Datasheet TDA9853H Datasheet (Philips)

Page 1
INTEGRATED CIRCUITS
DATA SH EET
TDA9853H
2
I
Product specification File under Integrated Circuits, IC02
2000 Dec 11
Page 2
Philips Semiconductors Product specification
I2C-bus controlled economic BTSC stereo decoder and audio processor

FEATURES

Voltage Controlled Amplifier (VCA) noise reduction circuit
Stereo or mono selectable at the AF outputs
Stereo pilot PLL circuit with ceramic resonator
Automatic pilot cancellation
I2C-bus transceiver.
Audio processor
Selector for internal and external signals (line in)
Automatic Volume Level (AVL) control (control range +6 to 15 dB)
Volume control (control range +12 to 63 dB)
Mute control via I2C-bus
4 fixed tone settings.

ORDERING INFORMATION

GENERAL DESCRIPTION

The TDA9853H is a bipolar-integrated BTSC stereo decoder and audio processor for application in TV sets, VCRs and multimedia PCs.
TDA9853H
TYPE
NUMBER
TDA9853H QFP44 plastic quad flat package; 44 leads (lead length 2.35 mm); body 14 × 14 × 2.2 mm SOT205-1
NAME DESCRIPTION VERSION
PACKAGE
2000 Dec 11 2
Page 3
Philips Semiconductors Product specification
I2C-bus controlled economic BTSC stereo
TDA9853H
decoder and audio processor

QUICK REFERENCE DATA

SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
V
CC
I
CC
V
o(rms)
α
csL,R
THD
S/N signal-to-noise ratioat line out
V
I, O(rms)
AVL AVL control range 15 +6 dB G
c
L
linear
L
bass(max)
L
bass(min)
L
treble(max)
L
treble(min)
supply voltage 7.8 8 9 V supply current 25 33 45 mA output voltage (RMS value) composite input voltage 250 mV (RMS)
500 mV
for 100% modulation L + R
stereo channel separation
(25 kHz deviation); f 14% modulation; fL= 300 Hz; fR= 3 kHz 15 20 dB
mod
= 300 Hz
L and R total harmonic distortion
L,R
100% modulation L or R; f
= 1 kHz 0.2 1 %
mod
L and R
2
C-bus; referenced to 500 mV
and at AF output
mono via I output signal; volume 0 dB
CCIR 468-2 weighted; quasi peak 50 60 dB DIN noise weighting filter (RMS value) 73 dBA
signal handling (RMS value) THD < 0.5% 2 −−V
volume control range 63 +12 dB linear tone control 0 dB tone control with maximum
bass tone control with minimum
bass tone control with maximum
treble tone control with minimum
treble
referenced to linear position; f
=20Hz
mod
referenced to linear position; f
=20Hz
mod
referenced to linear position; f
=20kHz
mod
referenced to linear position; f
=20kHz
mod
10 12 dB
3.5 5 dB
68dB
−−1.5 dB
2000 Dec 11 3
Page 4
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
2000 Dec 11 4
C3
C2
R1
C4
Q1
C6C5
handbook, full pagewidth
External Input Right
(EIR)
C7
C8
C9
C10
C11
C12

BLOCK DIAGRAM

Philips Semiconductors Product specification
decoder and audio processor
I
2
C-bus controlled economic BTSC stereo
composite baseband
input
C1
COMP
R2
FDO
R3
FDI
CP2CP1C
342
4
STEREO DECODER
35
33
DETECTOR
VOLTAGE CONTROLLED
AND
AMPLIFIER
32 BPU
C22C23
C
AV
29
AUTOMATIC
VOLUME
AND
LEVEL CONTROL
I2C-BUS
TRANSCEIVER
MAD
SCL SDA
DGND
VAR VIR
37383940
11 VAL VIL
VOLUME
RIGHT
CONTROL
VOLUME
LEFT
CONTROL
C16
TC1R21TC2R
2423
TONE
RIGHT
CONTROL
TONE
LEFT
CONTROL
10
TC1L13TC2L
C15
BCR 19
20
18
16
14
15 BCL
C14
C13
OUTR
OUTL
MHB789
41
V
CC
C
MO
5
DEMATRIX
MODE SELECT
SUPPLY
28 V
CAP
C19
CER
PH
432
L + R
L R
31 C
W
C21
30 TW
C20
AND
C 6
AGND36V
LOR
SS
25
27
9 LOL
ref
External Input Left
(EIL)
LIR 26
INPUT
SELECT
FILTER
AND
REFERENCE
8 LIL
C17C18
TDA9853H
7 R
FR
R4
TDA9853H
Fig.1 Block diagram.
Page 5
Philips Semiconductors Product specification
I2C-bus controlled economic BTSC stereo
TDA9853H
decoder and audio processor
Component list
Electrolytic capacitors ±20%; foil capacitors ±10%; resistors ±5%; unless otherwise specified; see Fig.1.
COMPONENT VALUE TYPE REMARK
C1 2.2 µF electrolytic 63 V C2 220 nF foil C3 2.2 µF electrolytic 63 V C4 220 nF foil C5 2.2 µF electrolytic 63 V C6 2.2 µF electrolytic 63 V C7 2.2 µF electrolytic 63 V C8 4.7 µF electrolytic 63 V ±10% C9 2.2 µF electrolytic 63 V C10 3.3 nF foil C11 150 pF foil C12 56 nF foil C13 56 nF foil C14 150 pF foil C15 3.3 nF foil C16 2.2 µF electrolytic 63 V C17 2.2 µF electrolytic 63 V C18 100 µF electrolytic 16 V C19 100 µF electrolytic 16 V C20 10 µF electrolytic 63 V C21 1 µF electrolytic 63 V C22 4.7 nF foil C23 22 nF foil R1 3.3 k R2 15 k R3 1.3 k R4 100 k Q1 CSB503F58 radial leads
CSB503JF958 alternative as SMD
2000 Dec 11 5
Page 6
Philips Semiconductors Product specification
I2C-bus controlled economic BTSC stereo decoder and audio processor

PINNING

SYMBOL PIN DESCRIPTION
n.c. 1 not connected C
P2
C
P1
COMP 4 composite input signal C
MO
C
SS
R
FR
LIL 8 line input; left channel LOL 9 line output; left channel VIL 10 volume control input; left channel VAL 11 AVL output; left channel n.c. 12 not connected TC1L 13 treble capacitor 1; left channel TC2L 14 treble capacitor 2; left channel BCL 15 bass capacitor; left channel OUTL 16 left channel output n.c. 17 not connected OUTR 18 right channel output BCR 19 bass capacitor; right channel TC2R 20 treble capacitor 2; right channel TC1R 21 treble capacitor 1; right channel n.c. 22 not connected VAR 23 AVL output; right channel
2 connector 2 for pilot detector capacitor 3 connector 1 for pilot detector capacitor
5 capacitor for DC-decoupling mono 6 capacitor for DC-decoupling stereo 7 resistor for filter reference
TDA9853H
SYMBOL PIN DESCRIPTION
VIR 24 volume control input; right channel LOR 25 line output; right channel LIR 26 line input; right channel V
ref
V
CAP
C
AV
TW 30 capacitor timing C
W
BPU 32 band-pass filter upper corner
FDO 33 fixed de-emphasis output n.c. 34 not connected FDI 35 fixed de-emphasis input AGND 36 analog ground DGND 37 digital ground SDA 38 serial data input/output MAD 39 programmable address bit
SCL 40 serial clock input V
CC
C
PH
CER 43 ceramic resonator n.c. 44 not connected
27 reference voltage (0.5VCC) 28 capacitor for electronic filtering of
supply
29 capacitor for AVL
31 capacitor for VCA and band-pass filter
lower corner frequency
frequency
(module address)
41 supply voltage 42 capacitor for phase detector
2000 Dec 11 6
Page 7
Philips Semiconductors Product specification
I2C-bus controlled economic BTSC stereo decoder and audio processor
n.c.
CER
handbook, full pagewidth
n.c.
C
P2
C
P1
COMP
C
MO
C
SS
R
FR LIL
LOL
VIL
VAL
44
1 2 3 4 5 6 7 8
9 10 11
CPHVCCSCL
43
42
41
40
TDA9853H
MAD 39
SDA 38
DGND 37
AGND 36
FDI 35
n.c. 34
TDA9853H
33
FDO
32
BPU
31
C
W
30
TW
29
C
AV
28
V
CAP
27
V
ref
26
LIR
25
LOR
24
VIR
23
VAR
12
13
14
15
n.c.
TC1L
TC2L
BCL
Fig.2 Pin configuration.
FUNCTIONAL DESCRIPTION Stereo decoder
The composite signal is fed into a pilot detector/pilot cancellation circuit and into the MPX demodulator. The main L + R signal passes a 75 µs fixed de-emphasis filter andisfedinto the dematrix circuit. Thedecodedsub-signal L R is applied to the Volume Controlled Amplifier (VCA) circuit. To generatethe pilot signalthe stereo demodulator uses a PLL circuit including a ceramic resonator.
Mode selection
The L R signal is fed via the internal VCA circuit to the dematrix/switching circuit. Mode selection is achieved via the I2C-bus (see Table 9).
The dematrix outputs can be muted via the I2C-bus (see Table 14).
16
17
18
19
20
21
22
MHB790
OUTL
n.c.
OUTR
BCR
TC2R
TC1R
n.c.
Automatic volume level control
The automatic volume level stage controls its output voltage to a constant level of typically 200 mV (RMS) from an input voltage range between 0.1 to 1.1 V (RMS). The circuitadjustsvariationsinmodulationduringbroadcasting and because of changes in the programme material; this functioncan be switchedoff. To avoid audibleplops during the permanent operation of the AVL circuit a soft blending scheme has been applied between the different gain stages. A capacitor (4.7 µF) at pin CAV determines the attack and decay time constants. In addition the ratio of attack and decay times can be changed via the I2C-bus.
Integrated filters
The filter functions necessary for stereo demodulation are provided on-chip using transconductor circuits. The filter frequencies are controlled bythe filter reference circuit via the external resistor R4.
2000 Dec 11 7
Page 8
Philips Semiconductors Product specification
I2C-bus controlled economic BTSC stereo decoder and audio processor
Audio processor
SELECTOR Theselectorenablesthe selection of either theinternalline
output signals LOR and LOL (dematrix output) or the external line input signals LIR and LIL (see Table 16). The input signal capability of the line inputs (LIR/LIL) is 2 V (RMS). The output of the selector is DC-coupled to the automatic volume level control circuit.
VOLUME The volume control range is from +12 dB to 63 dB in
steps of 1 dB and ends with a mute step (see Table 8). Balance control is achieved by the independent volume control of each channel.
BASS FUNCTION A single external 56 nF capacitor for each channel in
combinationwith a linearoperational amplifier andinternal resistors provides a bass range of +12 dB for high bass and +5 dB for low bass.
TDA9853H
TREBLE FUNCTION Two external capacitors C15 = 3.3 nF and C14 = 150 pF
for each channel in combination with a linear operational amplifier and internal resistors provide a treble range of +8 dB for high treble and 1.5 dB for low treble.
MUTE The mute functioncan be activatedindependently with the
last step of volume control at the left or right output. By setting the general mute bit GMU the audio outputs OUTL and OUTR are muted.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
V
CC
V
SDA, VSCL
V
n
T
amb
T
stg
V
es
supply voltage 9.5 V voltage at pins SDA and SCL referenced
to GND voltage of all other pins to GND 0 V
VCC≤ 9V −0.3 +V V
>9V −0.3 +9 V
CC
CC
CC
V
V ambient temperature 20 +70 °C storage temperature 65 +150 °C electrostatic handling voltage note 1 200 +200 V
note 2 2000 +2000 V
Notes
1. Machine model class B, equivalent to discharging a 200 pF capacitor through a 0 series resistor (‘0 ’ is actually
0.75 µH+10Ω).
2. Human body model class B, equivalent to discharging a 100 pF capacitor through a 1500 series resistor.

THERMAL CHARACTERISTICS

SYMBOL PARAMETER CONDITIONS VALUE UNIT
R
th(j-a)
thermal resistance from junction to ambient in free air 70 K/W
2000 Dec 11 8
Page 9
Philips Semiconductors Product specification
I2C-bus controlled economic BTSC stereo
TDA9853H
decoder and audio processor

CHARACTERISTICS

All voltages are measured relative to GND; VCC=8V; Rs= 600 ; AC-coupled; RL=10kΩ; CL= 2.5 nF; f mono signal; composite input voltage 250 mV (RMS) for 100% modulation L + R (25 kHz deviation); pilot 50 mV (RMS); Gv= 0 dB; linear tone control; AVL off; T
=25°C; see Fig.1; unless otherwise specified.
amb
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Supplies
V
CC
I
CC
V
ref
supply voltage 7.8 8 9 V supply current 25 33 45 mA internal reference voltage at
pin V
ref
0.45VCC0.5V
CC
0.55VCCV
Input stage
V
i(max)(rms)
maximum input voltage
2 −−V
(RMS value)
Z
i
input impedance 20 25 32 k
Stereo decoder
HR headroom for L + R, L and R f V
pil(rms)
nominal stereo pilot voltage
= 300 Hz; THD < 15% 9 −−dB
mod
50 mV
(RMS value)
V
th(on)(rms)
pilot threshold voltage, stereo
−− 35 mV
on (RMS value)
V
th(off)(rms)
pilot threshold voltage, stereo
15 −−mV
off (RMS value) hys hysteresis 2.5 dB V
o(rms)
α
cs(L,R)
THD
L,R
S/N signal-to-noise ratio at line
output voltage (RMS value) 100% modulation L + R;
f
= 300 Hz
mod
stereo channel separation
L and R
total harmonic distortion
L and R
output and AF output
14% modulation; fL= 300 Hz; fR= 3 kHz
100% modulation L or R; f
= 1 kHz
mod
2
mono via I
C-bus; referenced
to 500 mV output signal
CCIR 468-2 weighted;
500 mV
15 20 dB
0.2 1 %
50 60 dB
quasi peak DIN noise weighting filter
73 dBA
(RMS value)
α
mute
mute attenuation atLOL, LOR,
VAL and VAR
100% modulation L + R; f
= 300 Hz; mute via bit E6
mod
63 −−dB
Stereo decoder, oscillator (VCXO); note 1 f
f
f
o
fr
cr
nominal VCXO output
frequency (32fH)
spread of free-running
frequency
with nominal ceramic resonator
with nominal ceramic resonator
503.5 kHz
500 507 kHz
capture range frequency nominal pilot ±190 ±265 Hz
mod
= 1 kHz
2000 Dec 11 9
Page 10
Philips Semiconductors Product specification
I2C-bus controlled economic BTSC stereo
TDA9853H
decoder and audio processor
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Audio control part; input pins VIL and VIR to pins OUTL and OUTR
V
O
Z
i
Z
o
R
L
C
L
V
i(max)(rms)
DC output voltage 0.45VCC0.5V
CC
volume input impedance 25 30 38 k
output impedance 80 120
output load resistance 5 −−k
output load capacitance 0 2.5 nF
maximum input voltage
THD < 0.5% tbf 2 V
(RMS value) THD total harmonic distortion 1 V (RMS) input voltage 0.05 % V
no
noise output voltage CCIR 468-2 weighted;
quasi peak
G
=10dB 110 220 µV
v
=0dB 33 50 µV
G
v
mute position 10 −µV
G
c
volume control range maximum boost 12 dB
maximum attenuation 63 dB
G
step
G
a
G
L
α
m
V
DC(OS)
step resolution 1 dB
step error between adjoining
step
= +12 to 15 dB and
G
v
Gv= 16 to 63 dB; note 2
−− 0.5 dB
attenuator set error Gv= +12 to 50 dB −− 2dB
G
=51 to 63 dB −− 3dB
v
gain tracking error Gv= +12 to 50 dB −− 2dB
mute attenuation 80 −−dB
DC step offset between any
adjacent step
DC step offset between any
step to mute
Gv= +12 to 0 dB 0.2 10 mV G
=0to−63 dB −− 5mV
v
G
= +12 to 0 dB 215mV
v
=1to−63 dB 110mV
G
v
Tone control part
L
linear
L
bass(max)
L
bass(min)
L
treble(max)
L
treble(min)
linear tone control 0 dB
tone control with maximum
bass
tone control with minimum
bass
tone control with maximum
treble
tone control with minimum
treble
referenced to linear position; f
=20Hz
mod
referenced to linear position; f
=20Hz
mod
referenced to linear position; f
= 20 kHz
mod
referenced to linear position; f
= 20 kHz
mod
10 12 dB
3.5 5 dB
68 dB
−−1.5 dB
0.55VCCV
2000 Dec 11 10
Page 11
Philips Semiconductors Product specification
I2C-bus controlled economic BTSC stereo
TDA9853H
decoder and audio processor
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
VCA
I
s
nominal timing current for
nominal release rate of VCA
detector Rel
rate
nominal detector release rate nominal timing current and
Automatic volume level control
G
v
G
step
voltage gain maximum boost; note 3 5 6 7 dB
equivalent step width between
the input stages(soft switching
system) V
i(rms)
V
o(AVL)(rms)
input voltage (RMS value) maximum boost; note 3 0.1 V
output voltage in AVL
operation (RMS value) V
offset(DC)
DC offset voltage between
different gain steps
R
att
discharge resistors for attack
time constant
I
dec
charge current for decay time normal mode; CCD = 0; note 6 1.6 2 2.4 µA
Selector internal and external
Z
i
α
s
input impedance 16 20 25 k
input isolation of one selected
source to the other input V
i(max)(rms)
maximum input voltage
(RMS value) G
v
voltage gain, selector 0 dB
Line output; pins LOL and LOR
V
o(rms)
nominal output voltage
(RMS value) HR
o
Z
o
V
O
R
L
C
L
output headroom 9 −−dB
output impedance 80 120
DC output voltage 0.45VCC0.5V
output load resistance 5 −−k
output load capacitance −− 2.5 nF
Is can be measured at pin TW
6.5 8 9.5 µA
via current meter connected to
0.5VCC+1V
125 dB/s
external capacitor values
maximum attenuation; note 3 14 15 16 dB
1.5 dB
maximum attenuation; note 3 1.125 V
160 200 250 mV
voltage at pin C
AV
−− 20 mV
6 to 5.83 Vor 5.83 to 5.61 V or
5.61 to 4.83 Vor 4.83 to 2.1 V; note 4
AT1 = 0; AT2 = 0; note 5 340 420 520 AT1 = 1; AT2 = 0; note 5 590 730 910 AT1 = 0; AT2 = 1; note 5 0.96 1.2 1.5 k AT1 = 1; AT2 = 1; note 5 1.7 2.1 2.6 k
Power-on speed-up; CCD = 1;
30 −µA
note 6
Vi=1V; fi= 1 kHz 70 76 dB V
=1V; fi= 12.5 kHz 70 76 dB
i
THD < 0.5% 2 V
100% modulation 500 mV
CC
0.55VCCV
2000 Dec 11 11
Page 12
Philips Semiconductors Product specification
I2C-bus controlled economic BTSC stereo
TDA9853H
decoder and audio processor
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Monitor output; pins VAL and VAR
V
O
R
L
C
L
DC output voltage 0.5V
CC
output load resistance 5 −−k
output load capacitance with 100 in series −− 2.5 nF
Muting at power supply voltage drop for OUTR and OUTL
V
CC
supply voltage drop for mute
V
CAP
active Power-on reset; note 7 V
POR(start)
start of reset voltage increasing supply voltage −− 2.5 V
decreasing supply voltage tbf V
V
POR(end)
Digital part (I
V
IH
V
IL
I
IH
I
IL
V
OL
end of reset voltage increasing supply voltage tbf V
2
C-bus pins); note 8
HIGH-level input voltage 3 V
LOW-level input voltage 0.3 +1.5 V
HIGH-level input current 10 +10 µA
LOW-level input current 10 +10 µA
LOW-level output voltage IIL=3mA −− 0.4 V
Notes
1. The oscillator isdesigned to operatetogether withMurata resonator CSB503F58or CSB503JF958 as SMD.Change of the resonator supplier is possible, but the resonator specification must be close to the specified ones.
2. 1.5 dB step error between 15 and 16 dB.
3. The AVL input voltage is internal. It corresponds to the output voltage OUTL and OUTR at AVL off.
4. The listed pin voltage corresponds with typical gain steps of +6 dB, +3 dB, 0 dB, 6 dB and 15 dB.
5. Attack time constant = C
C
CAV
6.
Decay time
a) Example: C
=
---------------------------------------------------------------------------------
= 4.7 µF; I
CAV
× R
CAV
0.76 V× 10
  
I
dec
dec
with C
att
G1–
---------­20
= C8 (see Fig.1).
CAV
G2–
---------­20
10
=2µA; G1= 9 dB; G2=+6dB→ decay time results in 4.14 s.
7. When reset is active the GMU bit (mute) is set and the I2C-bus receiver is in the reset position.
8. The AC characteristics are in accordance with the I2C-bus specification for standard mode (clock frequency maximum 100 kHz). A higher frequency, up to 280 kHz, can be used if all clock and data times are interpolated between standard mode (100 kHz) and fast mode (400 kHz) in accordance with the I2C-bus specification. Information about the I2C-bus can be found in brochure
“I2C-bus and how to use it”
(order number 9398 393 40011).
9. Maximum 9 V if VCC>9V.
V
0.7 V
(9)
CC
V
2000 Dec 11 12
Page 13
Philips Semiconductors Product specification
I2C-bus controlled economic BTSC stereo decoder and audio processor
12
handbook, full pagewidth
gain (dB)
8
4
0
4 10
(1)
(3)
2
10
10
TDA9853H
MHB791
(2)
(4)
3
4
10
f (Hz)
5
10
(1) Maximum bass. (2) Maximum treble. (3) Minimum bass. (4) Minimum treble.
Fig.3 Tone control.
2000 Dec 11 13
Page 14
Philips Semiconductors Product specification
I2C-bus controlled economic BTSC stereo decoder and audio processor

I2C-BUS PROTOCOL

2
C-bus format to read (slave transmits data)
I
S SLAVE ADDRESS R/
Table 1 Explanation of I
S START condition; generated by the master Standard SLAVE ADDRESS (MAD) 1011011; pin MAD not connected Pin programmable SLAVE ADDRESS 1011010; pin MAD connected to ground R/
W logic 1 (read); generated by the master A acknowledge; generated by the slave DATA slave transmits an 8-bit data word AN acknowledge not; generated by the master P STOP condition; generated by the master
Table 2 Definition of the transmitted bytes after read condition
2
C-bus format to read (slave transmits data)
NAME DESCRIPTION
W A DATA AN P
TDA9853H
MSB LSB
D7 D6 D5 D4 D3 D2 D1 D0
YYYYYYPONR STP
Table 3 Bit functions of Table 2
BIT FUNCTION
STP stereo pilot identification (stereo received = 1) PONR Power-on reset; if PONR = 1, then Power-on reset is detected Y indefinite
2
I
C-bus format to write (slave receives data)
S SLAVE ADDRESS R/
2
Table 4 Explanation of I
NAME DESCRIPTION
S START condition Standard SLAVE ADDRESS 101 101 1; pin MAD not connected Pin programmable SLAVE ADDRESS 101 101 0; pin MAD connected to ground R/
W logic 0 (write) A acknowledge; generated by the slave SUBADDRESS (SAD) see Table 5 DATA see Table 6 P STOP condition
C-bus format to write (slave receives data)
W A SUBADDRESS A DATA A P
2000 Dec 11 14
Page 15
Philips Semiconductors Product specification
I2C-bus controlled economic BTSC stereo
TDA9853H
decoder and audio processor
If more than 1 byte of DATA is transmitted, then auto-increment is performed, starting from the transmitted subaddress and auto-increment of subaddress in accordance with the order of Table 5 is performed.
Table 5 Subaddress definition (second byte after slave address)
FUNCTION
Volume right 00000000 Volume left 00000001 Control 1 00000010 Control 2 00000011
Note
1. Significant subaddress bits.
Table 6 Data definition (third byte after slave address)
FUNCTION
Volume right 0 B6 B5 B4 B3 B2 B1 B0 Volume left 0 C6 C5 C4 C3 C2 C1 C0 Control 1 0 E6 E5 E4 E3 E2 E1 E0 Control 2 0 0 0 F4 F3 F2 F1 F0
MSB LSB
D7 D6 D5 D4 D3 D2 D1
MSB LSB
D7 D6 D5 D4 D3 D2 D1 D0
(1)
D0
(1)
Table 7 Bit functions of Table 6
BITS SYMBOL FUNCTION
B0 to B6 VR0 to VR6 volume control right C0 to C6 VL0 to VL6 volume control left E0 STEREO mode selection for line out E1 GMU mute control for OUTL and OUTR E2 AVLON AVL on/off E3 CCD increased AVL decay current on/off E4 and E5 AT1 and AT2 attack time at AVL E6 LMU line out mute on/off F0 and F1 TONE selection between four fixed tone controls F2 MODE selection between intern and extern F3 MONO forced mono on/off at OUTL and OUTR F4 LITO linear tone control on/off
2000 Dec 11 15
Page 16
Philips Semiconductors Product specification
I2C-bus controlled economic BTSC stereo
TDA9853H
decoder and audio processor
Table 8 Volume setting
FUNCTION
Gv(dB)
121111011 111111010 101111001
91111000 81110111 71110110 61110101 51110100 41110011 31110010 21110001 11110000 01101111
11101110
21101101
31101100
41101011
51101010
61101001
71101000
81100111
91100110
101100101
111100100
121100011
131100010
141100001
151100000
161011111
171011110
181011101
191011100
201011011
211011010
221011001
231011000
241010111
251010110
V6 V5 V4 V3 V2 V1 V0
DATA
2000 Dec 11 16
Page 17
Philips Semiconductors Product specification
I2C-bus controlled economic BTSC stereo
TDA9853H
decoder and audio processor
FUNCTION
G
(dB)
v
261010101
271010100
281010011
291010010
301010001
311010000
321001111
331001110
341001101
351001100
361001011
371001010
381001001
391001000
401000111
411000110
421000101
431000100
441000011
451000010
461000001
471000000
480111111
490111110
500111101
510111100
520111011
530111010
540111001
550111000
560110111
570110110
580110101
590110100
600110011
610110010
620110001
630110000
Mute 0 101111
V6 V5 V4 V3 V2 V1 V0
DATA
2000 Dec 11 17
Page 18
Philips Semiconductors Product specification
I2C-bus controlled economic BTSC stereo decoder and audio processor
Table 9 Mode setting
FUNCTION MODE
LOL LOR
Left right logic 1 (stereo
Mono mono logic 1 (stereo
Mono mono logic 0 (no
Mono mono logic 0 (no
Table 10 Mute setting
FUNCTION DATA
MUTE CONTROL FOR
OUTR AND OUTL
Forced mute at OUTR and OUTL 1 No forced mute at OUTR and OUTL 0
Table 11 AVLON bit setting
FUNCTION DATA
Automatic volume control on 1 Automatic volume control off 0
Table 12 CCD bit setting
FUNCTION DATA
AVL CURRENT E3
Increased load current 1 Load current for normal AVL decay time 0
Table 13 AVL attack time; seeChapter “Characteristics”
note 5
FUNCTION DATA
R
()E5E4
att
420 0 0
730 0 1 1200 1 0 2100 1 1
READABLE BIT
D0/STP
received)
received)
stereo received)
stereo received)
AVL E2
SETTING BIT
E0/STEREO
E1
1
0
1
0
TDA9853H
Table 14 Line out mute setting
FUNCTION DATA
MUTE LINE OUTPUT E6
Line output mute 1 Line output active 0
Table 15 Tone setting
FUNCTION DATA
TONE F1 F0
Maximum bass and maximum treble
Maximum bass and minimum treble
Minimum bass and maximum treble
Minimum bass and minimum treble
Table 16 Selector setting
FUNCTION DATA
MODE INTERNAL/EXTERNAL F2
External left and right 1 Internal left and right 0
Table 17 Mono setting
FUNCTION DATA
MONO AT OUTL AND OUTR F3
Forced mono 1 No forced mono 0
Table 18 Linear setting
FUNCTION DATA
MODE TONE F4
Linear 1 Tone 0
11
10
01
00
2000 Dec 11 18
Page 19
Philips Semiconductors Product specification
I2C-bus controlled economic BTSC stereo decoder and audio processor

INTERNAL PIN CONFIGURATIONS

+
2
8.5k12
Fig.4 Pin 2: CP2.
k
MHB792
TDA9853H
3
+
3.5 k
MHB793
Fig.5 Pin 3: CP1.
4
+
25 k
25 k
25 k
50 pF
100 pF
Fig.6 Pin 4: COMP.
1 k
MHB794
+
Fig.7 Pin 5: CMO; pin 6: CSS.
+
5, 6
10 k 10 k
4 V
8, 26
MHB795
+
MHB796
7
Fig.8 Pin 7: RFR.
2000 Dec 11 19
20 k
MHB797
Fig.9 Pin 8: LIL; pin 26: LIR.
Page 20
Philips Semiconductors Product specification
I2C-bus controlled economic BTSC stereo decoder and audio processor
9, 25
+
4 V
MHB798
4 V
30 k
4 V
TDA9853H
10, 24
+
MHB799
Fig.10 Pin 9: LOL; pin 25: LOR.
11, 23
+
80
4 V
MHB800
Fig.11 Pin 10: VIL; pin 24: VIR.
13, 14
4 V
20, 21
+
5.4 k
12 k
+
MHB801
Fig.12 Pin 11: VAL; pin 23: VAR.
2000 Dec 11 20
Fig.13 Pin 13: TC1L; pin 14: TC2L; pin 20: TC2R;
pin 21: TC1R.
Page 21
Philips Semiconductors Product specification
I2C-bus controlled economic BTSC stereo decoder and audio processor
15, 19
4 V
+
28.5 k
9.5 k
4 V
MHB802
Fig.14 Pin 15: BCL; pin 19: BCR.
27
TDA9853H
16, 18+
80
MHB803
Fig.15 Pin 16: OUTL; pin 18: OUTR.
+
28
3.4 k
3.4 k
Fig.16 Pin 27: V
+
4.7 k 300
5 k
MHB804
.
ref
29
MHB805
Fig.17 Pin 28: V
.
CAP
30
+
MHB806
MHB807
Fig.18 Pin 29: CAV.
2000 Dec 11 21
Fig.19 Pin 30: TW.
Page 22
Philips Semiconductors Product specification
I2C-bus controlled economic BTSC stereo decoder and audio processor
31
+
6 k
MHB808
Fig.20 Pin 31: CW.
TDA9853H
+
Fig.21 Pin 32: BPU; pin 35: FDI.
35
+
16 k
MHB809
32
33
+
MHB810
Fig.22 Pin 33: FDO.
39
+
MHB812
1.8 k
38
1.8 k
MHB811
Fig.23 Pin 38: SDA.
40
5 V
1.8 k
MHB813
Fig.24 Pin 39: MAD (I2C-bus address switch).
2000 Dec 11 22
Fig.25 Pin 40: SCL.
Page 23
Philips Semiconductors Product specification
I2C-bus controlled economic BTSC stereo decoder and audio processor
41
+
MHB814
Fig.26 Pin 41: VCC.
42
+
10 k 10 k
Fig.27 Pin 42: CPH.
TDA9853H
4 V
MHB815
43
+
3 k
Fig.28 Pin 43: CER.
MHB816
2000 Dec 11 23
Page 24
Philips Semiconductors Product specification
I2C-bus controlled economic BTSC stereo decoder and audio processor

PACKAGE OUTLINE

QFP44: plastic quad flat package; 44 leads (lead length 2.35 mm); body 14 x 14 x 2.2 mm
c
y
X
33 23
34
Z
22
E
A
TDA9853H

