Datasheet TLP270M, TLP270G-1, TLP270G, TLP200M, TLP200G-1 Datasheet (SGS Thomson Microelectronics)

...
TLPxxM/G/G-1
ApplicationSpecific Discretes
MAINAPPLICATIONS
Anysensitive telecomequipmentrequiringprotec­tionagainst lightning :
Analogand ISDN line cards MainDistributionFrames Terminaland transmissionequipment Gas-tubereplacement
DESCRIPTION
The TLPxxM/G/G-1 series are tripolar transient surge arrestors used for primary and secondary protectionin sensitivetelecomequipment.
FEATURES
TRIPOLARCROWBAR PROTECTION VOLTAGE RANGE SELECTED FOR
TELECOMAPPLICATIONS
PROTECTIONfor TELECOM LINE
TRIPOLAR OVERVOLTAGE
GND
TIP
PowerSO-10TMTLPxxM
GND
TAB
GND
D2PAK TLPxxG
RINGTIP RINGTIP RING RINGTIP RINGTIP
RINGTIP
REPETITIVEPEAK PULSE CURRENT:
= 100A (10/ 1000µs)
I
PP
HOLDINGCURRENT: I
= 150mA
H
LOWCAPACITANCE: C = 110 pF typ. LOWLEAKAGECURRENT: I
=5µA max
R
BENEFITS
No ageing and no noise. If destroyed, the TLPxxM/G/G-1 falls into short
circuit,still ensuringprotection. Access to Surface Mount applications thanks to
TM
the PowerSO-10
TM: ASD and PowerSO-10 are trademarks of ST Microelectronics.
September 1998 - Ed : 3C
andD2PAKpackage.
2
I
PAK TLPxxG-1
GND
TAB
GND RINGTIP
1/14
TLPxxM/G/G-1
COMPLIESWITH THE
FOLLOWINGSTANDARDS:
PeakSurge
Voltage
(V)
Voltage
Waveform
(µs)
Current
Waveform
(µs)
Admissible
Ipp
(A)
Necessary
Resistor
CCITTK20 4000 10/700 5/310 100 ­VDE0433
4000 10/700 5/310 100 ­VDE0878 4000 1.2/50 1/20 100 ­IEC-1000-4-5 level 4
level 4
FCC Part68, lightningsurge type A
FCC Part68, lightningsurge
1500
800
1000 5/320 5/320 25 -
10/700
1.2/50
10/160 10/560
5/310
8/20
10/160 10/560
100 100
200 100
type B BELLCORETR-NWT-001089
FIRSTLEVEL BELLCORETR-NWT-001089
2500
1000
2/10
10/1000
2/10
10/1000
500 100
5000 2/10 2/10 500 ­SECONDLEVEL
CNETI31-24 4000 0.5/700 0.8/310 100 -
TYPICALAPPLICATION Primaryprotection module
()
-
-
-
-
-
-
TLPxxM/G/G-1
Main Distribution Frame
Analog line card protection
LINE A
TLPxxM/G/G-1
PTC
RING
RELAY
LCP1511D
Analog
Line
Card
220
-Vbat
SLIC
nF
2/14
LINE B
PTC
TYPICALAPPLICATION ISDN: U interfaceprotection
TLPxxM/G/G-1
TLPxxM/G/G-1
PARAMETER MEASUREMENT INFORMATION
Symbol Description
I
PP
I
TSM
I
I
RM
I
V
R
H
BR
Peak pulse current Maximumpeak on-statecurrent Leakagecurrent Leakagecurrent Holdingcurrent Breakdownvoltage
1/2 DA108S1
+5V
Power
Feeder
R3
R4
R5
IRM
IPP
IR
Internal
circuitry
IH
VRM
VRVBO
V
R
V
RM
V
BO
Continuousreversevoltage Maximumstand-off voltage Breakovervoltage
C Capacitance
ABSOLUTE MAXIMUMRATINGS
(T
amb
=25°C)
Symbol Parameter Value Unit
I
PP
I
TSM
