3V, 5V and 12V RAILS
AVALANCHE CAPABILITY SPECIFIED
■
DESCRIPTION
Dual center tap schottky rectifier packaged in
TO-247andsuitedforN+1redundancy
operations, this device has an optimized forward
voltage drop to reduce the power losses in the
application.
2x30A
15 V
STPS60L15CW
A1
K
A2
A2
K
A1
TO-247
ABSOLUTE RATINGS (limiting values, per diode)
SymbolParameterValueUnit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
Repetitive peak reverse voltage
RMS forward current
Average forward currentTcase = 115°C
δ = 0.5
Surge non repetitive forward
tp = 10 ms Sinusoidal
Per diode
Per device
15V
40A
30A
60
400A
current
I
RRM
I
RSM
P
ARM
T
stg
T
dV/dt
dPtot
*:
Peak repetitive reverse currenttp = 2µs F= 1kHz
Non repetitive peak reverse currenttp = 100µs
Repetitive peak avalanche powertp = 1µsTj = 25°C
Storage temperature range
j
Maximum operating junction temperature *
Critical rate of rise of reverse voltage
<
dTjRth ja
July 2003 - Ed: 1A
thermal runaway condition for a diode on its own heatsink
−1()
2A
3A
24000W
-65 to+150°C
125°C
10000V/µs
1/4
Page 2
STPS60L15CW
THERMAL RESISTANCES
SymbolParameterValueUnit
R
th(j-c)
R
th(c)
When the diodes 1 and 2 are used simultaneously:
Tj(diode 1) = P (diode 1) x R
Junction to case
th(j-c)
(per diode) + P (diode 2) x R
th(c)
STATIC ELECTRICAL CHARACTERISTICS (Per diode)
SymbolParameterTests ConditionsMin.Typ.Max.Unit
*
I
R
Reverse leakage currentTj = 25°CV
Tj = 100°C
V
*
F
Pulse test: * tp =380µs, δ <2%
Forward voltage dropTj= 25°CI
Tj=25°CI
Tj = 125°CI
Tj = 125°CI
F
F
F
F
To evaluate the conduction losses use the following equation:
P=0.22xI
Fig. 1: Conduction losses versus average
current).
F(AV)
+ 0.0036 I
F2(RMS)
Fig. 2: Average forward current versus ambient
temperature (δ=0.5).
Per diode0.8°C/W
Total0.55
Coupling0.3°C/W
R=VRRM
0.350.85A
=30A
=60A
=30A
=60A
0.270.33
0.390.44
16mA
0.41V
0.49
P(W)
F(AV)
15.0
12.5
10.0
7.5
5.0
2.5
0.0
δ = 0.05
0510152025303540
δ = 0.1
δ = 0.2
I(A)
F(AV)
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Fig. 3: Normalized avalanche power derating
versus pulse duration.
P(t)
ARM p
P(1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.011
p
101001000
I(A)
F(AV)
35
30
25
20
15
10
5
0
0255075100125
R=R
th(j-a) th(j-c)
R =15°C/W
th(j-a)
T(°C)
amb
Fig. 4: Normalized avalanche power derating
versus junction temperature.
P(t)
ARM p
P(25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
0255075100125150
T (°C)
j
2/4
Page 3
STPS60L15CW
Fig. 5: Non repetitive surge peak forward current
versus overload duration (maximum values).
I (A)
M
500
450
400
350
300
250
200
150
IM
100
50
0
1.E-031.E-021.E-011.E+00
δ=0.5
t
t(s)
T =25°C
C
T =50°C
C
T =100°C
C
Fig. 7: Reverse leakage current versus reverse
voltage applied (typical values).
I (mA)
R
1.E+04
T=125°C
1.E+03
1.E+02
j
T=100°C
j
T=75°C
j
Fig. 6: Relative variation of thermal impedance
junction to case versus pulse duration.
Z/R
th(j-c) th(j-c)
1.0
0.9
0.8
0.7
δ = 0.5
0.6
0.5
0.4
δ = 0.2
δ = 0.1
0.3
0.2
Single pulse
0.1
0.0
1.E-031.E-021.E-011.E+00
t (s)
p
δ
=tp/T
T
tp
Fig. 8: Junction capacitance versus reverse
voltage applied (typical values).
Informationfurnished is believedto be accurate andreliable. However, STMicroelectronicsassumes no responsibility forthe consequences of
useof such informationnor for anyinfringement of patentsor other rightsof third parties whichmay result fromits use. Nolicense is grantedby
implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written
approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics