Datasheet TDA9170 Datasheet (Philips)

Page 1
INTEGRATED CIRCUITS
DATA SH EET
TDA9170
YUV picture improvement processor based on histogram modification
Preliminary specification File under Integrated Circuits, IC02
Philips Semiconductors
October 1994
Page 2
Philips Semiconductors Preliminary specification
YUV picture improvement processor based on histogram modification
FEATURES
Picture content dependent non-linear Y and U, V processing by histogram analysis
Adaptive and variable gamma correction controls
Black and white stretch capabilities
Transparent I2C-bus control
On-chip window generator for valid histogram
measurement and black detection.
GENERAL DESCRIPTION
The TDA9170 is a transparent analog video processor with a YUV interface. It offers three main luminance processing functions any combination of which can be selected.
The luminance transfer is controlled in a non-linear manner by the distribution (in 5 discrete histogram sections) of the luminance values measured in a picture. As a result, the contrast ratio of the most important parts of the picture will be improved.
Black restoration is available in the event of a set-up in the luminance signal. A variable gamma function, after the histogram conversion, offers the possibility of excellent brightness control.
To maintain a proper colour reproduction, the saturation of the U and V colour difference signals are controlled as a function of the actual non-linearity in the luminance channel.
The TDA9170 concept has maximum flexibility with the optional on-board I select) and window control. The supply voltage is 8 V. The device is mounted in a 32 pin SDIP envelope.
TDA9170
2
C-bus (including hardwired address
ORDERING INFORMATION
TYPE NUMBER
NAME DESCRIPTION VERSION
TDA9170 SDIP32 plastic shrink in-line package; 32 leads (400 mil) SOT232-1
PACKAGE
October 1994 2
Page 3
Philips Semiconductors Preliminary specification
YUV picture improvement processor based on histogram modification
BLOCK DIAGRAM
TDA9170
October 1994 3
Fig.1 Block diagram.
Page 4
Philips Semiconductors Preliminary specification
YUV picture improvement processor based on histogram modification
PINNING
SYMBOL PIN DESCRIPTION
DWS 1 default window select input VARGAM 2 variable gamma input AMPNLA 3 amplitude non-linearity input ADGAM 4 adaptive gamma input UIN 5 colour difference U input V
ref
VIN 7 colour difference V input AGND 8 analog ground V
DDA
SC 10 sandcastle input BOF 11 black offset on/off input YIN 12 luminance input AMPSEL 13 amplitude select input TAUBP 14 time constant black peak TAUBL 15 time constant black loop HM1 16 histogram segment memory 1 HM2 17 histogram segment memory 2 HM3 18 histogram segment memory 3 HM4 19 histogram segment memory 4 HM5 20 histogram segment memory 5 YOUT 21 luminance output TAUHM 22 time constant histogram
n.c. 23 not connected V
DDD
DGND 25 digital ground VOUT 26 colour difference V output DT 27 test option UOUT 28 colour difference U output TM 29 test option SDA 30 serial data input/output
SCL 31 serial clock input (I ADR 32 address select input (I
6 reference supply voltage output
(+4 V)
9 analog supply voltage
measurement loop
24 digital supply voltage (+5 V)
2
C-bus)
(I
2
C-bus)
2
C-bus)
TDA9170
Fig.2 Pin configuration.
October 1994 4
Page 5
Philips Semiconductors Preliminary specification
YUV picture improvement processor based on histogram modification
FUNCTIONAL DESCRIPTION Y input selection and amplification
The dynamic range of the luminance input amplifier can be switched between 0.3 and 1 V (excluding sync) either externally (pin AMPSEL) or by I Amplitudes that exceed the corresponding specified range (e.g. the sync) will be clipped internally. The input is clamped during the logic HIGH period of the clamp which is defined by the sandcastle reference and should be DC-decoupled with an external capacitor.
Black offset detection and correction
The black detector measures and stores the blackest part of the picture within a defined window in each field. Any difference between this value and the value measured during the black clamp period is regarded as black offset. In a closed loop configuration, the black offset is held until a predefined value of the full scale (FS) value is fed back to the input stage where it is partly compensated for. Depending on the loop gain, 30% to 50% of the offset value is counteracted. The loop gain is also a function of the adaptive and variable gamma settings. The black offset correction mechanism can be switched on and off by
2
C-bus via the BON bit (see Table 6), or externally with
the I the black offset on/off switch (BOF pin 11).
