Datasheet TSA1001IF Datasheet (SGS Thomson Microelectronics)

Page 1
TSA1001
10-BIT, 25MSPS, 35mW A/D CONVERTER
10-bit A/D converter in deep submicron
CMOS technology
Ultra low power consumption: 35mW @
25Msps (10mW @ 5Msps)
Single supply voltage: 2.5V
Input range: 2Vpp differential
25Msps sampling frequency
SFDR typically up to 72dB @ Nyquist
Built-in reference voltage with external bias
capability
STMicroelectronics 8, 10, 12 and 14-bits ADC
pinout compatibility
DESCRIPTION
The TSA1001 is a 10-bit, 25Msps sampling fre­quency Analog to Digital converter using a CMOS technology combining high performances and very low power consumption.
The TSA1001 is based on a pipeline structure and digital error correction to provide excellent static linearity and go beyond 9.8 effective bits at Fs=25Msps, and Fin=10MHz .
Especially designed f or portable applications, the TSA1001 only dissipates 35mW at 25Msps. When running at lower sampling frequencies, even lower consumption can be achieved.
A voltage reference is int egrated in the circuit to simplify the de sign and minimize external c om po­nents. It is nevertheless possible to use the circuit with an external reference.
The output data can be coded into two different formats. A Data Ready signal is raised as the data is valid on the output and can be used for synchro­nization purposes.
The TSA1001 is available in commercial (0 to
+70°C) and extended (-40 t o +85°C) temperat ure range, in a small 48 pins TQFP package.
ORDER CODE
Part Number
TSA1001CF 0°C to +70°C TQFP48 Tray SA1001C TSA1001CFT 0°C to +70°C TQFP48 Tape & Reel SA1001C TSA1001IF -40°C to +85°C TQFP48 Tray SA1001I TSA1001IFT -40°C to +85°C TQFP48 Tape & Reel SA1001I EVAL1001/AA Evaluation board
Temperature
Range
Package Conditioning Marking
PIN CONNECTIONS (top view)
AGND
index
corner
IPOL
VREFP
VREFM
AGND
VIN
AGND
VINB AGND INCM
AGND AVCC AVCC
AVCC
AVCC
DFSB
4748 44 43 42 41 40 39 38
46 45
1 2
3 4 5 6
7 8
9 10 11 12
13 14 15 16 17 18 19 20 21 22
DVCC
DVCC
TSA1001
CLK
DGND
DGND
OEB
VCCB
GNDB
NC
DGND
VCCB
NC
GNDB
GNDB
VCCBNCOR
DR
23 24
NC
37
NC
36
NC
35
NC
34 33
D0 (LSB)
32
D1
31
D2
30
D3 D4
29
D5
28
D6
27 26
D7
25
D8
D9 (MSB)
PACKAGE
7 × 7 mm TQFP48
APPLICATIONS
Portable instrumentation
Video processing
Medical imaging and ultrasound
High resolution fax and scanners
Digital communications
October 2000
1/19
Page 2
TSA1001
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Values Unit
AVCC DVCC VCCB
Analog Supply voltage Digital Supply voltage Digital buffer Supply voltage
IDout Digital output current -100 to 100 mA
Tstg Storage temperature +150 °C
ESD Electrical Static Discharge:
- HBM
- CDM-JEDEC Standard
1). All voltages values, except di f ferential v ol tage, are with respe ct t o network ground te rm i nal. The m agnitude of i nput and out pu t volt ages must neve r exceed -0.3V or VCC+0V
OPERATING CONDITIONS
Symbol Parameter Test conditions Min Typ Max Unit
AVCC Analog Supply voltage 2.25 2.5 2.7 V DVCC Digital Supply voltage 2.25 2.5 2.7 V VCCB Digital buffer Supply voltage 2.25 2.5 2.7 V
VREFP Forced top voltage reference 1.16 - AVCC V
VREFM Forced bottom reference voltage 0 0 0.5 V
1)
1)
1)
0 to 3.3 V 0 to 3.3 V 0 to 3.3 V
KV
2
1.5
BLOCK DIAGRAM
VIN
INCM
VINB
CLK
+2.5V
stage stage 1 2
Timing
GND
stage n
Sequencer-pha s e shifting
Digital data correction
Reference
Buffers
VREFP
circuit
GNDA
IPOL
VREFM
DFSB OEB
DR DO
TO
D9
OR
2/19
Page 3
PIN CONNECTIONS (top view)
index
corner
1
IPOL
VREFP
2
AGND
VIN
AGND
VINB AGND INCM
AGND AVCC
3 4
5 6
7 8
9 10 11 12
VREFM
AGND
AVCC
AVCC
DFSB
OEB
4748 44 43 42 41 40 39 38
46 45
NC
NC
VCCB
GNDB
TSA1001
