Non-inve rting Input 2
DESCRIPTION
The TSM102 is a monolithic IC that includes two op-amps,twocomparatorsanda precisionvoltage reference. This device is offering space and cost savinginmanyapplicationslikepowersupplyman­agement or data acquisitionsystems.
February1999 1/10
Inverting Input 2
V
Output 2
Vref
2
3
+
CC
COMP
4
5
6
7
8
COMP
16
Output 4
Inverting Input
15
Non-inverting Input 4
14
V
-
13
CC
Non-inverting Input 3
12
Inverting Input 3
11
10
Output 3
9
Ca thode
Page 2
TSM102
ABSOLUTE MAXIMUMRATINGS
Symbol Parameter Value Unit
V
CC
V
id
V
T
oper
T
ELECTRICAL CHARACTERISTICS
+
V
CC
Symbol Parameter Min Typ Max Unit
I
CC
OPERATIONALAMPLIFIERS
+
=5V,VCC=GND, R1 connectedto V
V
CC
Symbol Parameter Min. Typ. Max. Unit
V
io
DV
io
I
ib
I
io
A
vd
SVR Supply Voltage Rejection Ratio
V
icm
CMR CommonMode Rejection Ratio
I
sc
V
OH
V
OL
SR Slew Rate
GBP Gain BandwidthProduct
m Phase Margin
THD Total Harmonic Distortion
e
n
C
s
Supply Voltage 36 V Differential Input Voltage 36 V Input Voltage -0.3 to +36 V
i
Operating Free-air Temperature Range -40 to +125 Maximum Junction Temperature 150
j
Thermal Resistance Juction toAmbient (SO package) 150
=5V,V
-
=0V,T
CC
amb
Total Supply Current
T
min.<Tamb<Tmax.
Input Offset Voltage
T
T
min.
amb
T
=25oC (unlessotherwisespecified)
CC/2,Tamb
max.
=25oC (unlessotherwise specified)
0.8 1.5 2
1 4.5
6.5 Input Offset VoltageDrift 10 µV/oC Input Bias Current
T
T
min.
amb
T
max.
Input Offset Current
T
T
min.
Large Signal Voltage Gain
R1 = 10k, V T
min.
V
CC
T
amb
max.
+
= 30V, Vo= 5V to 25V
CC
T
T
amb
max.
= 5V to 30V 80 100
Input Common Mode VoltageRange
T
T
min.
+
V
CC
amb
= 30V, V
T
max.
icm
=0Vto(V
CC
+
) -1.8V
50 25
(VCC-)to(V
-
)to(V
(V
CC
70 90 dB
CC
CC
+
) -1.8
+
) -2.2
20 100
200
52040nA
100 V/mV
Output Short Circuit Current
= ±1V, Vo= 2.5V
V
id
Source Sink
High Level Output Voltage RL= 10k
+
= 30V
V
CC
T
T
min.
amb
T
max.
Low Level Output Voltage RL= 10k
T
T
min.
amb
T
max.
27 26
3 3
6 6
28
100 150
210
1.6 2 V/µs
= ±15V
V
CC
= ±10V, RL= 10k,CL= 100pF
V
i
1.4 2.1 MHz
= 10k,CL= 100pF, f = 100kHz
R
L
= 10k,CL= 100pF 45
R
L
0.05
Equivalent Input Noise Voltage
f = 1kHz 29
Channel Separation 120 dB
o
Degrees
o
C
o
C
C/W
mV
nA
dB
mA
mV
%
nV
Hz
mA
V
V
2/10
Page 3
TSM102
COMPARATORS
+
=+5V,VCC=Ground, T
V
CC
Symbol Parameter Min. Typ. Max. Unit
V
I
I
I
OH
V
A
I
sink
V
V
t t
Note 1 : The response time specified is for 100mV input step with 5mV overdrive.
Input Offset Voltage
io
Input Offset Current
io
Input Bias Current
ib
TT
T
amb
amb
amb
TT
T
T
min.
T
min.
T
min.
High Level Output Current
= 1V, VCC=Vo= 30V
V
id
T
T
amb
amb
sink
T
T
CC
T
min.
