Dual center tab Schottky rectifier suited for Switch
Mode Power Supply and high frequency DC to DC
converters.
2
Packaged in D
PAK, I2PAK and TO-220ABthis
device is intended for use in low voltage, high
frequency inverters, free-wheeling and polarity
protection applications.
A1
A2
A1
2
PAK
I
STPS41L30CR
K
STPS41L30CG
A2
K
D2PAK
K
TO-220AB
STPS41L30CT
A2
A1
A1
A2
K
ABSOLUTE RATINGS (limiting values, per diode)
SymbolParameterValueUnit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
I
RRM
P
ARM
T
stg
Tj
dV/dt
dPtot
*:
Repetitive peak reverse voltage
RMS forward current
Average forward currentTc = 135°C
Surge non repetitive forward currenttp = 10 ms sinusoidal
Peak repetitive reverse currenttp=2 µs square F=1kHz
Repetitive peak avalanche powertp = 1µsTj = 25°C
Storage temperature range
Maximum operating junction temperature *
Critical rate of rise reverse voltage
<
dTjRth ja
July 2003 - Ed : 3A
Per diode
δ = 0.5
Per device
thermal runaway condition for a diode on its own heatsink
−1()
30V
30A
20
40
220A
1A
6500W
-65 to+175°C
150°C
10000V/µs
A
1/6
Page 2
STPS41L30CG / STPS41L30CT / STPS41L30CR
THERMAL RESISTANCES
SymbolParameterValueUnit
R
th(j-c)
R
th(c)
Junction to case
Coupling
When the diodes 1 and 2 are used simultaneously :
∆ Tj(diode 1) = P(diode1) x R
(Per diode) + P(diode2) x R
th(j-c)
STATIC ELECTRICAL CHARACTERISTICS (per diode)
SymbolParameterTests ConditionsMin.Typ.Max.Unit
*
I
R
Reverse leakage currentTj = 25°CV
Tj = 125°C
V
*
F
Forward voltage dropTj = 25°CI
Tj = 125°CI
Tj=25°CI
Tj = 125°CI
Pulse test : * tp = 380 µs, δ <2%
To evaluate the conduction losses use the following equation :
P=0.27xI
Fig.1:Conductionlossesversus average current.
F(AV)
+ 0.0055 I
F2(RMS)
Fig. 2: Average forward current versus ambient
temperature (δ = 0.5).
Per diode
th(c)
R=VRRM
=20A
F
=20A
F
=40A
F
=40A
F
Total
1.5
°C/W
0.8
0.1
1.5mA
170350mA
0.48V
0.350.38
0.57
0.470.49
PF(av)(W)
11
10
9
8
7
6
5
4
3
2
1
0
0510152025
δ = 0.1
δ = 0.05
δ = 0.2
IF(av)(A)
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Fig. 3: Normalized avalanche power derating
versus pulse duration.
P(t)
ARM p
P(1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.011
p
101001000
IF(av)(A)
25
20
15
10
5
0
T
=tp/T
δ
0255075100125150
Rth(j-a)=50°C/W
tp
Rth(j-a)=Rth(j-c)
Tamb(°C)
Fig. 4: Normalized avalanche power derating
versus junction temperature.
P(t)
ARM p
P(25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
0255075100125150
T (°C)
j
2/6
Page 3
STPS41L30CG / STPS41L30CT / STPS41L30CR
Fig. 5: Non repetitive surge peak forward current
versus overload duration (maximum values).
IM(A)
300
250
200
150
100
IM
50
0
1.E-031.E-021.E-011.E+00
δ=0.5
t
t(s)
Tc=25°C
Tc=75°C
Tc=125°C
Fig. 7: Reverse leakage current versus reverse
voltage applied (typical values).
IR(mA)
1.E+03
1.E+02
1.E+01
1.E+00
Tj=150°C
Tj=125°C
Tj=100°C
Tj=75°C
Tj=50°C
Fig. 6: Relative variation of thermal impedance
junction to case versus pulse duration.
Zth(j-c)/Rth(j-c)
1.0
0.9
0.8
0.7
δ = 0.5
0.6
0.5
0.4
δ = 0.2
δ = 0.1
0.3
0.2
Single pulse
0.1
0.0
1.E-031.E-021.E-011.E+00
tp(s)
δ
=tp/T
T
tp
Fig. 8: Junction capacitance versus reverse voltage
applied (typical values).
C(nF)
10.0
1.0
F=1MHz
Vosc=30mV
Tj=25°C
1.E-01
1.E-02
051015202530
Tj=25°C
VR(V)
Fig.9: Forward voltagedrop versus forwardcurrent.
IFM(A)
100
Tj=125°C
Tj=125°C
(Maximum values)
(Maximum values)
Tj=125°C
Tj=125°C
(Typical values)
(Typical values)
10
1
0.00.10.20.30.40.50.60.70.80.91.0
Tj=25°C
(Maximum values)
VFM(V)
VR(V)
0.1
110100
Fig. 10: Thermal resistance junction to ambient ver-
sus copper surface under tab (epoxy printed board
FR4, Cu = 35µm) (STPS41L30CG only).
Informationfurnishedis believed to be accurate and reliable. However, STMicroelectronics assumes no responsibilityforthe consequences of
useof such information nor for any infringement of patentsor other rights of third parties which mayresultfrom its use. No license is granted by
implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written
approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics