Datasheet TDA4850-V2, TDA4850-V1 Datasheet (Philips)

Page 1
DATA SH EET
Product specification Supersedes data of September 1991 File under Integrated Circuits, IC02
1997 Jun 05
INTEGRATED CIRCUITS
TDA4850
Page 2
1997 Jun 05 2
Philips Semiconductors Product specification
Horizontal and vertical deflection controller for VGA/XGA and multi-frequency monitors
TDA4850
FEATURES
VGA operation fully implemented including alignment-free vertical and E/W amplitude pre-settings
4th VGA mode easy applicable (XGA, Super VGA)
Multi-frequency operation externally selectable
All adjustments DC-controllable
Alignment-free oscillators
Sync separators for video or horizontal and vertical TTL
sync levels regardless of polarity
Horizontal oscillator with PLL1 for sync and PLL2 for flyback
Constant vertical and E/W amplitude in multi-frequency operation
DC-coupling to vertical power amplifier (TDA486X or TDA8351)
Internal supply voltage stabilization with excellent ripple rejection to ensure stable geometrical adjustments.
GENERAL DESCRIPTION
The TDA4850 provides economical solutions in VGA/XGA and multi-frequency monitors. The IC incorporates the complete horizontal and vertical small signal processing. VGA-dependent mode detection and settings are performed on chip. In conjunction with TDA486X or TDA8351 (vertical output circuits) both ICs offer an extremely advanced system solution.
QUICK REFERENCE DATA
ORDERING INFORMATION
SYMBOL PARAMETER MIN. TYP. MAX. UNIT
V
P
supply voltage (pin 1) 9.2 12 16 V
I
P
supply current 40 mA
V
i sync
AC-coupled composite video signal with negative-going sync (peak-to-peak value; pin 9)
1 V
sync slicing level 120 mV DC-coupled TTL-compatible horizontal sync signal
(peak value; pin 9)
1.7 −−V
slicing level 1.2 1.4 1.6 V DC-coupled TTL-compatible vertical sync signal
(peak value; pin 10)
1.7 −−V
slicing level 1.2 1.4 1.6 V
I
oV
vertical differential output current (peak-to-peak value; pins 5 and 6)
1 mA
I
oH
horizontal sink output current on pin 3 −−60 mA
T
amb
operating ambient temperature 0 70 °C
TYPE
NUMBER
PACKAGE
NAME DESCRIPTION VERSION
TDA4850 DIP20 plastic dual in-line package; 20 leads (300 mil) SOT146-1
Page 3
1997 Jun 05 3
Philips Semiconductors Product specification
Horizontal and vertical deflection controller for VGA/XGA and multi-frequency monitors
TDA4850
BLOCK DIAGRAM
andbook, full pagewidth
MEH165
HORIZONTAL
SYNC
SEPARATOR
(TTL VIDEO SYNC)
AUTOMATIC
POLARITY
CORRECTION
9
7
+
17 18
R
HOS
C
HOS
19
DC-coupled
(TTL level)
10
vertical sync
(TTL level)
mode
detector
disable
4th mode
AC-coupled
(video)
PLL1
HORIZONTAL
OSCILLATOR
HORIZONTAL
OUTPUT
20
3
2
PLL2
horizontal
flyback
SUPPLY AND
REFERENCE
VOLTAGE
PARABOLA
ADJUSTMENT
AND OUTPUT
VERTICAL
AMPLITUDE
ADJUSTMENT
AND OUTPUT
VERTICAL
OSCILLATOR
AMPLITUDE
CONTROL
VERTICAL
SYNC
INTEGRATOR
H
+
V
CLAMPING AND
BLANKING
GENERATOR
VGA/MULTI-
FREQUENCY
SWITCH
VGA MODE
DETECTOR
AND OUTPUT
AUTOMATIC
POLARITY
CORRECTION
VERTICAL
SYNC
SEPARATOR
4
1
14
VP(9.2 to 16 V)
E/W drive
horizontal drive
parabola
amplitude
+
V
B
11
differential vertical output
V supply
H supply
R
VOS
158
clamping/
blanking
pulse
C
VOS
16
C
VA
12 13 5 6
vertical amplitude
TDA4850
Fig.1 Block diagram.