Low Level Output Voltage
OL
vd
= -1V, I
V
id
T
min.
Large Signal Voltage Gain
R1 = 15k, V
Output Sink Current
= -1V, Vo= 1.5V
V
id
Input Common Mode VoltageRange
icm
Differential Input Voltage V
id
Response Time - (note 1)
re
Large Signal Response Time
rel
For larger overdrive signals, 300ns can be obtained.
T
T
min.
amb
T
R1 = 5.1k to V
= 1.4V, Vi= TTL, R1 = 5.1k to V
V
ref
=25oC (unlessotherwise specified)
amb
max.
max.
max.
0.1
max.
= 4mA
max.
250 400
= 15V, Vo= 1 to 11V 200
616 mA
0 0
1.3 µs
300 ns
CC
max.
+
,V
ref
= 1.4V
CC
+
5 9
50
150 250
400
1
700
VCC+-1.5
+
-2
V
CC
+
CC
mV
nA
nA nA
µA
mV
V/mV
V
V
3/10
Page 4
TSM102
VOLTAGEREFERENCE
Symbol Parameter Value Unit
V
KA
I
K
ELECTRICAL CHARACTERISTICS
=25oC (unless otherwise specified)
T
amb
Symbol Parameter Min. Typ. Max. Unit
V
ref
V
ref
V
ref
T
V
ref
V
KA
Iref Reference InputCurrent - (figure 2)
I
ref
I
min
I
off
Cathode to Anode Voltage V
to 36 V
ref
Cathode Current 1 to 100 mA
Reference InputVoltage - (figure 1) - T
TSM102, V TSM102A, V
KA=Vref,IK
KA=Vref,IK
= 10mA
= 10mA
amb
=25oC
2.475
2.490
2.500
2.500
2.525
2.510
Reference InputVoltage Deviation Over Temperature Range - (figure 1, note1)
V
KA=Vref,IK=
10mA, T
Temperature Coefficient of Reference Input Voltage - (note 2)
V
KA=Vref,IK
= 10mA, T
Ratio of Changein Reference Input Voltage to Changein Cathode to
min.
min.
T
T
amb
amb
T
T
max.
max.
730
ppm/
±22 ±100
mV/V
Anode Voltage - (figure 2)
= 10mA, VKA= 36 to 3V -1.1 -2
I
K
= 10mA, R1= 10k,R2=
I
K
T T
amb min.
=25oC
T
amb
T
max.
1.5 2.5 3
Reference InputCurrent Deviation Over Temperature Range - (figure 2)
= 10mA, R1= 10k,R2=
I
K
T
T
min.
amb
T
max.
0.5 1
Minimum Cathode Currentfor Regulation - (figure 1)
V
KA=Vref
0.5 1
Off-State Cathode Current - (figure 3) 180 500 nA
V
mV
µA
µA
mA
o
C
Notes : 1. V
2. The temperature coefficientis defined asthe slopes (positive and negative) ofthe voltage vs temperature limits whithin
3. The dynamic Impedance is definedas |Z
is defined as the difference between themaximum and minimumvalues obtained over the full temperature
ref
range.
=V
V
ref max.-Vref min
ref
V
V
ref ma x.
ref m in.
T1
T2
Tempe rature
which thereference voltage isguaranteed.
-
n
p
p
m
/
C
C
/
m
p
p
n
ma x
2.5V min
V
KA
| =
KA
I
K
+
Temp era ture
25 C
4/10
Page 5
TSM102
Figure 1 : Test Circuitfor VKA=V
Input
Figure2 : Test Circuitfor VKA>V
Input
R
1
ref
ref
V
KA
I
K
V
ref
V
KA
I
K
I
ref
Figure 3 : Test Circuitfor I
Input
R
2
R
1
(1 +
)+I
ref
R
.R1
ref
2
off
V
ref
V
KA
I
off
VKA= V
= 36V
5/10
Page 6
TSM102
APPLICATION NOTE
A Li-Ion BATTERY CHARGER USING TSM102A
by R. LIOU
This application note explains how to use the TSM102 in an SMPS-type battery charger which features :
.