Peakpulse current(longitudinal& transversalmode) : 10/1000µs (opencircuitvoltagewaveform1 kV 10/1000µs) 8/20µs (opencircuit voltagewaveform4 kV 1.2/50µs) 2/10µs (opencircuit voltage waveform2.5kV 2/10 µs)
Mainspowerinduction
t = 200ms 0.7 A
100 250 500
VRMS= 300V,R = 600 Mainspowercontact V
= 220V,R =10(Fail-Safethreshold) t = 200 ms
RMS
=220V, R = 600
V
RMS
T
stg
Storagetemperaturerange - 55 to+ 150 °C
t = 15 mn 0.42 A
31 A
Tj Maximumoperatingjunctiontemperature 150 °C
T
L
T
OP
Maximumleadtemperaturefor solderingduring10 s 260 °C Operatingtemperaturerange - 40 to+ 85 °C
A A A
3/14
TLPxxM/G/G-1
THERMALRESISTANCE
Symbol Parameter Value Unit
Rth (j-c) Junctionto case TLPxxM
TLPxxG
TLPxxG-1
Rth (j-a) Junctionto ambient TLPxxM
TLPxxG
TLPxxG-1
seetable page 14 seetable page 14 seetable page 14
1.0
1.0
1.0
C/W
°
°C/W
ELECTRICAL CHARACTERISTICS BETWEEN TIP AND RING
@V
I
Type
RM
max. max. typ.
RM
(T
amb
IR@V
=25°C)
R
note
µAVµAVpF
TLP140M/G/G-1 TLP200M/G/G-1 TLP270M/G/G-1
Note : VR= 50 V bias, V
= 1V, F = 1 MHz.
RMS
ELECTRICALCHARACTERISTICS BETWEEN TIP AND GND, RINGAND GND(T
I
RM
Type
max.
5 120 50 140 35 5 180 50 200 35 5 230 50 270 35
=25°C)
amb
@V
RM
IR@V
R
V
BO
I
BO
@
IH C @ V
max. max. max. min. typ.
note 1 note 2 note 3 note 4 note 5
µAVµAV VmAmApFpF
TLP140M/G/G-1
5 120 50 140 200 500 150 110 40
TLP200M/G/G-1 5 180 50 200 290 500 150 110 40 TLP270M/G/G-1
Note 1: IRmeasured at VRguaranteesV Note 2: Measured at 50 Hz. Note 3: See functional holdingcurrent test circuit. Note 4: VR= 0V bias, V Note 5: VR= 50V bias, V
5 230 50 270 400 500 150 110 40
BR min>VR
= 1V, F = 1 MHz.
RMS
= 1V, F = 1 MHz (TIPor RING (-) / GND (+)).
RMS
.
C
R
4/14
FUNCTIONAL HOLDING CURRENT (IH) TEST CIRCUIT: GO-NO GOTEST
R
V
BAT
=
-48V
D.U.T .
TLPxxM/G/G-1
-V
P
Surge
generator
This is a GO-NOGO test which allowsto confirmthe holdingcurrent (IH)level in a functionaltest circuit.
TESTPROCEDURE:
- Adjust the currentlevelat theI
- FiretheD.U.T. with a surgecurrent: I
value by short circuitingthe D.U.T.
H
=10A, 10/1000µs.
PP
- The D.U.T.will come back to the off-statewithin a durationof 50ms max.
MARKING
Package Types Marking
PowerSO-10 TLP140M
TLP200M TLP270M
2
PAK TLP140G
D
TLP200G TLP270G
2
PAK TLP140G-1
I
TLP200G-1 TLP270G-1
TLP140M TLP200M TLP270M
TLP140G TLP200G TLP270G
TLP140G TLP200G TLP270G
ORDERCODE
TripolarLine Protection
TPL 270 M-TR
BreakdownVoltage
Packaging:
-TR=tapeandreelonlyfor”M”versi on(600pcs) = tube(50 pcs)
Package: M: PowerSO10
2
PAK
G:D
2
G-1: I
PAK
5/14
TLPxxM/G/G-1
Fig.1: Maximum peak on-statecurrent versus
pulseduration.