Page 4
1997 Jun 05 4
Philips Semiconductors Product specification
Horizontal and vertical deflection controller for VGA/XGA and multi-frequency monitors
TDA4850
PINNING
SYMBOL PIN DESCRIPTION
V
P
1 positive supply voltage FLB 2 horizontal flyback input HOR 3 horizontal output GND 4 ground (0 V) VERT1 5 vertical output 1;
negative-going sawtooth
VERT2 6 vertical output 2;
positive-going sawtooth
MODE 7 4th mode output and mode detector
disable input CLBL 8 clamping/blanking pulse output HVS 9 horizontal sync/video input VS 10 vertical sync input EW 11 E/W output (parabola to driver stage) C
VA
12 capacitor for amplitude control
R
VA
13 vertical amplitude adjustment input
R
EW
14 E/W amplitude adjustment input
(parabola) R
VOS
15 vertical oscillator resistor
C
VOS
16 vertical oscillator capacitor PLL1 17 PLL1 phase R
HOS
18 horizontal oscillator resistor C
HOS
19 horizontal oscillator capacitor PLL2 20 PLL2 phase
Fig.2 Pin configuration.
handbook, halfpage
V
P
FLB HOR GND
VERT1 VERT2
MODE
CLBL
HVS
VS
PLL2 C
HOS
R
HOS
PLL1
R
VOS
R
EW
C
VOS
R
VA
C
VA
EW
1 2 3 4 5 6 7 8 9
10
11
12
20 19 18 17 16 15 14 13
TDA4850
MEH168
Page 5
1997 Jun 05 5
Philips Semiconductors Product specification
Horizontal and vertical deflection controller for VGA/XGA and multi-frequency monitors
TDA4850
FUNCTIONAL DESCRIPTION Horizontal sync separator and polarity correction
An AC-coupled video signal or a DC-coupled TTL sync signal (H only or composite sync) is input on pin 9. Video signals are clamped with top sync on 1.28 V, and are sliced at 1.4 V. This results in a fixed absolute slicing level of 120 mV related to top sync.
DC-coupled TTL sync signals are also sliced at 1.4 V, however with the clamping circuit in current limitation. The polarity of the separated sync is detected by internal integration of the signal, then the polarity is corrected.
The polarity information is fed to the VGA mode detector. The corrected sync is input signal for the vertical sync integrator and the PLL1 stage.
Vertical sync separator, polarity correction and vertical sync integrator
DC-coupled vertical TTL sync signals may be applied to pin 10. They are sliced at 1.4 V. The polarity of the separated sync is detected by internal integration, then polarity is corrected. The polarity information is fed to the VGA mode detector. If pin 10 is not used, it must be connected to ground.
The separated V
i(sync)
signal from pin 10, or the integrated composite sync signal from pin 9 (TTL or video) triggers directly the vertical oscillator.
VGA mode detector and mode output
The three standard VGA modes and a 4th not fixed mode are decoded by the polarities of the horizontal and the vertical sync input signals. An external resistor (from V
P
to pin 7) is necessary to match this function. In all three VGA modes the correct amplitudes are activated. The presence of the 4th mode is indicated by HIGH on pin 7. This signal can be used externally to switch any horizontal or vertical parameters.
VGA mode detector input
For multi-frequency operation the voltage on pin 7 must be externally forced to a level of <50 mV. Vertical amplitude pre-settings for VGA are then inhibited. The delay time between vertical trigger pulse and the start of vertical deflection changes from 575 to 300 µs (575 µs is needed for VGA). The vertical amplitude then remains constant in a frequency range from 50 to 110 Hz.
Clamping and blanking generator
A combined clamping and blanking pulse is available on pin 8 (suitable for the video preamplifier TDA4880). The lower level of 2.1 V can be the blanking signal derived from line flyback, or the vertical blanking pulse from the internal vertical oscillator.
Vertical blanking equals to the delay between vertical sync and start of vertical scan. By this, an optimum blanking is achieved for VGA/XGA as well as for multi-frequency operation (selectable via pin 7).
The upper level of 3.9 V is the horizontal clamping pulse with internally fixed pulse width of 1 µs. A mono flop, which is triggered by the trailing edge of the horizontal sync pulse, generates this pulse.
PLL1 phase detector
The phase detector is a standard one using switched current sources. The middle of the sync is compared with a fixed point of the oscillator sawtooth voltage. The PLL filter is connected to pin 17.
Horizontal oscillator
This oscillator is a relaxation type oscillator. Its frequency is determined mainly by the capacitor on pin 19. A frequency range of one octave is achieved by the current on pin 18. The ϕ1 control voltage from pin 17 is fed via a buffer amplifier and an attenuator to the current reference pin 18 to achieve a high DC loop gain. Therefore, changes in frequency will not affect the phase relationship between horizontal sync pulses and line flyback pulses.
PLL2 phase detector
This phase detector is similar to the PLL1 phase detector. Line flyback signals (pin 2) are compared with a fixed point of the oscillator sawtooth voltage. Delays in the horizontal deflection circuit are compensated by adjusting the phase relationship between horizontal sync and horizontal output pulses.
A certain amount of phase adjustments is possible by injecting a DC current from an external source into the PLL2 filter capacitor on pin 20.
Page 6
1997 Jun 05 6
Philips Semiconductors Product specification
Horizontal and vertical deflection controller for VGA/XGA and multi-frequency monitors
TDA4850
Horizontal driver
This open-collector output stage (pin 3) can directly drive an external driver transistor. The saturation voltage is 300 mV at 20 mA. To protect the line deflection transistor, the horizontal output stage does not conduct at VP< 6.4 V (pin 1).
Vertical oscillator and amplitude control
This stage is designed for fast stabilization of the vertical amplitude after changes in sync conditions. The free-running frequency f
o
is determined by the values
of R
VOS
and C
VOS
. The recommended values should be altered marginally only to preserve the excellent linearity and noise performance. The vertical drive currents I
5
and
I
6
are in relation to the value of R
VOS
. Therefore, the
oscillator frequency must be determined only by C
VOS
on
pin 16.
f
o
1
10.8 R
VOS
× C
VOS
×
----------------------------------------------------
=
To achieve a stabilized amplitude the free-running frequency f
o
(without adjustment) must be lower than the lowest occurring sync frequency. The contributions shown in Table 1 can be assumed.
Table 1 Calculation of f
o
total spread
Result for 50 to 110 Hz application:
CONTRIBUTING ELEMENTS %
Minimum frequency offset between f
o
and
the lowest trigger frequency
10
Spread of IC ±3 Spread of R (22 k) ±1 Spread of C (0.1 µF) ±5 Total 19
f
o
50 Hz
1.19
---------------
42 Hz==
Table 2 VGA modes
MODE
HORIZONTAL/VERTICAL
SYNC POLARITY
HORIZONTAL
FREQUENCY
(kHz)
VERTICAL
FREQUENCY
(Hz)
NUMBER OF
ACTIVE LINES
MODE
OUTPUT PIN 7
1+/ 31.45 70 350 LOW 2 /+ 31.45 70 400 LOW 3 / 31.45 60 480 LOW 4 +/+ fixed by external circuitry −−HIGH
Page 7
1997 Jun 05 7
Philips Semiconductors Product specification
Horizontal and vertical deflection controller for VGA/XGA and multi-frequency monitors
TDA4850
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
Note
1. Equivalent to discharging a 200 pF capacitor through a 0 series resistor.
THERMAL CHARACTERISTICS
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
V
P
supply voltage (pin 1) 0.5 +16 V
V
3,7
voltage on pins 3 and 7 0.5 +16 V
V
8
voltage on pin 8 0.5 +7 V
V
n
voltage on pins 5, 6, 9, 10, 13, 14 and 18
0.5 +6.5 V
I
2
current on pin 2 −±10 mA
I
3
current on pin 3 100 mA
I
7
current on pin 7 20 mA
I
8
current on pin 8 −−10 mA
T
amb
operating ambient temperature 0 70 °C
T
j
junction temperature 150 °C
T
stg
storage temperature 55 +150 °C
V
esd
electrostatic handling for all pins note 1 −±300 V
SYMBOL PARAMETER CONDITIONS VALUE UNIT
R
th(j-a)
thermal resistance from junction to ambient in free air 65 K/W
Page 8
1997 Jun 05 8
Philips Semiconductors Product specification
Horizontal and vertical deflection controller for VGA/XGA and multi-frequency monitors
TDA4850
CHARACTERISTICS
V
P
= 12 V; T
amb
=25°C; measurements taken in Fig.6; unless otherwise specified.
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT Supply
V
P
supply voltage (pin 1) 9.2 12 16 V
I
P
supply current 40 mA
Internal reference voltage
V
ref
internal reference voltage 6.0 6.25 6.5 V
TC temperature coefficient T
amb
= 20 to 100 °C −−±90 10−6/K
PSRR power supply ripple rejection f = 1 kHz sine wave 60 75 dB
f = 1 MHz sine wave 25 35 dB
V
P
supply voltage (pin 1) to ensure all internal reference voltages
9.2 16 V
Composite sync input (AC-coupled; V
10
=5V)
V
i sync
sync amplitude of video input signal (pin 9) sync on green;
RS=50
300 mV
top sync clamping level 1.1 1.32 1.5 V slicing level above top sync level 90 120 150 mV
R
S
allowed source resistance for 7% duty cycle V
i sync
> 200 mV −−1.5 k
r
9
differential input resistance during sync 80 −Ω
I
9
charging current of coupling capacitor V9> 1.5 V 1.7 2.6 3.4 µA
t
int
vertical sync integration time to generate sync pulse
71013µs
Horizontal sync input (DC-coupled, TTL-compatible)
V
i sync
sync input signal (peak value; pin 9) 1.7 −−V slicing level 1.2 1.4 1.6 V
t
p
minimum pulse width 700 −−ns
t
r
, t
f
rise time and fall time 10 500 ns
I
9
input current V9= 0.8 V −−−200 µA
V
9
= 5.5 V −−10 µA
Automatic horizontal polarity switch (H-sync on pin 9)
t
pH/tH
horizontal sync pulse width related to t
H
(duty cycle for automatic polarity correction)
−−30 %
t
p
delay time for changing sync polarity 0.3 1.8 ms
Vertical sync input (DC-coupled, TTL-compatible; V-sync on pin 10)
V
i sync
sync input signal (peak value; pin 10) 1.7 −−V slicing level 1.2 1.4 1.6 V
I
10
input current 0 < V10< 5.5 V −−±10 µA
t
pV
maximum vertical sync pulse width for automatic vertical polarity switch
−−300 µs
Page 9
1997 Jun 05 9
Philips Semiconductors Product specification
Horizontal and vertical deflection controller for VGA/XGA and multi-frequency monitors
TDA4850
Horizontal mode detector output (VGA mode)
V
7
output saturation voltage LOW (for modes 1, 2 and 3)
I7=6mA 0.275 0.33 V
output voltage HIGH mode 4 −−V
P
V
I
7
load current to force VGA mode-dependent vertical and parabola amplitudes
modes 1, 2 and 3 2 6mA
output current mode 4 0 mA
VGA/multi-frequency mode switch
V
7
input voltage LOW to force multi-frequency mode