13 14 15 16 17 18 19 20 21 22
DVCC
DVCC
DGND
CLK
DGND
DGND
GNDB
GNDB
VCCB
23 24
VCCBNCOR
DR
TSA1001
NC
37
NC
36
NC
35
NC
34 33
D0 (LSB)
32
D1
31
D2
30
D3 D4
29
D5
28
D6
27 26
D7
25
D8AVCC
D9 (MSB)
PIN DESCRIPTION
Pin No Name Description Observation Pin No Name Description Observation
1 IPOL Analog bias current input 25 D8 Digi tal output CMOS output (2.5V) 2 VREFP Top voltage reference 1V 26 D7 Digital output CMOS output (2.5V) 3 VREFM Bottom voltage reference 0V 27 D6 Digital output CMOS outpu t (2.5V) 4 AGND Analog ground 0V 28 D5 Digital output CMOS output (2.5V) 5 VIN Analog input 1Vpp 29 D4 Digital output CMOS output (2.5V) 6 AGND Analog ground 0V 30 D3 Digital output CMOS output (2.5V) 7 VINB Inverted analog input 1Vpp 31 D2 Digital output CMOS output (2.5V) 8 AGND Analog ground 0V 32 D1 Digital output CMOS output (2.5V)
9 INCM Input common mode 0.5V 33 D0(LSB) Least Significant Bit output CMOS output (2.5V) 10 AGND Analog ground 0V 34 NC Non connected 1 1 AVCC Analog p ower supply 2.5V 35 NC Non connected 12 AVCC Analog power supply 2.5V 36 NC Non conn ected 13 DVCC Digital power s upply 2. 5V 37 NC Non connected 14 DVCC Digital power supply 2.5V 38 DR Data Ready output CMOS out pu t (2.5V) 15 DGND Digital ground 0V 39 VCCB Digital Buffer power supply 2.5V 16 CLK Clock input 2.5V compatible CMOS input 40 GNDB Digital Buffer ground 0V 17 DGND Digital ground 0V 41 VCCB Digital Buffer power supply 2.5V 18 NC Non connected 42 NC Non connected 19 DGN D Digita l ground 0V 43 NC Non connected 20 GND B Digital buffer ground 0V 44 OEB Output Enable i nput 2.5V compatible CMOS input 21 GNDB Digital buffer ground 0V 45 DFSB Data Format Select input 2.5V compatible CMOS input 22 VCCB Digital buffer power supply 2.5V 46 AVCC Analog power supply 2.5V 23 OR Out Of Range output CMOS output (2.5V) 47 AVCC Analog power supply 2.5V 24 D9(MSB) Most Significant Bit output CMOS output (2.5V) 48 AGND Analog ground 0V
3/19
Page 4
TSA1001
ELECTRICAL CHARACTERISTICS
AVCC = DVCC = VCCB = 2.5V, Fs= 25Msps, Fin=1MHz, Vin@ -1.0dBFS, VREFM = 0V
Tamb = 25°C (unless otherwise specified)
TIMING CHARACTERISTICS
Symbol Parameter Test conditions Min Typ Max Unit
FS Sampling Frequency 0.5 25 MHz
DC Clock Duty Cycle 45 50 55 % TC1 Clock pulse width (high) 18 20 ns TC2 Clock pulse width (low) 18 20 ns
Tod
Data Output Delay (Fall of Clock to Data Valid)
Tpd Data Pipeline delay 6.5 cycles
Ton
Toff
Falling edge of OEB to digital output valid data
Rising edge of OEB to digital output tri-state
10pF load capacitance
5ns
1ns
1ns
TIMING DIAGRAM
N-1
CLK
OEB
Tod
DATA
OUT
DR
N-8
N+4
N+3
N+2
N-7
N+1
N-6
N-5
6.5 clk cycles
N-4
N
Toff
N+5
N-2N-3
N+6
N+7
N+8
Ton
N
N+1
HZ state
4/19
Page 5
TSA1001
CONDITIONS:
AVCC = DVCC = VCCB = 2.5V, Fs= 25Msps, Fin= 1MHz, Vin@ -1.0dBFS, VREFM= 0V
Tamb = 25°C (unless otherwise specified)
ANALOG INPUTS
Symbol Parameter Test conditions Min Typ Max Unit
VIN-VINB Full scale refere nce voltag e 2.0 Vpp
Cin Input capacitance 7. pF
BW Analog Input Bandwitdh Vin@Full Scale, FS=25Msps 100 MHz
ERB
1). See parameters defini t i o n for more information
Effective Resolution Bandwidth
REFERENCE VOLTAGE
Symbol Parameter Test conditions Min Typ Max Unit
1)
60 MHz
VREFP Top internal reference voltage
Tmin= -40°C to Tmax= 85°C
1)
0.90 1.16 V
1.20 1.27 1.35 V
0.91 1.03 1.15 V
Vpol Analog bias voltage
Tmin= -40°C to Tmax= 85°C
1)
1.19 1.36 V
Ipol Analog bias current Normal operating mode 25 50 70 µA Ipol Analog bias current Shutdown mode 0 µA
0.48 0.57 0.65 V
VINCM Input common mode voltage
Tmin= -40°C to Tmax= 85°C
1). Not fully tes ted over the te m perature range. Guaranted by sampling.
1)
0.48 0.66 V
5/19
Page 6
TSA1001
CONDITIONS:
AVCC = DVCC = VCCB = 2.5V, Fs= 25Msps, Fin= 1MHz, Vin@ -1.0dBFS, VREFP=1V, VREFM= 0V
Tamb = 25°C (unless otherwise specified)
POWER CONSUMPTION
Symbol Parameter Test conditions Min Typ Max Unit
1)
ICCA Analog Supply current
Tmin= -40°C to Tmax= 85°C
1)
ICCD Digital Supply Current
Tmin= -40°C to Tmax= 85°C
1)
ICCB Digital Buffer Supply Current
Tmin= -40°C to Tmax= 85°C
ICCBZ
PdZ
Rthja
Rthjc
1).Rpol= 25KΩ. E quiva l en t l oad: Rloa d= 470 and Cload= 6pF
2). Not fully tes ted over the te m perature range. Guaranted by sampling.
Digital Buffer Supply Current in High Impedance Mode
Power consumption in normal
Pd
operation mode
Power consumption in High Impedance mode
Junction-ambient thermal resis­tor (TQFP48)
Junction-case thermal resistor (TQFP48)
1)
1)
Tmin= -40°C to Tmax= 85°C
1)
DIGITAL INPUTS AND OUTPUTS
1 1.8 14 mA
2)
14 mA
12mA
2)
2mA
1.4 5 mA
2)
5mA
40 100 µA
35 47 mW
2)
47 mW
32 37 mW
80 °C/W
18 °C/W
Symbol Parameter Test conditions Min Typ Max Unit
Digital inputs
VIL Logic "0" voltage 0.8 V VIH Logic "1" voltage 2.0 V
Digital Outputs
VOL Logic "0" voltage Iol=10µA 0.4 V VOH Logic "1" voltage Ioh=10µA 2.4 V IOZ High Impedance leakage current OEB set to VIH -1.5 1.5 µA
C
Output Load Capacitance 15 pF
L
ACCURACY
Symbol Parameter Test conditions Min Typ Max Unit
OE Offset Error -5 ±0.1 +5 %
DNL Differential Non Linearity -0.7 ±0.3 +0.7 LSB
INL Integral Non Linear ity -0.8 ±0.3 +0.8 LSB
Monotonicity and no missing
6/19
­codes
Guaranted
Page 7
TSA1001
CONDITIONS:
AVCC = DVCC = 2.5V, Fs= 25Msps Vin@ -1.0dBFS, VREFP=1V, VREFM= 0V
Tamb = 25°C (unless otherwise specified)
DYNAMIC CHARACTERISTICS
Symbol Parameter Test conditions Min Typ Max Unit
Fin= 5MHz
1)
Fin= 10MHz
SFDR Spurious Free Dynamic Range
Fin= 5MHz
2)
Fin= 10MHz
1)
2)
SNR Signal to Noise Ratio
Fin= 5MHz Fin= 10MHz
Fin= 5MHz Fin= 10MHz
1)
2)
THD Total Harmonic Distortion
Fin= 5MHz Fin= 10MHz
Fin= 5MHz Fin= 10MHz
1)
2)
SINAD
Signal to Noise and Distortion­Ratio
Fin= 5MHz Fin= 10MHz
Fin= 5MHz Fin= 10MHz
1)
2)
ENOB Effective Number of Bits
Fin= 5MHz Fin= 10MHz
Fin= 5MHz Fin= 10MHz
1). Rpol= 25KΩ. Equivalent load: Rload= 470 and Clo ad= 6pF
2).Tmin= -40°C to Tmax= 85°C. Not fully tested over th e temperatur e range. Guara nt ed by sampling .
66 66
66 66
58 58
58 58
63 63
62 62
58 58
58 58
9.5
9.5
9.5
9.5
80.5 76
59.3
59.3
79.5 75
59.0
59.0
9.70
9.70
dBc
dBc
dB
dB
dB
dB
dB
dB
bits
bits
7/19
Page 8
TSA1001
DEFINITIONS OF SPECIFIED PARAMETERS
STATIC PARAMETERS
Static measurements are performed through method of histograms on a 2MHz input signal, sampled at 25Msps, which is high enou gh to fully characterize the test frequ ency response. The in­put level is +1dBFS to saturate the signal.
Differential Non Linearity (DNL)
The average deviation of any output code width from the ideal code width of 1LSB.
Integral Non linearity (INL)
An ideal converter presents a transfer function as being the straight line from the starting code to the ending code. The INL is the deviation for each transition from this ideal curve.
DYNAMIC PARAMETERS
Dynamic measurements are performed by spectral analysis, appli ed to an inp ut sinewave of various frequencies and sampled at 25Msps.