Two external time constants are required to ensure correct performance of the black detector; a loop filter time constant (TAUBL) for the loop dynamics and a time constant for memorizing the darkest parts of the picture (TAUBP) in just one field. During the field retrace the time constant TAUBP is first sampled and then preset to a value that corresponds to the maximum black offset.
The corrected black offset is related to the nominal signal amplitude which is reset to 100% FS via an amplitude stretch function. Luminance values beyond FS are not affected. Additionally, this offset is also used to set the adaptive gain (see Section “Adaptive gamma”).
Histogram measurement
The histogram distribution is measured in real time over five segments (HM1 to HM5) within a defined window period of each field. During the window period, the video is in one segment, a corresponding external capacitor C is loaded via a current source. At the end of the field five segment voltages are stored from the external capacitors into on-board memories. The external capacitors are discharged and the measurements are restarted.
2
C-bus (AMPSEL bit).
HMx
TDA9170
Any part of the picture that does not contribute to the information within the total picture should be omitted from the histogram measurement. The miscount detector disables measurements until it detects changing parts. Additionally, luminance values close to FS (or white) do not contribute sufficiently in order to maintain the absolute light output. This procedure is allowed because the eye is less sensitive to details in white.
As the miscount detector shortens the effective measurement period and, because of spreads of internal and external components, the current source is controlled within in a closed loop so as to maintain a constant average value of the sum of the segment voltages. The dominant time constant of the closed loop is external and can be tuned with an appropriate capacitor connected to TAUHM (pin 22).
Processing of the measured histogram values
F
IELD AVERAGING OF HISTOGRAM VALUES
With very rapid picture changes, also related to the field interlace, flicker might result. The histogram values are averaged at the field rate to reduce these flicker effects. The time constant of the averaging process is adapted to the speed of the histogram changes.
DAPTIVE GAMMA
A The output voltage of the first segment is fed to a variable
gain amplifier with a gain between 1 and 3. In this way luminance values in the ‘black’ segment have a larger weight. In our perception black parts are expanded, as occurs with gamma control. However, the effective contribution to the non-linear gain is only relevant for moderate segment voltages and hence the term adaptive gamma.
The adaptive gamma gain is amax-function of a fixed gain part and a dynamic gain part. The fixed gain part can be set externally with the adaptive gamma gain control (ADGAM) or via the I2C-bus.
The dynamic part of the adaptive gamma gain is controlled by the measured black offset value from the black detector.
October 1994 5
Page 6
Philips Semiconductors Preliminary specification
YUV picture improvement processor based on histogram modification
ADAPTIVE WHITE-POINT STRETCHING For dominant HM4 and HM5 voltages or large white parts
the histogram conversion procedure makes a transfer with large gain in the white parts. However, the amount of light being emitted from the picture is considerably reduced. The white stretcher introduces additional overall gain for increased light production and, as a result, violates the principle of having a full-scale reference.
S
TANDARD DEVIATION
For pictures in which segments of the histogram distribution are very dominant, with respect to the others, the non-linear amplification should be reduced to compensate for pictures with a flat histogram distribution. The standard deviation detector measures the spread of the histogram distribution in the segments HM1 to HM5 and modulates the user setting of the non-linear amplifier.
Non-linear amplifier
The stored segment voltages, relative to their average value and averaged over two fields, determine the individual gain of each segment in such a way that continuity is guaranteed for the complete range. The maximum and minimum gain of each segment is limited. Apart from the adaptive white-point stretching the black and white references are not affected by the non-linear processing. The amount of linearity can be controlled externally at AMPNLA (pin 3) or via the I
Variable gamma function
2
C-bus.
TDA9170
Timing generator
The TDA9170 is equipped with a transparent internal timing generator for window purposes. As a timing reference the relevant sandcastle (SC) can be used. The window enables the black measurement and the histogram measurement circuitry. The internal timing generator is basically intended for system invariant operation. The default window handles all existing norms and disables measurement in subtitles or logos. This default window is preset at power-up and can be selected with a logic HIGH level at the default window select DWS (pin 1). If not selected the blanking of the sandcastle will define the window borders.
2
However, using the I control bits (see Table 3), the window format can also be user-programmed. The horizontal window generator synchronizes on the rising edge of the burst key/clamp key of the external sandcastle reference with an adjustable window start and stop delay. The vertical window generator synchronizes on the falling edge of the first burst key/clamp key after a field pulse recognition.
2
I
C-bus specification
The I2C-bus is designed for transparent use. At power-up all registers are preset for system invariant and external control. All pins related to the I2C-bus can be left open-circuit when the I2C-bus is in the standby mode. If the sleep mode bit in the control register is set all settings are left to bus control. For the relevant registers and addresses see Tables 2 to 8.
C-bus and setting the WD1 and WD2
As well as the histogram conversion, a variable gamma function can be applied to ensure excellent brightness control. It is intended as an alternative to the DC-offset of the classic brightness user control; it maintains the black and white references. The gamma ranges from 0.5 to 1.5. The gamma can be set externally at VARGAM (pin 2) or via the I
Colour compensation
Non-linear luminance processing influences the colour reproduction, mainly the colour saturation. Therefore, U and V signals are also processed for saturation compensation. The U and V input signals are clamped during the logic HIGH period of the clamp which is defined by the sandcastle reference and should be DC decoupled with external capacitors.
October 1994 6
2
C-bus.
Page 7
Philips Semiconductors Preliminary specification
YUV picture improvement processor based
TDA9170
on histogram modification
Table 1 Slave address.
A6 A5 A4 A3 A2 A1 A0 R/W
110100ADRX
Table 2 Control function.
CONTROL FUNCTION
Control REG 00 X X X BON WD2 WD1 AMS SLP User variable
gamma Adaptive gamma DAC 02 X X D5 D4 D3 D2 D1 D0 Non-linear
amplifier Line start stop REG 04 ST3 ST2 ST1 ST0 SP3 SP2 SP1 SP0 Field start stop REG 05 ST3 ST2 ST1 ST0 SP3 SP2 SP1 SP0 Status REG XXXXXXXPOR
TYPE SUB-ADDRESS
DAC 01 X X D5 D4 D3 D2 D1 D0
DAC 03 X X D5 D4 D3 D2 D1 D0
(1)
D7 D6 D5 D4 D3 D2 D1 D0
DATA BYTE
Note
1. Valid sub-addresses: 00 to 05 (HEX); auto-increment mode available for sub-addresses.
Table 3 Window select bits (WD1 and WD2).
WD1 WD2 FUNCTION
0 0 default window 0 1 window by sandcastle blanking 1 X user window
Table 4 Amplitude select bit (AMS).
LOGIC LEVEL FUNCTION
0 0.3 V luminance 1 1 V luminance
Table 5 Sleep mode bit (SLP).
LOGIC LEVEL FUNCTION
0 sleep 1I
Table 6 Black offset compensation enable bit (BON).
LOGIC LEVEL FUNCTION
0 disabled 1 enabled
2
C-bus control
October 1994 7
Page 8
Philips Semiconductors Preliminary specification
YUV picture improvement processor based on histogram modification
Window formats Table 7 Line frequency start stop format.
LINE WINDOW
Start (LWS) Stop (LWP)
(1)
4.5
26.5
64fh
64fh
+1⁄
+2⁄
TIMING
× DEC(ST3, ST2, ST1, ST0) µs
64fh
× DEC(SP3, SP2, SP1, SP0) µs
64fh
Default DEC(ST3, ST2, ST1, ST0) = 2
DEC(SP3, SP2, SP1, SP0) = 14
Notes
1. Start and stop events are relative to the leading edge of the BK/CLP pulse of the sandcastle.
2. fh is defined as the line frequency.
Table 8 Field frequency start stop format.
FIELD WINDOW
(1)
Start (FWS) 10 + 6 × DEC(ST3, ST2, ST1, ST0) lines Stop (FWP) 121 + 10 × DEC(SP3, SP2, SP1, SP0) lines Default DEC(ST3, ST2, ST1, ST0) = 9
DEC(SP3, SP2, SP1, SP0) = 4
(2)
TIMING UNIT
TDA9170
UNIT
Note
1. The start event is relative to the trailing edge of the first BK/CLP pulse after a field pulse recognition. The stop event
is relative to the actual start event.
October 1994 8
Page 9
Philips Semiconductors Preliminary specification
YUV picture improvement processor based
TDA9170
on histogram modification
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
V
DDA
V
DDD
V
ref
V
n
T
stg
T
amb
V
es
Notes
1. Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 k resistor.