Voltage Control
.
CurrentControl
.
Low BatteryDetectionand End Of Charge Detection
Figure 1 : TSM102Pinout
1
2
3
V
CC
Vref
COMP
+
5
6
7
1 - TSM102PRESENTATION
TheTSM102integratedcircuitincludestwoOpera­tional Amplifiers,twoComparatorsandoneadjust­able precision Voltage Reference (2.5V to 36V,
0.4% or 1%). TSM102 can sustain upto 36Vpower supply volt-
age.
TSM102
COMP
16
15
14
V
-
CC
12
11
10
Ca thode
2 - APPLICATION CONTEXT AND PRINCIPLE OF OPERATION
In the battery charging field which requires ever increasing performances in more and more re­duced space,the TSM102Aprovides an attractive solutionintermsofPCB area saving,precisionand versatility.
Figure 2 shows the secondary side of a battery charger (SMPS type) where TSM102A is used in optimisedconditions: the two OperationalAmplifi­ers perform current and voltage control, the two Comparators provide ”End of Charge” and ”Low Battery” signals and the Voltage Reference en­sures precise reference for allmeasurements.
The TSM102A is supplied by an auxiliary power supply (forward configuration- D7) regulated by a bipolartransistorand a zenerdiode on itsbase(Q2 and DZ), and smoothedby the capacitorsC3 and
6/10
C4. R15polarizesthe baseof thetransistor andat the same timelimits the currentthrough the zener diodeduringregulationmodeoftheauxiliarypower supply.
The current and voltage regulations are made thanks to the two OperationalAmplifiers.
The first amplifier senses the current flowthrough the sense resistor Rs and compares it with a part of the reference voltage (resistor bridge R7, R8, R9). The secondamplifiercomparesthe reference voltagewith a part ofthe charger’s output(resistor bridge R1, R2, R3).
When either of these two operational amplifiers tends to lower its ouput, this linear information is propagatedtowardstheprimarysideviatwoORing diodes (D1, D2) and an optocoupler (D3). The compensationloops of these regulation functions are ensuredby the capacitorsC1 and C2.
Page 7
Figure2 : The ApplicationSchematic- Battery Charger SecondarySide
TSM102
The first comparator ensures the ”Low Battery” signal generation thanks to the comparison of a part ofthe charger’s output voltage (resistorbridge R17, R19) and the referencevoltage. Proper hys­teresis is given thanks to R20. An improvement to the chargers security and to the battery’slife time optimization is achieved by lowering the current controlmeasurement thanksto Q1 that shuntsthe resistor R9 when thebattery’svoltageis belowthe ”Low Battery” level.
The second comparator ensures the ”End of Charge” signalgeneration thanks to the compari­son ofa partof thecharger’s outputvoltage (resis­tor bridge R1,R2, R3) and the referencevoltage.
When either of these two signals is active, the corresponding LED is polarized for convenient visualizationof the battery status.
3 - CALCULATION OF THEELEMENTS
All thecomponentsvalueshavebeenchosenfor a two-Lithium-Ionbatteries charge application:
.
CurrentControl : 720mA(Low Battery current control : 250mA)
.
VoltageControl : 8.4V (=2x 4.2V)
.
LowBattery : 5.6V(= 2x 2.5V + 0.6V)
.
End of Charge : 8.3V(= 2x 4.15V)
Current Control :
Thevoltagereferenceispolarizedthanksto theR4 resistor (2.5mA), andthe cathode of the reference gives a fixed2.500V voltage.