0 50 mV
Horizontal comparator PLL1
V
17
upper control voltage limitation 5.0 V lower control voltage limitation 1.2 V
I
17
control current see Fig.3 −±300 −µA
Horizontal oscillator
f
osc
centre frequency R18=12kΩ (pin 18);
C19= 2.2 nF (pin 19)
31.45 kHz
f
osc
deviation of centre frequency −−±3.0 %
TC temperature coefficient −−±150 10
6
/K
ϕ
H/tH
relative holding/catching range ±6 ±6.5 ±7.3 %
R
18
external oscillator resistor 9 18 k
V
18
voltage at reference current input (pin 18) PLL1 and PLL2 locked;
V
ref
= 6.25 V
3.125 V
V
18
control voltage −±205 mV Horizontal PLL2; see Fig.3 V
2
upper clamping level of flyback input I2=6mA 5.5 V
lower clamping level of flyback input I
2
= 1mA −−0.75 V
H-flyback slicing level 3.0 V I
2
input current H-scan; V8< 0.9 V 0.5 −−mA
H-flyback; V
8
> 1.8 V −−−0.2 mA
t
d/tH
delay between middle of sync and middle of
H-flyback related to t
H
3.2 %
V
20
upper control voltage limitation 4.6 V
lower control voltage limitation 1.6 V I
20
control current −±200 −µA t/t
H
PLL2 control range related to t
H
30 −−%
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Page 10
1997 Jun 05 10
Philips Semiconductors Product specification
Horizontal and vertical deflection controller for VGA/XGA and multi-frequency monitors
TDA4850
Horizontal output (open-collector); see Fig.3 V
3
output voltage LOW I3=20mA −−0.3 V
I
3
=60mA −−0.8 V
t
p/tH
tH duty cycle 42 45 48 % V
P
threshold to activate too low supply voltage
protection
horizontal output off 5.3 V
horizontal output on 5.6 V Horizontal clamping/blanking generator output; see Fig.3 V
8
output voltage LOW H and V scanning −−0.9 V blanking output voltage internal V blanking 1.8 2.1 2.4 V
external H blanking 1.8 2.1 2.4 V
clamping output voltage H-sync on pin 9 3.5 3.9 4.3 V
I
8
internal sink current for all output levels H and V scanning 2.3 2.9 3.5 mA
t
8
clamping pulse start with end of H-sync
t
clp
clamping pulse width 0.8 1.0 1.2 µs
S steepness of rise and fall times 40 ns/V
Vertical oscillator (V
ref
= 6.25 V)
f
o
vertical free-running frequency R15=22kΩ;
C16= 0.1 µF
40 42 43.3 Hz
f
V
nominal vertical sync range no fo adjustment 50 110 Hz
V
15
voltage on pin 15 R15=22k 2.8 3.0 3.2 V
t
d
delay between sync pulse and start of vertical scan
measured on pin 8
in VGA/XGA mode, activated by an external resistor on pin 7
500 575 650 µs
in multi-frequency mode V
7
< 50 mV 240 300 360 µs
I
12
control current for amplitude control −±200 −µA
C
12
capacitor for amplitude control −−0.33 µF Vertical differential output; see Fig.4 I
o
differential output current between
pins 5 and 6 (peak-to-peak value)
mode 3; I13> 135 µA; R15=22k
0.9 1.0 1.1 mA
maximum offset current error I
o
=1mA −−±2.5 %
maximum linearity error −−±1.5 %
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Page 11
1997 Jun 05 11
Philips Semiconductors Product specification
Horizontal and vertical deflection controller for VGA/XGA and multi-frequency monitors
TDA4850
Notes to the Characteristics
1. Io/t relative to value of mode 3.
2. Parabola amplitude tracks with mode-dependent vertical amplitude but not with vertical amplitude adjustment. Tracking can be achieved by a resistor from vertical amplitude potentiometer to pin 14.