Spurious Free Dynami c R ange (SFDR)
The ratio between the amp litude of fundament al tone (signal power) and the power of the worst spurious signal (not always an harmonic) over the full Nyquist band. It is expressed in dBc.
Total Harmonic Distortion (THD)
The ratio of the rms sum of the f irst five harm oni c distortion components to the rms value of the fundamental line. It is expressed in dB.
Signal to Noise Ratio (SNR)
The ratio of the rms value of the fundamental component to the rms sum of all other spectral components in the Nyquist band (f DC, fundamental and the first five harmonics.
/2) excluding
s
SNR is reported in dB.
Signal to Noise and Distorsion Ratio (SINAD)
Similar ratio as for SNR but including the harmonic distortion components in the noise figure (not DC signal). It is expressed in dB. From the SINAD, the Effective Number of Bits (ENOB) can easily be deduced using the formula: SINAD= 6.02 × ENOB + 1.76 dB. When the applied signal is not Full Scale (FS), but has an A becomes: SINAD= 6.02 × ENOB + 1.76 dB + 20 log (2A
amplitude, the SINAD expression
0
/FS)
0
The ENOB is expressed in bits.
Analog Input Bandwidth
The maximum analog input frequency at which the spectral response of a full power signal is reduced by 3dB. Higher values can be achieved with smaller input levels.
Effective Resolution Bandwidth (ERB)
The band of input signal frequencies that the ADC is intended to convert without loosing linearity i.e. the maximum analog input frequency at which the SINAD is decreased by 3dB or the ENOB by 1/2 bit.
Pipeline delay
Delay between time when the analog input is initially sampled and time when the corresponding digital data output is valid on the output bus. Also called data latency. It is expressed as a number of clock cycles.
8/19
Page 9
EQUIVALENT CIRCUITS
TSA1001
Figure 1 : Analog Input Circuit
AVCC=2.5V
VIN
(or V IN B )
PAD CAPACITANCE
7 pF
AGND=0V
Figure 2 : Input clock circuit
DVCC=2.5V
CLK
common mode
Figure 3 : Input buffers
VCC buf=2.5V
278.5 208.2355.5
DFS
7 pF
PAD CAPACITANCE
GND buff=0V
Figure 4 : Tri-state output buffers
VCC buf=2.5V
OE
PAD CAPACITANCE
7 pF
DGND=0V
DATA
GN D bu ff=0V
GND buff =0V
VCC b u f =2 .5V
OUT
2 mA OUTPUT BUFFER
PAD CAPAC ITANCE 7pF
9/19
Page 10
TSA1001
Static parameter: Integral Non Linearity
Fs=25MSPS; Fin=1MHz; Icca=11mA; N=131072pts
0.4
0.3
0.2
0.1
0
-0.1
INL (LSBs)
-0.2
-0.3
-0.4
-0.5 0 200 400 600 800 1000
Output C ode
Static parameter: Differential Non Linearity
Fs=25MSPS; Fin=1MHz; Icca=11mA; N=131072 pts
0.3
0.2
0.1
0
DNL (LSBs)
-0.1
-0.2
-0.3 0 200 400 600 800 1000
Linearity vs. AVcc
Fs=25MSPS; Icca=1 1mA; Fin=1MHz
61
60.5
60
59.5
59
58.5
Dynamic parameters (dB)
58
2.25 2.35 2.45 2.55 2.65
SNR
SINAD
ENOB
AVCC (V)
10
9.95
9.9
9.85
9.8
9.75
9.7
9.65
9.6
Output Code
ENOB (bits)
Distortion vs. AVcc
Fs=25MSPS; Icca=1 1mA; Fin=1MHz
-67
-69
-71
-73
-75
-77
-79
-81
-83
Dynamic Parameters (dB)
-85
2.25 2.35 2.45 2.55 2.65
THD
SFDR
AVCC (V)
10/19
Page 11
TSA1001
Linearity vs. DVcc
Fs=25MSPS; Icca=11mA; Fin=1MHz
61
60.5
60
59.5
59
58.5
SNR
SINAD
ENOB
Dynamic parameters (dB)
58
2.25 2.35 2.45 2.55 2.65
DVCC (V)
Linearity vs. VccB Fs=25MSPS; Icca=11mA; Fin=1MHz
61
60.5
60
59.5
59
58.5
Dynamic parameters (dB)
58
2.25 2.35 2.45 2.55 2.65
SNR
SINAD
ENOB
VCCB (V)
10
9.95
9.9
9.85
9.8
9.75
9.7
10
9.95
9.9
9.85
9.8
9.75
9.7
9.65
9.6
Distortion vs. DVcc
Fs=25MSPS; Icca=11mA; Fin=1MHz
-70
-71
-72
-73
-74
-75
ENOB (bits)
-76
-77
-78
-79
Dynamic Parameters (dB)
-80
2.25 2.35 2.45 2.55 2.65
THD
SFDR
DVCC (V)
Distortion vs. VccB Fs=25MSPS; Icca=11mA; Fin=1MHz
-71
-73
-75
-77
ENOB (bits)
-79
-81
-83
Dynamic Parameters (dB)
-85
