Datasheet STM32F103C4, STM32F103R4, STM32F103T4, STM32F103C6, STM32F103R6 Datasheet (ST)

...
Page 1
STM32F103x4
LQFP64 (10 × 10 mm)
LQFP48 (7 × 7 mm)
TFBGA64 (5 × 5 mm
VFQFPN36 (6 × 6 mm)VFQFPN48 (7 × 7 mm)
STM32F103x6
Low-density performance line, ARM-based 32-bit MCU with 16 or
32 KB Flash, USB, CAN, 6 timers, 2 ADCs, 6 communication interfaces
Features
ARM 32-bit Cortex™-M3 CPU Core
– 72 MHz maximum frequency,
– Single-cycle multiplication and hardware
division
Memories
– 16 or 32 Kbytes of Flash memory – 6 or 10 Kbytes of SRAM
Clock, reset and supply management
– 2.0 to 3.6 V application supply and I/Os – POR, PDR, and programmable voltage
detector (PVD) – 4-to-16 MHz crystal oscillator – Internal 8 MHz factory-trimmed RC – Internal 40 kHz RC – PLL for CPU clock – 32 kHz oscillator for RTC with calibration
Low power
– Sleep, Stop and Standby modes –V
2 x 12-bit, 1 µs A/D converters (up to 16
supply for RTC and backup registers
BAT
channels) – Conversion range: 0 to 3.6 V – Dual-sample and hold capability – Temperature sensor
DMA
– 7-channel DMA controller – Peripherals supported: timers, ADC, SPIs,
2
I
Cs and USARTs
Up to 51 fast I/O ports
– 26/37/51 I/Os, all mappable on 16 external
interrupt vectors and almost all 5 V-tolerant
Debug mode
– Serial wire debug (SWD) & JTAG interfaces
6 timers
– Two 16-bit timers, each with up to 4
IC/OC/PWM or pulse counter and quadrature (incremental) encoder input
– 16-bit, motor control PWM timer with dead-
time generation and emergency stop
– 2 watchdog timers (Independent and
Window)
– SysTick timer 24-bit downcounter
6 communication interfaces
2
1 x I2C interface (SMBus/PMBus)
– 2 × USARTs (ISO 7816 interface, LIN, IrDA
capability, modem control) – 1 × SPI (18 Mbit/s) – CAN interface (2.0B Active) – USB 2.0 full-speed interface
CRC calculation unit, 96-bit unique ID
Packages are ECOPACK

