YellowTLRY4420GaAsP on GaP30
GreenTLRG4420GaP on GaP30
TLR.442.
±
ö
°°°°
Description
These devices are developed for the automotive
industry with special requirements as for EMC (electro
magnetic compatibility) in motor vehicles with 12 V
supply voltage.
They are resistant against transient conduction (high
voltage spikes) and interferences by conduction and
coupling.
The TLR.442. series contains an integrated resistor for
current limiting in series with the LED chip. This allows
the lamp to be driven from a 12 V source without an
external current limiter.
Available colors are red, soft orange, yellow and
green. These tinted diffused lamps provide a wide
off-axis viewing angle.
These LEDs are intended for space critical
applications such as automobile instrument panels,
switches and others which are driven from a 12 V
source.
Features
D
With current limiting resistor for 12 V
D
EMC specified (DIN 40 839)
D
Resistant against transient high voltage spikes
D
Cost effective: save space and resistor cost
D
Standard ø 3 mm (T-1) package
D
Wide viewing angle
D
Choice of four bright colors
D
Luminous intensity categorized
D
Yellow and green color categorized
94 8488
Applications
Status light in cars
OFF / ON indicator in cars
Background illumination for switches
Off / On indicator in switches
Document Number 83045
Rev. A1, 04-Feb-99
www.vishay .de • FaxBack +1-408-970-5600
1 (9)
TLR.442.
Vishay Telefunken
Absolute Maximum Ratings
T
= 25_C, unless otherwise specified
amb
TLRH4420 ,TLRO4420 ,TLRY4420 ,TLRG4420 ,
ParameterTest ConditionsSymbolValueUnit
Reverse voltageV
Forward voltageT
Power dissipationT
≤ 65°CV
amb
≤ 65°CP
amb
Junction temperatureT
Storage temperature rangeT
Soldering temperaturet ≤ 5 s, 2 mm from bodyT
Thermal resistance junction/ambientR
R
F
V
j
stg
sd
thJA
Optical and Electrical Characteristics
T
= 25_C, unless otherwise specified
amb
High efficiency red (TLRH4420 )
ParameterTest ConditionsTypeSymbolMinTypMaxUnit
Luminous intensityVF = 12 VI
Dominant wavelengthVF = 12 V
Peak wavelengthVF = 12 V
V
l
d
l
p
Angle of half intensityVF = 12 Vϕ±30deg
Forward currentVS = 12 VI
Breakdown voltageIR = 10 mAV
F
BR
Junction capacitanceVR = 0, f = 1 MHzC
1.64mcd
612625nm
670V
j
6V
16V
240mW
100
–55 to +100
260
150K/W
635nm
1012mA
50pF
°
C
°
C
°
C
Soft orange (TLRO4420 )
ParameterTest ConditionsTypeSymbolMinTypMaxUnit
Luminous intensityVF = 12 VI
Dominant wavelengthVF = 12 V
Peak wavelengthVF = 12 V
V
l
d
l
p
410mcd
598611nm
605nm
Angle of half intensityVF = 12 Vϕ±30deg
Forward currentVS = 12 VI
Breakdown voltageIR = 10 mAV
Junction capacitanceVR = 0, f = 1 MHzC
F
BR
670V
j
1012mA
50pF
Yellow (TLRY4420 )
ParameterTest ConditionsTypeSymbolMinTypMaxUnit
Luminous intensityVF = 12 VI
Dominant wavelengthVF = 12 V
Peak wavelengthVF = 12 V
V
l
d
l
p
1.64mcd
581594nm
585nm
Angle of half intensityVF = 12 Vϕ±30deg
Forward currentVS = 12 VI
Breakdown voltageIR = 10 mAV
Junction capacitanceVR = 0, f = 1 MHzC
F
BR
670V
j
1012mA
50pF
www.vishay .de • FaxBack +1-408-970-5600Document Number 83045
2 (9)
Rev. A1, 04-Feb-99
TLR.442.