I = U / R = [ Vref ( R8 + R9 ) / (R7 + R8 + R9) ] / Rs
= [ 2.5 x (390 + 820) / (10000 + 390 + 820) ] / 0.375 = 720mA
I = 720mA P = power dissipation through the sense resistor = R I2
= 0.375 x0.7202 = 194mW
In case of ”Low Battery” conditions, the current controlis lowered thanks tothe following equation:
I = U / R = = [ Vref R8 / (R7 + R8) ] / Rs
= [ 2.5 x 390/ (10000 + 390 ) ] / 0.375 = 250mA
I (LoBatt) = 250mA
Voltage Control :
Vout = Vref/ [ R2 / (R1 + R2 + R3) ]
7/10
Page 8
TSM102
= 2.5 / [ 56 / (131.5 + 56 + 0.68 ) ] = 8.400V
Vout = 8.400V
Low Batterysignal :
IfR5 = 0and R6 =open :
Vout(LoBatt) = Vref / [ R19 / ( R17 + R19 ) ]
= 2.5 / [ 10 / (12.4 + 10) ] = 5.6V
Vout(LoBatt) = 5.6V
End of Charge signal:
Vout(EOC) = Vref / [ (R2 + R3 ) /(R1 + R2 + R3) ]
= 2.5 / [ (56 + 0.68) / (131.5 + 56 + 0.68) ] = 8.300V
Vout(EOC)= 8.300V
Notes:
The current control values must be chosen in ac­cordancewiththeelementsoftheprimaryside.The performancesof the batterychargerin theirglobal­ity are highly dependent on the adequationof the primary and thesecondaryelements.
The additionof the diode D9 is necessary toavoid dramatic discharge of the battery cells in case of the chargerdisconnectionfrom themains voltage, and therefore, the voltage measurement is to be operated on the cathode side of the diode not to take its voltage dropinto account.The total bridge value of R1, R2, R3 must ensure low battery dis­charge if the charger is disconnected from main, but remains connected to the battery by mistake. The chosen valuesimpose a 44µAdischarge cur­rent max.
R12andR13 aretheequivalentresistorsseenfrom the opampand from the comparator.
Ahysteresisresistorcan be connected to the ”End Of Charge”comparatortoensureproperhysteresis to this signal, but this resistor must be chosen carefully not to degrade the output voltage preci­sion.It might be neededto impose unidirectionnal hysteresis (by inserting a diode on the positive feedback of the comparator).
Figure 3 showshow to use the integratedVoltage Referenceto build a precisePower Supplyfor the
Figure 3 : A precise power supply for theTSM102Aand othercomponents
Vaux
+
Vaux
9
8
13
TSM102 Vref
Vcc
+
8/10
Page 9
PACKAGE MECHANICAL DATA
16 PINS- PLASTICPACKAGE
TSM102
Dim.
a1 0.51 0.020
B 0.77 1.65 0.030 0.065
b 0.5 0.020
b1 0.25 0.010
D 20 0.787 E 8.5 0.335
e 2.54 0.100
e3 17.78 0.700
F 7.1 0.280
i 5.1 0.201 L 3.3 0.130 Z 1.27 0.050
Min. Typ. Max. Min. Typ. Max.
Millimeters Inches
9/10
Page 10
TSM102
PACKAGE MECHANICAL DATA
16 PINS- PLASTICMICROPACKAGE (SO)
Dim.
Min. Typ. Max. Min. Typ. Max.
Millimeters Inches
A 1.75 0.069 a1 0.1 0.2 0.004 0.008 a2 1.6 0.063
b 0.35 0.46 0.014 0.018
b1 0.19 0.25 0.007 0.010
C 0.5 0.020
c1 45
o
(typ.) D 9.8 10 0.386 0.394 E 5.8 6.2 0.228 0.244
e 1.27 0.050
e3 8.89 0.350
F 3.8 4.0 0.150 0.157
G 4.6 5.3 0.181 0.209
L 0.5 1.27 0.020 0.050 M 0.62 0.024 S8
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such informationnor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.STMicroelectronics products arenot authorized foruseas critical componentsinlife support devicesorsystems without express written approval of STMicroelectronics.
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco
The Netherlands- Singapore -Spain - Sweden -Switzerland -Taiwan - Thailand -United Kingdom -U.S.A.
The ST logo is a trademark of STMicroelectronics
1999 STMicroelectro nics–Printed in Italy– All RightsReserved
STMicroelectronicsGROUP OF COMPANIES
http://www.st.com
o
(max.)
10/10
Loading...