ITSM(A)
100
90 80 70 60 50 40 30 20 10
0
0.01 0.1 1 10 100 1000
TIP or RING
vs GND
t(s)
F=50Hz Tj initial=25°C
Fig.3-1 :junction capacitanceversus applied re­versevoltage(typical values)(TLP140M/G/G-1).
C(pF)
200
100
50
LINE+ /GND-
LINE / LINE
LINE- / GND+
F=1MHz
Vosc=1VRMS
Tj=25°C
Fig.2: Relativevariation of IHversusT
IH (Tamb) / IH (25°C)
2
1.8
1.6
1.4
1.2 1
0.8
0.6
0.4
-40-200 20406080
Fig.3-2 :
junctioncapacitanceversus appliedre-
Tamb(°C)
amb
.
versevoltage(typical values)(TLP200M/G/G-1).
C(pF)
200
100
50
LINE+ / GND-
LINE / LINE
LINE- /GND+
F=1MHz
Vosc=1VRMS
Tj=25°C
20
VR(V)
10
1 10 100 200
Fig.3-3 :junction capacitanceversus applied re­versevoltage(typical values)(TLP270M/G/G-1).
C(pF)
200
100
50
LINE / LINE
LINE- / GND+
LINE+ / GND-
20
VR(V)
10
1 10 100 300
F=1MHz
Vosc=1VRMS
Tj=25°C
20
VR(V)
10
1 10 100 200
Fig.4: Test diagram for breakover voltage measurement.
TIP
10 / 1000 µs
100 A
surgegenerator
BO
V
TIP RING
GND
RING
V
BO
TIP - GND
6/14
TLPxxM/G/G-1
Fig.5-1 : Breakovervoltagemeasurement
(TLP140M/G/G-1).
Vbr/Vbr
2.6
2.4
2.2 2
1.8
1.6
1.4
1.2 1
0.01 0.1 1 10 100 1,000 10,000 100,000
TIP RING
TIP+ GND -
TIP- GND +
dV/dt
Fig.5-3 : Breakovervoltagemeasurement
(TLP270M/G/G-1).
Vbo/Vbr
2.6
2.4
2.2 2
1.8
1.6
1.4
1.2 1
0.01 0.1 1 10 100 1,000 10,000 100,000
TIP RING
TIP+ GND -
TIP- GND +
dV/dt
Fig. 5-2 :
Breakovervoltage measurement
(TLP200M/G/G-1).
Vbo/Vbr
2.6
2.4
2.2 2
1.8
1.6
1.4
1.2 1
0.01 0.1 1 10 100 1,000 10,000 100,000
TIP RING
TIP+ GND -
TIP- GND +
dV/dt
7/14
TLPxxM/G/G-1
PACKAGEMECHANICAL DATA
2
D
PAK Plastic
E
L2
L
L3
A1
B2 B
G
2.0 MIN. FLAT ZONE
C2
DIMENSIONS
A
REF.
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 4.30 4.60 0.169 0.181 A1 2.49 2.69 0.098 0.106 A2 0.03 0.23 0.001 0.009
D
B 0.70 0.93 0.027 0.037 B2 1.40 0.055
C 0.45 0.60 0.017 0.024 C2 1.21 1.36 0.047 0.054
C
R
D 8.95 9.35 0.352 0.368
E 10.00 10.28 0.393 0.405
G 4.88 5.28 0.192 0.208
L 15.00 15.85 0.590 0.624
A2
L2 1.27 1.40 0.050 0.055 L3 1.40 1.75 0.055 0.069
R 0.40 0.016
V2
V2 0° 8° 0° 8°
FOOT-PRINT D
10.30
2
PAK
8.90
16.90
5.08
1.30
3.70
8/14
PACKAGEMECHANICAL DATA
2
PAK Plastic
I
TLPxxM/G/G-1
DIMENSIONS
REF.