2. Machine model: equivalent to discharging a 200 pF capacitor through a 0 resistor.
QUALITY SPECIFICATION
analog supply voltage 0.5 +8.8 V digital supply voltage 0.5 +5.5 V reference supply voltage 0.5 +5.5 V voltage input/output on any other pin 0.5 V
DDA
+ 0.5 V storage temperature 55 +150 °C operating ambient temperature 10 +70 °C electrostatic discharge note 1 2000 +2000 V
note 2 200 +200 V
In accordance with
“SNW-FQ-611 part E”
Reference Handbook”
. The Handbook can be ordered using the code 9398 510 63011. All pins are protected against
. The numbers of the quality specification can be found in the
electrostatic discharge by means of clamping diodes.
Latch-up
At T
= 70 °C all pins meet the specification as follows, except for pins 6 and 7 at positive trigger currents:
amb
I
> 100 mA or V
trigger
I
<−100 mA or V
trigger
pin 6, V
ref
pin 24, V
: I
DDD
trigger
: I
trigger
> 1.5V
pin
<−0.5V
pin
> 40 mA or V
> 70 mA or V
DDA(max)
DDA(max)
> 1.5V
pin
pin
.
.
DDA(max)
> 1.5V
.
DDA(max)
.
THERMAL CHARACTERISTICS
SYMBOL PARAMETER VALUE UNIT
R
th j-a
thermal resistance from junction to ambient in free air 48 K/W
“Quality
October 1994 9
Page 10
Philips Semiconductors Preliminary specification
YUV picture improvement processor based
TDA9170
on histogram modification
CHARACTERISTICS
V
=8V; T
DDA
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Supply (pins 6, 9 and 24)
V
DDA
V
DDD
V
ref
I
DDA
Z
o(24)
Z
o(6)
Luminance input/output selection
L
UMINANCE INPUT (PIN 12); note 1
V
i(Y)
V
i(Yclamp)
I
ib(Y)
LUMINANCE INPUT VOLTAGE RANGE SELECTION AMPSEL (PIN 13); note 2 V
i(SEL)l
V
i(SEL)h
I
ib(SEL)
LUMINANCE OUTPUT (PIN 21) V
o(Y)
V
oYclamp
V
no
B
Y
B
Y(nl)
E
bl
E
G(n)
Black detection and correction
=25°C; unless otherwise specified.
amb
analog supply voltage 7.2 8.8 V digital supply voltage 5.0 V reference supply voltage 4.0 V analog supply current 40 mA output impedance −−250 output impedance −−250
luminance input voltage AMPSEL = 0 0.3 −−V
AMPSEL = 1 1.0 −−V
input voltage level during
1.5 V
clamping input bias current −−0.1 µA
input voltage selection for lower
−−1.5 V
range input voltage selection for
3.5 −−V
higher range input bias current −−0.1 µA
luminance output voltage AMPSEL = 0 0.3 −−V
AMPSEL = 1 1.0 −−V
output voltage level during clamping
AMPSEL = 0 2.9 V
AMPSEL = 1 2.0 V output noise voltage 52 −−dB luminance bandwidth transparent 7 9 MHz non-linear processing
10 −−MHz
luminance bandwidth black level error no offset; transparent −−1% nominal gain error no offset; transparent −−8%
LACK DETECTOR
B Bl
osd(max)
maximum black offset detection at the input
Bl
osc(max)
maximum black offset correction at the input
October 1994 10
23 25 27 %
81012%
Page 11
Philips Semiconductors Preliminary specification
YUV picture improvement processor based
TDA9170
on histogram modification
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
PICTURE AMPLITUDE STRETCH E
G(s)
BLACK OFFSET CORRECTION ON/OFF SWITCH BOF (PIN 11); note 2 V
i(blos)
I
ib(blos)
TIME CONSTANT CONTROL TAUBP (PIN 4); see Fig.3 I
BP(d)
I
ibBP
V
BP(l)
V
BP(h)
TIME CONSTANT CONTROL TAUBL (PIN 5); see Fig.4 I
ibBL
V
BL(l)
V
BL(h)
Histogram measurement
gain error after stretch maximum offset −−1%
input voltage level correction off −−1.5 V
correction on 3.5 −−V input bias current −−0.1 µA
discharge current −−3.5 mA input bias current −−0.1 µA control voltage lower limit 1.0 V control voltage upper limit 2.5 V
input bias current −−0.1 µA control voltage lower limit 2.0 V control voltage upper limit 3.5 V
H
ISTOGRAM UPDATES AT HMX (PINS 16 TO 20)
Q
HMb
V
HM(av)
segment bleeder accuracy −−2% average voltage level for
5 segments
V
HM(min)
V
HM(max)
I
ibHM
minimum segment voltage level 0 −−V maximum segment voltage level 5.0 V input bias current −−0.1 µA
TIME CONSTANT CONTROL TAUHM (PIN 22); see Figs 5, 6 and 7 I
ibTHM
V
THM(l)
V
THM(h)
input bias current −−0.1 µA control voltage lower limit 1.0 V control voltage upper limit 2.0 V
MISCOUNT DETECTION Q
mc(d)
t
p(mc)
t
o(mc)
miscount detection level 5 % miscount propagation delay 20% step 25 ns miscount detection on-time for
each event
t
Y(mc)
mismatch propagation and luminance delay
Q
mc(aW)
miscount activation level at
no miscount 90 % white
Q
mc(dW)
miscount de-activation level at
miscount 87 % white
1.0 V
0.31 0.36 0.41 µs
−−20 ns
October 1994 11
Page 12
Philips Semiconductors Preliminary specification
YUV picture improvement processor based
TDA9170
on histogram modification
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Processing of measured histogram values
ADAPTIVE GAMMA CONTROL RANGE G
adg(min)
G
adg(max)
ADAPTIVE GAMMA SETTING ADGAM (PIN 4); note 3; see Fig.8 V
adg(l)
V
adg(h)
I
ibADG
G
adp(min)
G
adp(max)
ADAPTIVE GAMMA BY BLACK OFFSET G
adb(min)
G
adb(max)
WHITE-POINT STRETCH G
wp
minimum gain for HM1 1 maximum gain for HM1 3
control voltage lower limit 1.75 V control voltage upper limit 3.25 V input bias current −−0.1 µA minimum gain for HM1 no offset; G maximum gain for HM1 no offset; G
minimum gain for HM1 no offset; G maximum gain for HM1 maximum offset;
G
=1
VAR
maximum gain luminance for white stretch
HM-pattern = 01103:
Gnl=1
=1 1
VAR
=1 3
VAR
= 1 1
VAR
2.5
1.09
Non-linear amplifier
ON-LINEAR GAIN SET BY HMX (PINS 16 TO 20)
N Q
nl(b)
G
nl(min)
G
nl(max)
segment bleeder accuracy −−2% minimum gain segment HM-pattern = 31100:
maximum gain segment HM-pattern = 31100:
NON-LINEARITY SETTING AMPNLA (PIN 3); note 3 V
V I
ib(nl)
nl(l) nl(h)
control voltage lower limit 1.75 V control voltage upper limit 3.25 V input bias current −−0.1 µA
DYNAMICS t
d(nl)
delay between linear and non-linear path
Variable gamma
V
ARIABLE GAMMA CONTROL RANGE
G
VAR(min)
minimum variable gamma setting
G
VAR(max)
maximum variable gamma setting
0.36
Gnl=1
2.28
Gnl=1
−−20 ns
0.5
1.5
October 1994 12
Page 13
Philips Semiconductors Preliminary specification
YUV picture improvement processor based
TDA9170
on histogram modification
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
VARIABLE GAMMA SETTING VARGAM(PIN 2); note 3 V
VAR(l)
V
VAR(h)
V
VAR(lt)
I
ibVAR
Colour difference processing
OLOUR DIFFERENCE INPUTS UIN AND VIN (PINS 5 AND 7)
C V
i(UIN)
V
i(VIN)
I
ib
V
i(cl)
COLOUR DIFFERENCE OUTPUTS (PINS 28 AND 26) V
o28
V
o26
V
o(cl)
E
off
E
G
B bandwidth transparent 20 30 MHz
control voltage lower limit 1.75 V control voltage upper limit 3.25 V control voltage for linear transfer 2.5 V input bias current −−0.1 µA
input voltage 1.8 −−V input voltage 1.8 −−V input bias current (pins 5 and 7) −−0.1 µA input voltage level during
1.5 V
clamping
output voltage range with
150 −−%
respect to the input (pin 28) output voltage range with
150 −−%
respect to the input (pin 26) output voltage level during
2.3 V
clamping offset error transparent −−1% gain error transparent −−5%
Timing
ORIZONTAL WINDOW GENERATION
H fh line frequency 15 16 kHz
Default window setting (with respect to start BK/CLP pulse)
t
dh(ws)
t
dhd(wp)
default start window default window stop
6.5
54.5
64fh
64fh