Vishay Telefunken
Green (TLRG4420 )
ParameterTest ConditionsTypeSymbolMinTypMaxUnit
Luminous intensityVF = 12 VI
Dominant wavelengthVF = 12 V
Peak wavelengthVF = 12 V
V
l
d
l
p
Angle of half intensityVF = 12 Vϕ±30deg
Forward currentVS = 12 VI
Breakdown voltageIR = 10 mAV
F
BR
Junction capacitanceVR = 0, f = 1 MHzC
1.64mcd
562575nm
565nm
1012mA
670V
j
50pF
Typical Characteristics (T
20
High Efficiency Red
18
16
14
12
10
8
6
4
F
I – Forward Current ( mA )
2
0
0 2 4 6 8 101214161820
VF – Forward Voltage ( V )95 11434
Figure 1 Forward Current vs. Forward Voltage
1.5
High Efficiency Red
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
Frel
I – Relative Forward Current
0.6
0.5
–30–20–10 0 10 20 30 40 50 60 70 80 90 100
T
– Ambient Temperature ( °C )95 11435
amb
Figure 2 Relative Forward Current vs.
Ambient Temperature
VS = 12 V
= 25_C, unless otherwise specified)
amb
1.5
High Efficiency Red
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
Frel
V – Relative Forward Voltage
0.6
0.5
–30–20–10 0 10 20 30 40 50 60 70 80 90 100
T
– Ambient Temperature ( °C )95 11436
amb
Figure 3 Relative Forward Voltage vs.
Ambient Temperature
1.4
High Efficiency Red
1.2
1.0
0.8
0.6
0.4
0.2
Vrel
I – Relative Luminous Intensity
0
0246810121416
VF – Forward Voltage ( V )95 11456
Figure 4 Relative Luminous Intensity vs. Forward Voltage
IF = 10 mA
Document Number 83045
Rev. A1, 04-Feb-99
www.vishay .de • FaxBack +1-408-970-5600
3 (9)
TLR.442.
Vishay Telefunken
1.6
1.4
1.2
1.0
0.8
0.6
0.4
Vrel
0.2
I – Relative Luminous Intensity
0
0 102030405060708090100
T
– Ambient Temperature ( °C )95 11437
amb
VS = 12 VHigh Efficiency Red
Figure 5 Rel. Luminous Intensity vs.
Ambient Temperature
1.2
High Efficiency Red
1.0
0.8
0.6
0.4
0.2
v rel
I – Relative Luminous Intensity
95 10040
0
590610630650670
l
– Wavelength ( nm )
690
Figure 6 Relative Luminous Intensity vs. Wavelength
1.5
Soft Orange
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
Frel
I – Relative Forward Current
0.6
0.5
–30–20–10 0 10 20 30 40 50 60 70 80 90 100
T
– Ambient Temperature ( °C )95 10835
amb
VS = 12 V
Figure 8 Relative Forward Current vs.
Ambient Temperature
1.5
Soft Orange
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
Frel
V – Relative Forward Voltage
0.6
0.5
–30–20–10 0 10 20 30 40 50 60 70 80 90 100
T
– Ambient Temperature ( °C )95 10836
amb
IF = 10 mA
Figure 9 Relative Forward Voltage vs.
Ambient Temperature
20
Soft Orange
18
16
14
12
10
8
6
4
F
I – Forward Current ( mA )
2
0
0 2 4 6 8 101214161820
VF – Forward Voltage ( V )95 10834
Figure 7 Forward Current vs. Forward Voltage
1.4
Soft Orange
1.2
1.0
0.8
0.6
0.4
0.2
Vrel
I – Relative Luminous Intensity
0
0246810121416
VF – Forward Voltage ( V )95 10837
Figure 10 Relative Luminous Intensity vs.
Forward Voltage
www.vishay .de • FaxBack +1-408-970-5600Document Number 83045
4 (9)
Rev. A1, 04-Feb-99
TLR.442.
Vishay Telefunken
1.6
1.4
1.2
1.0
0.8
0.6
0.4
Vrel
0.2
I – Relative Luminous Intensity
0
0 102030405060708090100
T
– Ambient Temperature ( °C )95 10838
amb
VS = 12 VSoft Orange
Figure 11 Rel. Luminous Intensity vs.
Ambient Temperature
1.2
Soft Orange
1.0
0.8
0.6
0.4
0.2
v rel
I – Relative Luminous Intensity
95 10324
0
570590610630650
l
– Wavelength ( nm )
670
Figure 12 Relative Luminous Intensity vs. Wavelength
1.5
Yellow
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
Frel
I – Relative Forward Current
0.6
0.5
–30–20–10 0 10 20 30 40 50 60 70 80 90 100
T
– Ambient Temperature ( °C )95 11439
amb
VS = 12 V
Figure 14 Relative Forward Current vs.
Ambient Temperature
1.5
Yellow
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
Frel
V – Relative Forward Voltage
0.6
0.5
–30–20–10 0 10 20 30 40 50 60 70 80 90 100
T
– Ambient Temperature ( °C )95 11457
amb
IF = 10 mA
Figure 15 Relative Luminous Intensity vs.
Forward Voltage
20
Yellow
18
16
14
12
10
8
6
4
F
I – Forward Current ( mA )
2
0
0 2 4 6 8 101214161820
VF – Forward Voltage ( V )95 11438
Figure 13 Forward Current vs. Forward Voltage
Document Number 83045
Rev. A1, 04-Feb-99
1.4
Yellow
1.2
1.0
0.8
0.6
0.4
0.2
Vrel
I – Relative Luminous Intensity
0
0246810121416
VF – Forward Voltage ( V )95 11458
Figure 16 Relative Luminous Intensity vs.
Forward Voltage
www.vishay .de • FaxBack +1-408-970-5600
5 (9)
TLR.442.
Vishay Telefunken
1.6
YellowVS = 12 V
1.4
1.2
1.0
0.8
0.6
0.4
Vrel
0.2
I – Relative Luminous Intensity
0
0 102030405060708090100
T
– Ambient Temperature ( °C )95 11440
amb
Figure 17 Rel. Luminous Intensity vs.
Ambient Temperature
1.2
Yellow
1.0
0.8
0.6
0.4
0.2
v rel
I – Relative Luminous Intensity
95 10039
0
550570590610630
l
– Wavelength ( nm )
650
Figure 18 Relative Luminous Intensity vs. Wavelength
1.5
Green
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
Frel
I – Relative Forward Current
0.6
0.5
–30–20–10 0 10 20 30 40 50 60 70 80 90 100
T
– Ambient Temperature ( °C )95 11442
amb
VS = 12 V
Figure 20 Relative Forward Current vs.
Ambient Temperature
1.5
Green
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
Frel
V – Relative Forward Voltage
0.6
0.5
–30–20–10 0 10 20 30 40 50 60 70 80 90 100
T
– Ambient Temperature ( °C )95 11443
amb
IF = 10 mA
Figure 21 Relative Forward Voltage vs.
Ambient Temperature
20
Green
18
16
14
12
10
8
6
4
F
I – Forward Current ( mA )
2
0
0 2 4 6 8 101214161820
VF – Forward Voltage ( V )95 11441
Figure 19 Forward Current vs. Forward Voltage
1.4
Green
1.2
1.0
0.8
0.6
0.4
0.2
Vrel
I – Relative Luminous Intensity
0
0246810121416
VF – Forward Voltage ( V )95 11444
Figure 22 Relative Luminous Intensity vs.
Forward Voltage
www.vishay .de • FaxBack +1-408-970-5600Document Number 83045
6 (9)
Rev. A1, 04-Feb-99
1.6
1.4
1.2
1.0
0.8
0.6
0.4
Vrel
0.2
I – Relative Luminous Intensity
0
0 102030405060708090100
T
– Ambient Temperature ( °C )95 11445
amb
Figure 23 Rel. Luminous Intensity vs.
Ambient Temperature
1.2
Green
1.0
TLR.442.
Vishay Telefunken
0°
10°20
°
VS = 12 VGreen
1.0
0.9
0.8
0.7
v rel
I – Relative Luminous Intensity
0.40.200.20.4
0.6
95 10042
Figure 25 Rel. Luminous Intensity vs.
Angular Displacement
30°
40°
50°
60°
70°
80°
0.6
0.8
0.6
0.4
0.2
v rel
I – Relative Luminous Intensity
95 10038
0
520540560580600
l
– Wavelength ( nm )
620
Figure 24 Relative Luminous Intensity vs. Wavelength
Document Number 83045
Rev. A1, 04-Feb-99
www.vishay .de • FaxBack +1-408-970-5600
7 (9)
TLR.442.
Vishay Telefunken
Dimensions in mm
95 10913
www.vishay .de • FaxBack +1-408-970-5600Document Number 83045
8 (9)
Rev. A1, 04-Feb-99
TLR.442.
Vishay Telefunken
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating
systems with respect to their impact on the health and safety of our employees and the public, as well as their
impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as
ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. V arious national and international initiatives are pressing for an earlier ban
on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of
ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer application
by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the
buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or
indirectly , any claim of personal damage, injury or death associated with such unintended or unauthorized use.