A 4.30 4.60 0.169 0.181
A1 2.49 2.69 0.098 0.106
B 0.70 0.93 0.028 0.037 B1 1.20 1.38 0.047 0.054 B2 1.25 1.40 0.049 0.055
C 0.45 0.60 0.018 0.024 C2 1.21 1.36 0.048 0.054
D 8.95 9.35 0.352 0.368
e 2.44 2.64 0.096 0.104
E 10.00 10.28 0.394 0.405
L 13.10 13.60 0.516 0.535 L1 3.48 3.78 0.137 0.149 L2 1.27 1.40 0.050 0.055
V5° 5°
V4 45° 45°
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
9/14
TLPxxM/G/G-1
PACKAGEMECHANICALDATA
Power-SO10
10
B
0.10 A B
6
H
A1
E
1
eB
E2
5
DETAIL ”A”
E3 E1
SEATING
PLANE
A C
0.25 M
D
h
D1
Q
A
F
SEATING
PLANE
A1
L
DETAIL”A”
E4
a
DIMENSIONS
REF.
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 3.35 3.65 0.131 0.143
A1 0.00 0.10 0.00 0.0039
B 0.40 0.60 0.0157 0.0236 C 0.35 0.55 0.0137 0.0217 D 9.40 9.60 0.370 0.378
D1 7.40 7.60 0.291 0.299
E 9.30 9.50 0.366 0.374
E1 7.20 7.40 0.283 0.291 E2 7.20 7.60 0.283 0.299
10/14
DIMENSIONS
REF.
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
E3 6.10 6.35 0.240 0.250 E4 5.90 6.10 0.232 0.240
e 1.27 0.05 F 1.25 1.35 0.0492 0.0531
H 13.80 14.40 0.543 0.567
h 0.50 0.019 L 1.20 1.80 0.0472 0.0708
Q 1.70 0.067
a0° 8°0° 8°
TLPxxM/G/G-1
FOOTPRINT MOUNTINGPADLAYOUT
RECOMMENDED
Dimensionsin millimeters Dimensionsin millimeters
SHIPPINGTUBE
Power-SO10
HEADERSHAPE
C
B
A
Surfacemountfilm taping: contactsales office
A B C Lengthtube
Quantityper tube
DIMENSIONS(mm)
TYP
18 12
0,8
532
50
11/14
TLPxxM/G/G-1
SOLDERINGRECOMMENDATION
The soldering process causes considerable ther­mal stress to a semiconductor component. This has to be minimized to assure a reliable and ex­tended lifetime of the device. The PowerSO-10 package can be exposed to a maximumtempera­ture of 260°Cfor 10 seconds. However a proper soldering of the package could be done at 215°C for 3 seconds. Any solder temperature profile shouldbe withinthese limits. As reflow techniques are most common in surface mounting, typical heating profiles are given in Figure 1,either for mountingon FR4 or on metal-backed boards. For each particular board, the appropriate heat profile has to be adjusted experimentally. The present proposalisjusta startingpoint. Inanycase,the fol­lowingprecautions haveto be considered:
- alwayspreheatthe device
- peaktemperatureshould be at least30 °C higherthan the melting point of the solder alloychosen
- thermalcapacityof the base substrate
Fig. 1 : Typicalreflow solderingheat profile
Voids pose a difficult reliability problem for large surface mount devices. Such voids under the package result in poor thermal contact and the high thermal resistance leads to component fail­ures.The PowerSO-10is designedfromscratchto besolelya surfacemountpackage,hencesymme­try inthe x-and y-axis givesthe packageexcellent weightbalance.Moreover, the PowerSO-10offers the unique possibilityto control easily the flatness and quality of the soldering process. Both the top and the bottom soldered edgesof thepackageare accessible for visual inspection (soldering menis­cus). Coplanarity between the substrate and the pack­age canbe easilyverified.The qualityof the solder joints is very important for two reasons : (I) poor qualitysolder joints result directlyin poor reliability and (II) solder thickness affects the thermal resis­tance significantly.Thus a tight control of this pa­rameter results in thermally efficient and reliable solderjoints.
Temperature ( C)
250
o
o
245 C
o
215 C
200
Soldering
Cooli ng
150
Epoxy FR4
board
Preheating
100
Metal-backed
50
board
0
0 40 80 120 160 200 2 40 280 320 360
Time (s)
12/14
TLPxxM/G/G-1
SUBSTRATES AND MOUNTINGINFORMATION
The use of epoxy FR4 boards is quite commonfor surface mounting techniques, however, their poor thermal conductioncompromisesthe otherwise outstandingthermalperformanceof thePowerSO-
10. Some methodsto overcome this limitation are discussedbelow.
One possibility to improve the thermal conduction is the use of large heat spreader areas at the cop­per layerofthe PC board.Thisleadsto areduction of thermal resistance to 35 °C for 6 cm
2
of the
board heatsink(seefig. 2). Use of copper-filledthrough holes on conventional
FR4 techniqueswill increase the metallizationand
Fig.2 :
Mountingon epoxy FR4 head dissipationby extendingthe area of the copper layer
Copper foil
decrease thermal resistance accordingly. Using a configurationwith 16holesunderthe spreaderof the package with a pitchof 1.8 mm and a diameter of 0.7 mm, the thermal resistance (junction ­heatsink) can be reduced to 12°C/W(see fig. 3). Besidethe thermal advantage, thissolutionallows multi-layer boards to be used. However, a draw­back of this traditional material prevents its use in veryhighpower,highcurrentcircuits.Forinstance, it is not advisable to surface mount devices with currents greater than 10 A on FR4 boards. A PowerMosfetorSchottkydiodein a surfacemount power package can handle up to around 50 A if bettersubstratesare used.
FR4 board
Fig. 3 :
Mountingon epoxy FR4 by using copper-filledthroughholesfor heattransfer
Copperfoil
heattransferheatsink
FR4board
13/14
TLPxxM/G/G-1
A new technologyavailable today is IMS - anInsu­lated Metallic Substrate. This offers greatly en­hanced thermal characteristics for surface mount components. IMS is a substrateconsisting of threedifferentlayers,(I)thebasematerialwhich is available as an aluminiumor a copper plate, (II) a thermal conductive dielectrical layer and (III) a copper foil, which can be etched as a circuitlayer. Using this material a thermal resistanceof 8°C/W with 40 cm
2
of board floating in air is achievable (seefig. 4).If evenhigherpower isto be dissipated an externalheatsink could be appliedwhich leads to an R that R
(j-a) of 3.5°C/W (see Fig. 5), assuming
th
(heatsink-air) is equal to Rth(junction-
th
heatsink). This is commonly applied in practice, leading to reasonable heatsink dimensions. Often power devices are defined by considering the
maximum junction temperature of the device. In practice, however, this is far from being exploited. A summary of various power management capa­bilities is made in table 1 based on a reasonable deltaT of 70°Cjunctionto air.
The PowerSO-1 0 concept also represents an attractive alternative to C.O.B. techniques. PowerSO-10 offers devices fully tested at low and high temperature. Mounting is simple - only conventionalSMT is required - enabling the users togetrid ofbondwire problemsandtheproblem to controlthe high temperaturesoft solderingas well. An optimized thermal management is guaranteed through PowerSO-10 as the power chips must in any case be mounted on heat spreaders before beingmountedonto the substrate.
Fig. 4 : Mountingon metalbacked board Fig. 5 :
externalheatsinkapplied
Copperfoil
Copper foil
Alumini um
Insulation
Mountingon metal backed board with an
FR4board
Aluminium
heatsink
TABLE1
Printedcircuit board material Rth(j-a) P Diss
1.FR4using the recommended pad-layout 50°C/W 1.5W
2
2.FR4with heatsinkon board(6cm
3.FR4with copper-filledthrough holes and externalheatsinkapplied
2
4.IMSfloatingin air(40 cm
)8°C/W 8.8 W
)35°C/W 2.0 W
12°C/W 5.8W
5.IMSwith externalheatsink applied 3.5°C/W 20W
Informationfurnished isbelievedto be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such informationnor forany infringementof patents or other rights of thirdparties which mayresult from its use. Nolicense is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems withoutexpress written ap­proval of STMicroelectronics.
The ST logo is a registeredtrademark of STMicroelectronics
1998STMicroelectronics - Printed in Italy - All rights reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea -Malaysia - Malta - Mexico - Morocco -
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand -United Kingdom - U.S.A.
http://www.st.com
14/14
Loading...