User window generation with I2C-bus (with respect to start BK/CLP pulse)
t
hws(min)
t
hws(max)
t
hwp(min)
t
hwp(max)
minimum start window maximum start window minimum window stop maximum window stop
4.5
19.5
26.5
56.5
64fh
⁄ ⁄ ⁄
64fh 64fh 64fh
VERTICAL WINDOW GENERATION fv vertical frequency 45 65 Hz
Default window setting (start event with respect to start detected field blanking, stop event with respect to start event)
t
dvws
t
dvdwp
default window start 64 lines default window stop 161 lines
October 1994 13
Page 14
Philips Semiconductors Preliminary specification
YUV picture improvement processor based
TDA9170
on histogram modification
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
User window generation with I2C-bus
t
vsw(min)
t
vsw(max)
t
vwp(min)
t
vwp(max)
Default window select DWS; (pin 1): note 2 V
isc(DWS)
V
id(DWS)
I
ibDWS
Sandcastle input SC; (pin 10)
V
i(SC)
t
i(sw)
PULSE WIDTH RESTORATION
CLP t
d(clp)
2
C-bus specification
I
minimum window start 10 lines maximum window start 100 lines minimum window stop 121 lines maximum window stop 271 lines
voltage input level for window
−−1.5 V
by SC blanking voltage input level for default
3.5 5.5 V
window input bias current V
DWS
= V
DDA
−−10 µA
voltage input level no blanking; no clamp 0 1.0 V
with blanking; no clamp 1.2 1.5 1.8 V
with blanking and clamp 3.1 3.5 3.9 V input sync width no vertical sync −−15 µs
with vertical sync 35 −−µs
internal CLP pulse width
−−100 ns
difference
ADDRESS SELECT ADR (PIN 32) V
iADR
input voltage level A0 = 0 −−1.5 V
A1 = 1 3.5 5.5 V
I
ibADR
input bias current −−0.1 µA
TEST PINS TM AND DT (PINS 29 AND 27) V
i(test)
input voltage level −−0.5 V
Overall output performance
t
d(YUV)
delay from input to output of
transparent 50 100 ns YUV
t
dm(YUV)
α
w(YUV)
delay of matching YUV transparent 10 20 ns crosstalk from window any channel −−−60 dB
Notes
1. Input amplitude values greater than the minimum specified range are still processed. However, the gain will slowly saturate. Amplitudes up to +4 dB are permitted without significant clipping.
2. This select is valid provided the sleep mode bit is not set.
3. This control is valid provided the sleep mode bit is not set.
October 1994 14
Page 15
Philips Semiconductors Preliminary specification
BBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBB
B B B B B B B B B B B B B B B
BBBBBBBBBBBBBBBBBBBBBBBB
YUV picture improvement processor based on histogram modification
BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB
TDA9170
Fig.3 Black occurrence detection time constant as a function of C
BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB
The dashed line = 625 lines/frame. The full line = 525 lines/frame.
BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB
Fig.4 Response time constant black level loop as a function of C
October 1994 15
TAUBP
TAUBL
.
.
Page 16
Philips Semiconductors Preliminary specification
B B B B B B B B B B B B B B B B
YUV picture improvement processor based on histogram modification
BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB
(1) Minimum user window. (2) Default window. (3) Maximum user window, window by sandcastle blanking. Rmc=1. W Where: thw= horizontal window width (µs). Nvw= vertical window height (lines). Rmc= effective histogram measuring time within window due to miscount in percentage of thw× Nvw.
eff=thw
× Nvw× Rmc.
TDA9170
Fig.5 Response speed of average histogram amplitude control loop as a function of C
October 1994 16
at 60 Hz field-rate.