2.25 2.35 2.45 2.55 2.65
THD
SFDR
VCCB (V)
Linearity vs. Fs
Icca=11mA; Fin=1MHz
64 62 60 58 56 54 52
Dynamic parameters (dB)
50
5 15253545
Fs (MHz)
ENOB
SNR
SINAD
10
9.5
9
8.5
8
7.5
7
Distortion vs. Fs
Icca=11mA; Fin=1MHz
-50
-55
-60
-65
ENOB (bits)
-70
-75
-80
Dynamic parameters (dB)
-85 5 15253545
THD
SFDR
Fs (MHz)
11/19
Page 12
TSA1001
y
p
(
)
R
Linearity vs. Fs
Icca=11mA; Fin=15MHz
64 62 60 58 56 54 52
Dynamic parameters (dB)
50
5 15253545
Fs (MHz)
Linearity vs. Fin Fs=25MSPS; Icca=11mA
70 68 66 64 62 60 58 56
Dynamic parameters (dB)
54
0 204060
SINAD
Fin (MH z)
SINAD
SNR
SNR
ENOB
ENOB
10
9.8
9.6
9.4
9.2 9
8.8
8.6
8.4
8.2 8
10
9.5
9
8.5
8
7.5
7
Distortion vs. Fs
Icca=11mA; Fin=15MHz
-50
-55
-60
-65
-70
ENOB (bits)
-75
-80
-85
Dynamic parameters (dB)
-90 5 15253545
THD
SFDR
Fs (MHz)
Distortion vs. Fin
Fs=25MSPS; Icca=11mA
-40
-45
dB
-50
-55
-60
-65
arameters
ENOB (bits)
-70
-75
-80
namic
-85
D
-90 010203040506070
Fin (MH z)
THD
SFD
Linearity vs.Temperatur e
Fs=25MSPS; Icca=11mA; Fin=5MHz
60
59.8
59.6
59.4
59.2 59
58.8
58.6
58.4
58.2
Dynamic Parameters (dB)
58
-50 0 50 100
SNR
SINAD
ENOB
Temperature (°C)
10
9.95
9.9
9.85
9.8
9.75
9.7
9.65
9.6
Distortion vs. Temperature
Fs=25MSPS; Icca=11mA; Fin=5MHz;
80
78
76
74
72
70
Dynamic Parameters (dB)
68
-50 0 50 100
THD
SFDR
Temperature (°C)
12/19
Page 13
TSA1001 APPLICATION NOTE
DETAILED INFORMATION
The TSA1001 is a High Speed analog to digital converter based on a pipeline architecture and the latest deep submicron CMOS process to achieve the best performances in terms of linearity and power consumption.
The pipeline structure cons ists of 9 internal con­version stages in whi ch the analog signal is fed and sequencially converted into digital data.
Each 8 first stages consists of an Analog to Digital converter, a Digital to Analog converter, a Sample and Hold and a gain of 2 amplifier. A 1. 5bit conver­sion resolution is achieved in e ach s tage . The lat­est stage simply is a comparator. Each res ulting LSB-MSB couple is then time shifted to recover from the conversion delay. Digital data correction completes the process ing by recovering from the redundancy of the (LSB-MSB) couple for each
OPERATIONAL MODES DESCRIPTION
Inputs Outputs
Analog input differential level DFSB OEB OR DR Most Significant Bit (MSB)
(VIN-VINB) > RANGE H L H CLK D9
-RANGE > (VIN-VINB) H L H CLK D9
RANGE> (VIN-VINB) >-RANGE H L L CLK D9
(VIN-VINB) > RANGE L L H CLK Complemented D9
-RANGE > (VIN-VINB) L L H CLK Complemented D9
RANGE> (VIN-VINB) >-RANGE L L L CLK Complemented D9
XXHHZHZHZ
stage. The corrected data are outputed through the digital buffers. Signal input is sampled on the rising edge of the clock while digital outputs are delivered on the fall­ing edge of the Data Ready signal. The advantages of such a convert er reside in the combination of pipeline architec ture and the most advanced technologies. The highest dynamic per­formances are achieved while consumption re­mains at the lowest level. Some functionalities hav e been added i n order to simplify as much as possible the application board. These operational m odes are described in the following table. The TSA1001 is pin to pin compatible with the 8bits/40Msps TSA0801, the 10bits/50Msps TSA1002 and t he 12bits/50Msps TSA1201. T his ensures a conformity within the product family and above all, an easy upgrade of the application.
Data Format Select (DFSB)
When set to low level (VIL), the digital input DFSB
provides a tw o’s complement d igital output MSB. This can be of interest when performing some fur­ther signal processing.
When set to high level (VIH), DFSB provides a standard binary output coding.
Output Enable (OEB)
When set to low level (VIL), all digital outputs re­main active and are in low impedance state. When set to high level (VIH), all digital outputs buffers are in high impedance state. This results in
13/19
lower consumption while the converter goes on sampling. When OEB is set to low level again, , the data is then valid on the output with a very short Ton de­lay. The timing diagram summarizes this operating cy­cle.
Out of Range (OR)
This function is im plemented on the output stage in order to set up an "Out of Range" flag whenever the digital data are over the full scale range. Typically, there is a detection of all the dat a bei ng at ’0’ or all the data being at ’1’. This ends up with an output signal OR which is in low level state
Page 14
TSA1001
(VOL) when the data stay within the range, or in high level state (VOH) when the data is out of the range.
Data Ready (DR)
The Data Ready output is an image of the clock being synchronized on the output data (D0 to D9). This is a very helpful signal that simplifies the syn­chronization of the measurement equipment or the cont ro llin g DSP.
As digital output, DR goes in high impedance state when OEB is as serted to High level as described in the timing diagram.
DRIVING THE ANALOG INPUT Differentia l inp u t s
The TSA1001 has been designed to obtain opti­mum performances when being differentially driv­en. An RF trans former is a good wa y to achieve such performances.
Figure 5 describes the schematics. The input s ig­nal is fed to the primary of the transformer, while the secondary drives both A DC inputs. The com­mon mode voltage of the ADC (INCM) is connect­ed to the center-tap of the secondary of the trans­former in order to bias the input signal around this common voltage, internally set to 0.56V. The INCM is decoupl ed to maintain a low noi se level on this node. Our evaluation board is mounted with a 1:1 ADT1-1 tran sformer from Minicircuits. You might a lso use a higher impedance ratio (1:2 or 1:4) to reduce the driving requirement on the analog signal source.
Each analog input can drive a 1Vpp amplitude in­put signal, so the resultant differential amplitude is 2Vpp.
Figure 5 : Differential input configuration
Analog source
50
ADT1-1
1:1
330pF
100pF
10nF
VIN
TSA1001
VINB
INCM
470nF
Single-ended input configuration
Some applications may requi re a single-ende d in­put which is easily achieved with the configuration reported on Figure 6.
In this case, it is recommended to use an AC-coupled analog input and connect the other analog input to the common mode voltage of the circuit (INCM) so as to properly bi as the ADC. The INCM may remain at the same internal level (0.56V) thus driving only a 1Vpp i nput amplitude, or it must be increased to 0.9V to drive a 2Vpp input amplitude. You wi ll get higher pe rform ances using a 2Vpp signal.
Figure 6 : Single-ended input configuration
Signal source
50
100nF
330pF
VIN
TSA1001
VINB
INCM
10nF
470nF
0.9V
Dynamic characteristics, while not being as re­markable as for differential configuration, are still of very good quality. Measurements done at 25Msps, 1MHz input frequency, -1dBFS input lev­el sum up these performances. An SFDR of
-69.5dBc, an SNR of 59.5dB and an ENOB Full Scale of 9.7bits are achieved.
REFERENCE CONNECTION Inte rnal ref erence
In the standard configuration, the ADC is bi ased with the internal reference voltage. VREFM pin is connected to Analog Ground while VREFP is internally set to a voltage of 1.03V. It is recommended to d ecouple the V R EF P i n order to minimize low and high frequency noise. Refer to Figure 7 for the schematics.
Figure 7 : Internal reference setting
VIN
1.03V VREFP
330pF
10nF
470nF
TSA1001
VINB
VREFM
14/19
Page 15
TSA1001
External reference
It is possible to use an external reference voltage instead of the internal one for specific applications requiring even better linearity or enhanced temperature behaviour. In this case, the amplitude of the external voltage must be at least equal to the internal one (1.03V). Using the STMicroelectronics Vref TS821 leads to optimum performances when configured as shown on Figure 8.
Figure 8 : External reference setting
1k
10nF
470nF
VCCA
VIN
TSA1001
VINB
VREFP
VREFM
330pF
TS821
external reference
At 15Msps sampling frequency, 1MHz input fre­quency and -1dBFS amplitude signal, perfor­mances can be improved of up to 2dBc on SFD R and 0.3dB on SINAD. At 25Msps sampling fre­quency, 1MHz input frequency and -1dBFS ampli­tude signal, performanc es can be improve d of up to 1dBc on SFDR and 0.5dB on SINAD.
This can be very helpful for example for multichan­nel application to keep a good matching among the sampling frequency range.
Clock input
The quality of your converter is very dependant on your clock input accuracy, in terms of aperture jit­ter; the use of low jitter crystal controlled oscillator is recommended.
The duty cycle must be between 45% and 55%. The clock power supplies must be separated from
the ADC output ones to avoid digital noise modu­lation at the output.
It is recommended to always keep the circuit clocked, even at the lowest specified sampling frequency of 0.5Msps, before applying the supply voltages.
Power con s um p t io n optimizatio n
The internal architecture of the TSA10 01 enables to optimize the power c onsumption according to the sampling frequency of the application. For this
purpose, a resistor is placed between I POL and the analog Ground pins.
The TSA1001 will com bine highest performa nces and lowest consumption at 25Msps when Rpol is equal to 25k.
At lower sampling frequency range (< 10Msps), this value of resistor may be adjusted in order to decrease the analog current without any degradation of dynamic performances.
As an example, 10mW total power consumption is achieved at 5 Msps with Rpol equal to 390k.
The table below sums up the relevant data.
Total power consumption optimization depending on Rpol value
Fs (Msps) 5 15 25
kΩ)
Rpol ( Optimized
power (mW)
390 40 25
10 25 35
Layout precautions
To use the ADC circuits in the best manner at high frequencies, some precautions have to be taken for power supplies:
- First of all, the implementation of 4 separate proper supplies and ground planes (analog, digital, internal and external buffer ones) on the PCB is mandatory for high speed circuit applications to provide low inductance and low resistance common return.
The separation of the analog signal from the digital part is essential to prevent noise from coupling onto the input signal.
- Power supply bypass capacitors must be placed as close as possible to the IC pins in order to improve high frequency bypassing and reduce harmonic distortion.
- Proper termination of all inputs and outputs must be incorporated with output termination resistors; then the amplifier load will be only resistive and the stability of the am plifier will be im proved. All leads must be wide and as short as possible especially for the analog input in order to decrease parasitic capacitance and inductance.
- To keep the capacitive loading as low as possible at digital outputs, short lead lengths of routing are essential to minimize currents when the output changes. To minimize this output capacitance, buffers or latches close to the output pins will relax this constraint.
- Choose component sizes as small as possible (SMD).
15/19
Page 16
TSA1001
EVAL1002 evaluation board
The characterization of the board has been made with a fully ADC devoted test bench as shown on Figure 10. The analog signal must be filtered t o be very pure.
The dataready signal is the acquisition clock of the logic analyzer. The ADC digital outputs are latched by the octal buffers 74LCX573. All characterization measurements have been made with: SFSR=+0.2dB for static parameters.­SFSR=-0.5dB for dynamic parameters.
Figure 9 : Analog to Digital Converter characterization bench
Power
HP8644B
Sine wave Generator
Vin
HP8133A
ADC
evaluation
board
ck
Pulse
Generator
data
dataready
Analyzer
TLA704
Logic
HP8644B
Sine Wave Generator
16/19
Page 17
Figure 10 : TSA1001 Evaluation board schematic
TSA1001
J6
123456789
DR
2
VCCB2
1
J17
VDDBUFF3V
+
C34
47µ
2 1
J13
2 1
J11
2 1
J10
OEB
2 1
J9
DFSB
R10
47K
R11
47K
R12
47K
R13
47K
10nF
C26
C39
C37
470nF
VCCB1
10nF
C25
C27
C28
470nF
AVCC
C14
C15
10nF
C16
470nF
Raj1
47K
R2
D1D2D3D4D5
DO
20
Q019Q118Q217Q316Q415Q514Q613Q7
VCC
330pF
OEB1D02D13D24D35D46D57D68D79GND
R19
47K
R18
47K
R17
47K
R16
47K
R15
47K
R14
47K
330pF
330pF
1K
1011121314151617181920212223242526272829303132
D7D8D9
D6
D10
D11
20
12
11
LE
Q019Q118Q217Q316Q415Q514Q613Q7
VCC
U2
36
D0
37
DR
38 39 40 41
NC
42
NC
43
OEB
44
DFSB
45
AVCC
46
AVCC
47
AGND
48
Ipol1Vref P2Vref M3AGND4Vin5AGND6VINB7AGND8INCM9AGND10AVCC11AVCC
C11
330pF
C12
10nF
C13
470nF
C30
330pF
10nF
C31
C32
470nF
74LCX573
OEB1D02D13D24D35D46D57D68D79GND
10
2.5VCCBUFF
GNDBUFF
2.5VCCBUFF
8-14bits ADC
TSA1001
U3
27