SOT205-1

e
w M
b
p
B
v M
scale
(1)
eH
H
19.2
1
18.2
e
pin 1 index
2.3
2.1
b
0.25
12
11
Z
w M
p
D
H
D
0.50
0.25
0.35
0.14
D
0 5 10 mm
(1) (1)(1)
D
14.1
14.1
13.9
13.9
44
1
DIMENSIONS (mm are the original dimensions)
mm
A
max.
2.60
0.25
0.05
UNIT A1A2A3bpcE
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
v M
D
E
A
B
E
19.2
18.2
H
E
LL
2.0
1.2
A
p
A
2
A
1
detail X
Z
D
0.152.35 0.10.3
2.4
1.8
(A )
3
L
p
L
Zywv θ
E
o
2.4
7
o
1.8
0
θ
OUTLINE VERSION
SOT205-1
IEC JEDEC EIAJ
133E01
REFERENCES
2000 Dec 11 24
EUROPEAN
PROJECTION
ISSUE DATE
97-08-01 99-12-27
Page 25
Philips Semiconductors Product specification
I2C-bus controlled economic BTSC stereo decoder and audio processor
SOLDERING Introduction to soldering surface mount packages
Thistext gives a verybriefinsightto a complextechnology. A more in-depth account of soldering ICs can be found in our
“Data Handbook IC26; Integrated Circuit Packages”
(document order number 9398 652 90011). There is no soldering method that is ideal for all surface
mount IC packages. Wave soldering can still be used for certainsurfacemount ICs, but itisnotsuitable for fine pitch SMDs. In these situations reflow soldering is recommended.
Reflow soldering
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied tothe printed-circuit boardbyscreen printing, stencillingor pressure-syringe dispensing before package placement.
Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.
Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 220 °C for thick/large packages, and below 235 °C for small/thin packages.
Wave soldering
Conventional single wave soldering is not recommended forsurfacemount devices (SMDs) orprinted-circuitboards with a high component density, as solder bridging and non-wetting can present major problems.
To overcome these problems the double-wave soldering method was specifically developed.
TDA9853H
Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
For packages with leads on two sides and a pitch (e): – larger than or equal to 1.27 mm, the footprint
longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
– smaller than 1.27 mm, the footprint longitudinal axis
must be parallel to the transport direction of the printed-circuit board.
The footprint must incorporate solder thieves at the downstream end.
Forpackageswith leads on foursides,thefootprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.
During placement andbefore soldering,the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.
Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.
Manual soldering
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C.
When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.
If wave soldering is used the following conditions must be observed for optimal results:
2000 Dec 11 25
Page 26
Philips Semiconductors Product specification
I2C-bus controlled economic BTSC stereo
TDA9853H
decoder and audio processor
Suitability of surface mount IC packages for wave and reflow soldering methods
PACKAGE
BGA, LFBGA, SQFP, TFBGA not suitable suitable HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS not suitable
(3)
PLCC LQFP, QFP, TQFP not recommended SSOP, TSSOP, VSO not recommended
Notes
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;
5. Wave soldering is only suitable for SSOP andTSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is
, SO, SOJ suitable suitable
temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
The package footprint must incorporate solder thieves downstream and at the side corners.
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
“Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”
SOLDERING METHOD
WAVE REFLOW
(2)
(3)(4) (5)
suitable
suitable suitable
(1)
.
2000 Dec 11 26
Page 27
Philips Semiconductors Product specification
I2C-bus controlled economic BTSC stereo
TDA9853H
decoder and audio processor

DATA SHEET STATUS

DATA SHEET STATUS
Objective specification Development This data sheet contains the design target or goal specifications for
Preliminary specification Qualification Thisdata sheet contains preliminary data, and supplementary data will be
Product specification Production This data sheet contains final specifications. Philips Semiconductors
Note
1. Please consult the most recently issued data sheet before initiating or completing a design.
DEFINITIONS Short-form specification The data in a short-form
specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition  Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device atthese or at anyotherconditions above those giveninthe Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information  Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make norepresentationor warranty that such applicationswillbe suitable for the specified use without further testing or modification.
PRODUCT
STATUS

DEFINITIONS

product development. Specification may change in any manner without notice.
published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
DISCLAIMERS Life support applications These products are not
designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expectedto result inpersonal injury. Philips Semiconductorscustomersusing or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes  Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for theuseof any of theseproducts,conveysno licence or title under any patent, copyright, or mask work right to these products,and makes no representationsor warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.
(1)
2
PURCHASE OF PHILIPS I
2000 Dec 11 27
C COMPONENTS
Purchase of Philips I components in the I2C system provided the system conforms to the I2C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.
2
C components conveys a license under the Philips’ I2C patent to use the
Page 28
Philips Semiconductors – a w orldwide compan y
Argentina: see South America Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773
Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 68 9211, Fax. +359 2 68 9102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381, Fax. +1 800 943 0087
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America Czech Republic: see Austria Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,
Tel. +45 33 29 3333, Fax. +45 33 29 3905 Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615 800, Fax. +358 9 6158 0920 France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 2353 60, Fax. +49 40 2353 6300
Hungary: see Austria India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, Tel. +91 22 493 8541, Fax. +91 22 493 0966
Indonesia: PTPhilips Development Corporation, SemiconductorsDivision, Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080
Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI), Tel. +39 039 203 6838, Fax +39 039 203 6800
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Pakistan: see Singapore Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW, Tel. +48 22 5710 000, Fax. +48 22 5710 001
Portugal: see Spain Romania: see Italy Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919 Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114, Tel. +27 11 471 5401, Fax. +27 11 471 5398
South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 821 2382
Spain: Balmes 22, 08007 BARCELONA, Tel. +34 93 301 6312, Fax. +34 93 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 5985 2000, Fax. +46 8 5985 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2741 Fax. +41 1 488 3263
Taiwan: Philips Semiconductors, 5F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2451, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 60/14 MOO 11, Bangna Trad Road KM. 3, Bagna, BANGKOK 10260, Tel. +66 2 361 7910, Fax. +66 2 398 3447
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye, ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381, Fax. +1 800 943 0087
Uruguay: see South America Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 3341 299, Fax.+381 11 3342 553
For all other countries apply to: Philips Semiconductors, Marketing Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
© Philips Electronics N.V. SCA All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
2000
Internet: http://www.semiconductors.philips.com
70
Printed in The Netherlands 753504/01/pp28 Date of release: 2000 Dec 11 Document order number: 9397 750 07474
Loading...