TAUHM
Page 17
Philips Semiconductors Preliminary specification
B B B B B B B B B B B B B B B B
BBBBBBBBBBBBBBBBBBBBBBBB
YUV picture improvement processor based on histogram modification
BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB
(1) Minimum user window. (2) Default window. (3) Maximum user window. (4) window by sandcastle blanking. Rmc=1. W
eff=thw
Where: thw= horizontal window width (µs). Nvw= vertical window height (lines). Rmc= effective histogram measuring time within window due to miscount in percentage of thw× Nvw.
BBBBBBBBBBBBBBBBBBBBBBB
× Nvw× Rmc.
TDA9170
Fig.6 Response speed of average histogram amplitude control loop as a function of C
October 1994 17
at 50 Hz field-rate.
TAUHM
Page 18
Philips Semiconductors Preliminary specification
YUV picture improvement processor based on histogram modification
TDA9170
W Where: thw= horizontal window width (µs). Nvw= vertical window height (lines). Rmc= effective histogram measuring time within window due to miscount in
percentage of t
eff=thw
× Nvw× Rmc.
× Nvw.
hw
Fig.7 Static error on average histogram amplitude (pin TAUHM) as a function of effective histogram measuring
time in a field.
October 1994 18
Page 19
Philips Semiconductors Preliminary specification
B B B B B B B B B B B B B B B
BBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBB
YUV picture improvement processor based on histogram modification
BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB
TDA9170
Fig.8 Adaptive gamma gain setting as a function of ADGAM setting in sleep mode.
BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB
Fig.9 Non-linear amplifier non-linearity setting as a function of AMPNLA setting in sleep mode.
October 1994 19
Page 20
Philips Semiconductors Preliminary specification
B B B B B B B B B B B B B B B
BBBBBBBBBBBBBBBBBBBBBBBB
YUV picture improvement processor based on histogram modification
BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB
TDA9170
Fig.10 Variable gamma setting as a function of VARGAM setting in sleep mode.
October 1994 20
Page 21
Philips Semiconductors Preliminary specification
YUV picture improvement processor based on histogram modification
APPLICATION INFORMATION (BUS-MODE)
TDA9170
Fig.11 Application diagram.
October 1994 21
Page 22
Philips Semiconductors Preliminary specification
YUV picture improvement processor based on histogram modification
PACKAGE OUTLINE
10.7
10.2
0.32 max
4.7
max
min
M
0.18
3.8
max
0.51
10.16
12.2
10.5
MSA270
9.1
TDA9170
8.7
29.4
28.5
3.2
2.8
seating plane
0.53
1.778
1.6
max
(15x)
max
1.3 max
17
16
Fig.12 Plastic shrink dual in-line package; 32 leads (400 mil) SDIP32; SOT232-1.
32
1
October 1994 22
Dimensions in mm.
Page 23
Philips Semiconductors Preliminary specification
YUV picture improvement processor based
TDA9170
on histogram modification
SOLDERING Plastic dual in-line packages
Y DIP OR WAVE
B The maximum permissible temperature of the solder is
260 °C; this temperature must not be in contact with the joint for more than 5 s. The total contact time of successive solder waves must not exceed 5 s.
The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum.
DEFINITIONS
Data sheet status
Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.
EPAIRING SOLDERED JOINTS
R Apply a low voltage soldering iron below the seating plane
(or not more than 2 mm above it). If its temperature is below 300 °C, it must not be in contact for more than 10 s; if between 300 and 400 °C, for not more than 5 s.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.
PURCHASE OF PHILIPS I
2
C COMPONENTS
2
Purchase of Philips I components in the I2C system provided the system conforms to the I2C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.
C components conveys a license under the Philips’ I2C patent to use the
October 1994 23
Page 24
Philips Semiconductors – a worldwide company
Argentina: IEROD, Av. Juramento 1992 - 14.b, (1428)
BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. (02)805 4455, Fax. (02)805 4466
Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213,
Tel. (01)60 101-1236, Fax. (01)60 101-1211
Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands,
Tel. (31)40 783 749, Fax. (31)40 788 399
Brazil: Rua do Rocio 220 - 5
CEP: 04552-903-SÃO PAULO-SP, Brazil. P.O. Box 7383 (01064-970). Tel. (011)821-2333, Fax. (011)829-1849
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS:
Tel. (800) 234-7381, Fax. (708) 296-8556
Chile: Av. Santa Maria 0760, SANTIAGO,
Tel. (02)773 816, Fax. (02)777 6730
Colombia: IPRELENSO LTDA, Carrera 21 No. 56-17,
77621 BOGOTA, Tel. (571)249 7624/(571)217 4609, Fax. (571)217 4549
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. (032)88 2636, Fax. (031)57 1949
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. (9)0-50261, Fax. (9)0-520971
France: 4 Rue du Port-aux-Vins, BP317,
92156 SURESNES Cedex, Tel. (01)4099 6161, Fax. (01)4099 6427
Germany: P.O. Box 10 63 23, 20043 HAMBURG,
Tel. (040)3296-0, Fax. (040)3296 213.