Vertical amplitude adjustment (in percent of output signal)
V
13
input voltage 5.0 V
I
13
adjustment current I
o max
(100%) 110 120 135 µA
I
o min
(typically 58%) 0 −µA
I
o
/t VGA mode-dependent pre-settings
activated by an external resistor on pin 7
note 1; see Table 2
mode 1 116.1 116.8 117.5 % mode 2 102.0 102.2 102.5 % mode 3 100 % mode 4 100 % multi-frequency operation (VGA operation
disabled)
V
7
<50mV 100 %
E/W output; note 2 V
11
bottom output signal during mid-scan (pin 11)
internally stabilized 1.05 1.2 1.35 V
top output signal during flyback 4.1 4.35 4.6 V
TC temperature coefficient of output signal −−250 10
6
/K E/W amplitude adjustment (parabola); see Fig.4 V
14
input voltage (pin 14) 5.0 V
I
14
adjustment current 100% parabola 110 120 135 µA
typically 28% parabola 0 −µA
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Page 12
1997 Jun 05 12
Philips Semiconductors Product specification
Horizontal and vertical deflection controller for VGA/XGA and multi-frequency monitors
TDA4850
Fig.3 Horizontal timing diagram.
handbook, full pagewidth
MEH170
4.6 V
1.6 V
PLL2 control range
(minimum 30%)
sawtooth of
horizontal
oscillator
control current
of PLL1
clamping and
blanking pulses
on pin 8
line flyback
pulse
on pin 2
current control
of PLL2
horizontal output
pulse with
45% duty cycle
1 µs clamping pulse
2.1 V H + V blanking pulse
39.5%
42.5%
15%
85%
H-sync (VGA)
0.7 V
3.9 V
Page 13
1997 Jun 05 13
Philips Semiconductors Product specification
Horizontal and vertical deflection controller for VGA/XGA and multi-frequency monitors
TDA4850
Fig.4 Vertical and E/W timing diagram.
(1) In multi-frequency mode. (2) For free-running oscillator.
handbook, full pagewidth
MHA711
100 µs
150 µs
50 µs
(1)
325 µs
19.4 to 8.5 ms (50 to 110 Hz)
1.2 V
4.5 V
3.8 V
4.0 V
(2)
sawtooth
voltage
on pin 16
internal
timing
pulse
V trigger
pulse
trigger inhibit
window
amplitude
control
pulse
vertical
blanking pulse
on pin 8
differential
output currents
E/W parabola
on pin 11
2.1 V
1.4 V
0.7 V
550 µA on pin 6
50 µA on pin 5
Page 14
1997 Jun 05 14
Philips Semiconductors Product specification
Horizontal and vertical deflection controller for VGA/XGA and multi-frequency monitors
TDA4850
INTERNAL CIRCUITRY
ook, full pagewidth
MEH258
20
80
1.4 V
TDA4850
4 V
5 V
3.1 V
7.3 V
1.2 V
1.6
mA
all inputs
and outputs
protected in this
way except
pins 2, 9 and 10
30
k
V
ref
clamping
3.9 V
2 ×
7.3 V
7 × V
BE
1.4
mA
blanking
2.1 V
+
+
5 V 5 V
3 V
1 k
2 k
80
2 k
VS
10
1.4 V
7.3 V7.3 V
1.4 V
3 mA
7.3 V
7.3 V
1.28 V
98 765432
+
3 V
1
11 12 13 14 15 16 17 18 19 20
HVS CLBL MODE VERT2
V
ref
V
ref
V
ref
V
ref
V
ref
V
ref
V
ref
V
ref
V
ref
VERT1 GND HOR FLB
V
P
EW C
VA
V
ref
R
VA
R
EW
R
VOS
C
VOS
R
HOS
C
HOS
PLL1 PLL2
pin
300 µA
200
µA
200
µA
260 µA
300 µA
Fig.5 Internal circuit.