D928D829D730D631D532D433D334D235D1
D1225D1126D10
D13 OR
2.5VCCBUFF GNDBUFF GNDBUFF DGND NC DGND CLK DGND DVCC DVCC
12
C2
330pF
C4
10nF
C3
470nF
32PIN
OR
D12
D13
12
11
LE
74LCX573
10
24 23 22 21 20 19 18 17 16 15 14 13
C38
C29
C40
470nF
+
C17
10µF
T1
43 2
6
C20
10nF
C33
330pF
VCCB1
1 2
+
J18
330pF
C18
10nF
C19
470nF
C24
T2-AT1-1WT
R3
50
1
330pF
C21
10nF
C22
470nF
C23
VccB1
10µ
C35
47µ
J4
CLJ/SMB
1 2
J16
CON2
C36
47µ
+
1
10µ
2
J15
DVCC
AVCC
C5
330pF
C8
330pF
C1
100pF
C6
10nF
C9
10nF
4326
C7
470nF
C10
470nF
T2
T2-AT1-1WT
R1
50
1
1
2
1
J2
2
Vref P
J5
Vref M
J1
Vin
1
2
1
J7
Regl com mode
J8
C41
10µF
C42
47µF
+
1
2
2
Mes co m Mode
1
2
1
2
1
2
1
J12
AVCC
J19
AGND
J20
DGND
J21
2
GndB2
J22
GndB1
17/19
Page 18
TSA1001
Regl com mode
74LCX 573
74LCX 573
Figure 11 : Printed circuit board - Top side silkscreen
Print ed circui t board - Li st of comp onents
Part Design Footprint Part Design Footprint Part Design Foo tprint P art D esign F ootprint
ator
Type 10 u F C 2 4 1210 10 u F C 2 3 1210 10 u F C 4 1 1210 10 u F C 2 9 1210 100pF C1 603 10 n F C 12 6 0 3 10 n F C 3 9 6 0 3 10 n F C 15 6 0 3 10 n F C 4 0 6 0 3 10 n F C 2 7 6 0 3 10 n F C 4 6 0 3 10 n F C 2 1 6 0 3 10 n F C 3 1 6 0 3 10 n F C 6 6 0 3 10 n F C 9 6 0 3 10 n F C 18 6 0 3 1K
R2 603
32P IN J6 IDC32 330pF C 25 603
330pF C 26 603
ator
Type 330pF C33 603 470nF C7 805 AVCC J12 FICHE2M M 330pF C20 603 470nF C16 805 CLJ/SM B J4 SM B/H 330pF C8 603 470nF C19 805 AGND J19 FICHE2MM 330pF C2 603 470nF C3 805 DFSB J9 FICHE2M M 330pF C5 603 330pF C11 603 330pF C30 603 330pF C17 603 330pF C14 603 47uF C36 C A P 47uF C34 C A P 47uF C35 C A P 47uF C42 C A P 470nF C22 805 470nF C32 805 470nF C37 805 470nF C38 805 470nF C13 805 470nF C28 805 470nF C10 805 C O N 2 J16 SIP2
Type
47K 47K 47K 47K 47K 47K 47K 47K 47K 47K 47K 50 50
ator
R12 603 DGND J20 FICHE2MM
R14 603 DVCC J15 FICHE2M M
R11 603 GndB1 J22 FICHE2M M
Raj1 VR5 GndB2 J21 FICHE2MM
R 10 603 M es com m o de J8 F ICH E 2M M
R19 603 OEB J10 FICHE2MM
R13 603
R15 603 T2-A T1-1WT T2 ADT
R16 603 T2-A T1-1WT T1 ADT
R17 603 VccB1 J18 FICHE2MM
R18 603 VDDBUFF3V J17 FICHE2M M
R3 603 Vin J1 SM B/H
R1 603 VrefM J5 FICHE2M M U3 T S SO P 20 VrefP J2 F ICH E2M M U2 TS S OP 2 0 TS A 1001 U1 T Q F P 48
Type
ator
J7 F ICH E 2M M
18/19
Page 19
PACKAGE MECHANICAL DATA 48 PINS - PLASTIC PACKAGE
48 37
e
1
36
E3
E1
TSA1001
A
A2
A1
0,10 mm .004 inch
SEATING PLANE
B
E
12
13 24
D3
25
c
D1
D
L1
L
0,25 mm .010 inch
K
Millimeters Inches
Dim.
Min. Typ. Max. Min. Typ. Max.
A 1.60 0.063 A1 0.05 0.15 0.002 0.006 A2 1.35 1.40 1.45 0.053 0.055 0.057
B 0.17 0.22 0.27 0.007 0.009 0.011
C 0.09 0.20 0.004 0.008
D 9.00 0.354 D1 7.00 0.276 D3 5.50 0.216
e 0.50 0.0197
E 9.00 0.354 E1 7.00 0.276 E3 5.50 0.216
L 0.45 0.60 0.75 0.018 0.024 0.030
L1 1.00 0.039
K 0° (min.), 7° (max.)
Information furnished is bel ieved to be accurate and reliable. However, STMicroe lectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No li cense is granted by imp lication or otherwise under any patent or patent rig hts of STMicroelectronics. Specificat ions mentioned in this publication ar e subject to change without notice. This publication supersedes and replaces all information previously supplied. S TMicroelectronics products are not authorized for use as critica l components in life suppo rt devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
GAGE PLANE
© 2000 STM icroelectronics - Pri n ted in Italy - All Ri g h ts Reserved
STMicr o el ectronics GROUP OF COMPANI E S
Australi a - Brazil - China - Finland - F rance - Germany - Hong Kong - I ndi a - Italy - Japan - Malaysia - Malta - Morocc o
Singapo re - Spain - Swe den - Switzerl and - United Kingdom
© http://www.st.com
19/19
Loading...