Greece: No. 15, 25th March Street, GR 17778 TAVROS,
Tel. (01)4894 339/4894 911, Fax. (01)4814 240
Hong Kong: PHILIPS HONG KONG Ltd., 6/F Philips Ind. Bldg.,
24-28 Kung Yip St., KWAI CHUNG, N.T., Tel. (852)424 5121, Fax. (852)428 6729
India: Philips INDIA Ltd, Shivsagar Estate, A Block ,
Dr. Annie Besant Rd. Worli, Bombay 400 018 Tel. (022)4938 541, Fax. (022)4938 722
Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4,
P.O. Box 4252, JAKARTA 12950, Tel. (021)5201 122, Fax. (021)5205 189
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. (01)640 000, Fax. (01)640 200
Italy: PHILIPS SEMICONDUCTORS S.r.l.,
Piazza IV Novembre 3, 20124 MILANO, Tel. (0039)2 6752 2531, Fax. (0039)2 6752 2557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. (03)3740 5028, Fax. (03)3740 0580
Korea: (Republic of) Philips House, 260-199 Itaewon-dong,
Yongsan-ku, SEOUL, Tel. (02)794-5011, Fax. (02)798-8022
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA,
SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TX 79905,
Tel. 9-5(800)234-7381, Fax. (708)296-8556
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB
Tel. (040)783749, Fax. (040)788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. (09)849-4160, Fax. (09)849-7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. (022)74 8000, Fax. (022)74 8341
th
floor, Suite 51,
Pakistan: Philips Electrical Industries of Pakistan Ltd.,
Exchange Bldg. ST-2/A, Block 9, KDA Scheme 5, Clifton, KARACHI 75600, Tel. (021)587 4641-49, Fax. (021)577035/5874546.
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. (02)810 0161, Fax. (02)817 3474
Portugal: PHILIPS PORTUGUESA, S.A.,
Rua dr. António Loureiro Borges 5, Arquiparque - Miraflores, Apartado 300, 2795 LINDA-A-VELHA, Tel. (01)4163160/4163333, Fax. (01)4163174/4163366.
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. (65)350 2000, Fax. (65)251 6500
South Africa: S.A. PHILIPS Pty Ltd.,
195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. (011)470-5911, Fax. (011)470-5494.
Spain: Balmes 22, 08007 BARCELONA,
Tel. (03)301 6312, Fax. (03)301 42 43
Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM,
Tel. (0)8-632 2000, Fax. (0)8-632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. (01)488 2211, Fax. (01)481 77 30
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West
Road, Sec. 1. Taipeh, Taiwan ROC, P.O. Box 22978, TAIPEI 100, Tel. (02)388 7666, Fax. (02)382 4382.
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, Bangkok 10260, THAILAND, Tel. (662)398-0141, Fax. (662)398-3319.
Turkey:Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. (0212)279 2770, Fax. (0212)269 3094
United Kingdom: Philips Semiconductors LTD.,
276 Bath road, Hayes, MIDDLESEX UB3 5BX, Tel. (081)73050000, Fax. (081)7548421
United States:811 East Arques Avenue, SUNNYVALE,
CA 94088-3409, Tel. (800)234-7381, Fax. (708)296-8556
Uruguay: Coronel Mora 433, MONTEVIDEO,
Tel. (02)70-4044, Fax. (02)92 0601
For all other countries apply to: Philips Semiconductors, International Marketing and Sales, Building BE-p, P.O. Box 218, 5600 MD, EINDHOVEN, The Netherlands, Telex 35000 phtcnl, Fax. +31-40-724825
SCD35 © Philips Electronics N.V. 1994
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
533061/1500/01/pp24 Date of release: October 1994 Document order number: 9397 740 20011
Philips Semiconductors
Loading...