Page 15
1997 Jun 05 15
Philips Semiconductors Product specification
Horizontal and vertical deflection controller for VGA/XGA and multi-frequency monitors
TDA4850
TEST AND APPLICATION INFORMATION
Fig.6 Test and application circuit (measurements taken at VP= 12 V).
h
andbook, full pagewidth
MEH169
2.2 nF
(2%)
2.2 nF
E/W output
vertical
amplitude
parabola
amplitude
22 k
220
k
12 k (1%)
22 k (1%)
220
k
39 k
39 k
2.7 k
0.22 µF
0.1 µF (5%)
220
pF
2.2 nF
11 12 13 14 15 16 17 18 19 20
10
composite sync horizontal TTL syncV
i sync
vertical TTL sync
mode detector
disable
LOW
HIGH
9876
TDA4850
543
47 nF
47 nF
vertical
differential
output
4th
mode
clamp/blank
pulses
H-output
H-flyback
VP = 9.2 to 16 V
21
Page 16
1997 Jun 05 16
Philips Semiconductors Product specification
Horizontal and vertical deflection controller for VGA/XGA and multi-frequency monitors
TDA4850
PACKAGE OUTLINE
UNIT
A
max.
1 2
b
1
cD E e M
H
L
REFERENCES
OUTLINE
VERSION
EUROPEAN
PROJECTION
ISSUE DATE
IEC JEDEC EIAJ
mm
inches
DIMENSIONS (inch dimensions are derived from the original mm dimensions)
SOT146-1
92-11-17 95-05-24
A
min.
A
max.
b
Z
max.
w
M
E
e
1
1.73
1.30
0.53
0.38
0.36
0.23
26.92
26.54
6.40
6.22
3.60
3.05
0.2542.54 7.62
8.25
7.80
10.0
8.3
2.04.2 0.51 3.2
0.068
0.051
0.021
0.015
0.014
0.009
1.060
1.045
0.25
0.24
0.14
0.12
0.010.10 0.30
0.32
0.31
0.39
0.33
0.0780.17 0.020 0.13
SC603
M
H
c
(e )
1
M
E
A
L
seating plane
A
1
w M
b
1
e
D
A
2
Z
20
1
11
10
b
E
pin 1 index
0 5 10 mm
scale
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
(1)
(1) (1)
DIP20: plastic dual in-line package; 20 leads (300 mil)
SOT146-1
Page 17
1997 Jun 05 17
Philips Semiconductors Product specification
Horizontal and vertical deflection controller for VGA/XGA and multi-frequency monitors
TDA4850
SOLDERING Introduction
There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.
This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our
“IC Package Databook”
(order code 9398 652 90011).
Soldering by dipping or by wave
The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact
with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.
The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature (T
stg max
). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.
Repairing soldered joints
Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.
DEFINITIONS
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale
Data sheet status
Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
Page 18
1997 Jun 05 18
Philips Semiconductors Product specification
Horizontal and vertical deflection controller for VGA/XGA and multi-frequency monitors
TDA4850
NOTES
Page 19
1997 Jun 05 19
Philips Semiconductors Product specification
Horizontal and vertical deflection controller for VGA/XGA and multi-frequency monitors
TDA4850
NOTES
Page 20
Internet: http://www.semiconductors.philips.com
Philips Semiconductors – a worldwide company
© Philips Electronics N.V. 1997 SCA54 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341
Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327
Portugal: see Spain Romania: see Italy Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919 Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11 470 5911, Fax. +27 11 470 5494
South America: Rua do Rocio 220, 5th floor, Suite 51, 04552-903 São Paulo, SÃO PAULO - SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 829 1849
Spain: Balmes 22, 08007 BARCELONA, Tel. +34 3 301 6312, Fax. +34 3 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 632 2000, Fax. +46 8 632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2686, Fax. +41 1 481 7730
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212 279 2770, Fax. +90 212 282 6707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381
Uruguay: see South America Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 625 344, Fax.+381 11 635 777
For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
Argentina: see South America Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101, Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773
Belgium: see The Netherlands Brazil: seeSouth America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15thfloor,
51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America Czech Republic: see Austria Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. +45 32 88 2636, Fax. +45 31 57 0044 Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615800, Fax. +358 9 61580920 France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300 Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240
Hungary: seeAustria India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd.
Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722
Indonesia: see Singapore Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381 Middle East: see Italy
Printed in The Netherlands 547047/1200/03/pp20 Date of release: 1997 Jun 05 Document order number: 9397 750 02184
Loading...