Table 1. Device summary

Reference Part number
STM32F103x4
STM32F103x6
STM32F103C4, STM32F103R4, STM32F103T4
STM32F103C6, STM32F103R6, STM32F103T6
®
April 2011 Doc ID 15060 Rev 5 1/87
www.st.com
1
Page 2
Contents STM32F103x4, STM32F103x6
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 ARM® Cortex™-M3 core with embedded Flash and SRAM . . . . . . . . . 14
2.3.2 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 14
2.3.4 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.5 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 14
2.3.6 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.7 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.8 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.9 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.10 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.11 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.12 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.13 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.14 RTC (real-time clock) and backup registers . . . . . . . . . . . . . . . . . . . . . . 17
2.3.15 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.16 I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.17 Universal synchronous/asynchronous receiver transmitter (USART) . . 19
2.3.18 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.19 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.20 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.21 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.22 ADC (analog-to-digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.23 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.24 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 20
3 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2/87 Doc ID 15060 Rev 5
Page 3
STM32F103x4, STM32F103x6 Contents
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 33
5.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 33
5.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.11 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 54
5.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.15 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.16 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.17 CAN (controller area network) interface . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.18 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.19 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . . 82
Doc ID 15060 Rev 5 3/87
Page 4
Contents STM32F103x4, STM32F103x6
7 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4/87 Doc ID 15060 Rev 5
Page 5
STM32F103x4, STM32F103x6 List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM32F103xx low-density device features and peripheral counts. . . . . . . . . . . . . . . . . . . 10
Table 3. STM32F103xx family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 4. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 5. Low-density STM32F103xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 6. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 7. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 8. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 9. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 10. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 11. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 12. Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 13. Maximum current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 14. Maximum current consumption in Run mode, code with data processing
running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 15. Maximum current consumption in Sleep mode, code running from Flash or RAM. . . . . . . 38
Table 16. Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 39
Table 17. Typical current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 18. Typical current consumption in Sleep mode, code running from Flash or
RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 19. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 20. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 21. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 22. HSE 4-16 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 23. LSE oscillator characteristics (f
Table 24. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 25. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 26. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 27. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 28. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 29. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 30. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 31. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 32. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 33. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 34. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 35. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 36. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 37. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 38. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 39. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 40. I Table 41. SCL frequency (f
Table 42. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 43. USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 44. USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2
C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
= 36 MHz.,VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
PCLK1
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
LSE
Doc ID 15060 Rev 5 5/87
Page 6
List of tables STM32F103x4, STM32F103x6
Table 45. USB: Full-speed electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 46. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 47. R
max for f
AIN
= 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
ADC
Table 48. ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 49. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 50. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 51. VFQFPN36 6 x 6 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . 75
Table 52. VFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . 76
Table 53. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package mechanical data . . . . . . . . . . 77
Table 54. TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package mechanical data. . . 78
Table 55. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package mechanical data . . . . . . . . . . . . 80
Table 56. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 57. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6/87 Doc ID 15060 Rev 5
Page 7
STM32F103x4, STM32F103x6 List of figures
List of figures
Figure 1. STM32F103xx performance line block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 2. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 3. STM32F103xx performance line LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 4. STM32F103xx performance line TFBGA64 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 5. STM32F103xx performance line LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 6. STM32F103xx performance line VFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 7. STM32F103xx performance line VFQFPN36 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 8. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 9. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 10. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 11. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 12. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 13. Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals enabled. . . . . . . . . . . . . . . . . . 37
Figure 14. Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals disabled . . . . . . . . . . . . . . . . . 37
Figure 15. Typical current consumption on V
V
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
BAT
Figure 16. Typical current consumption in Stop mode with regulator in Run mode versus
temperature at V
= 3.3 V and 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
DD
Figure 17. Typical current consumption in Stop mode with regulator in Low-power mode versus
temperature at V
= 3.3 V and 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
DD
Figure 18. Typical current consumption in Standby mode versus temperature at
V
= 3.3 V and 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
DD
Figure 19. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 20. Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 21. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 22. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 23. Standard I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 24. Standard I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 25. 5 V tolerant I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 26. 5 V tolerant I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 27. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 28. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 29. I
2
C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 30. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 31. SPI timing diagram - slave mode and CPHA = 1 Figure 32. SPI timing diagram - master mode
Figure 33. USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 34. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 35. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 36. Power supply and reference decoupling (V Figure 37. Power supply and reference decoupling(V Figure 38. VFQFPN36 6 x 6 mm, 0.5 mm pitch, package outline Figure 39. Recommended footprint (dimensions in mm) Figure 40. VFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline Figure 41. Recommended footprint (dimensions in mm)
Figure 42. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 77
with RTC on versus temperature at different
BAT
(1)
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
REF+
REF+
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
not connected to V
connected to V
(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
(1)(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
(1)(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
DDA
). . . . . . . . . . . . . . 72
DDA
) . . . . . . . . . . . . . . . . . 73
Doc ID 15060 Rev 5 7/87
Page 8
List of figures STM32F103x4, STM32F103x6
Figure 43. Recommended footprint
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 44. TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package outline . . . . . . . . . . 78
Figure 45. Recommended PCB design rules for pads (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . . . . 79
Figure 46. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . 80
Figure 47. Recommended footprint Figure 48. LQFP64 P
max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
D
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8/87 Doc ID 15060 Rev 5
Page 9
STM32F103x4, STM32F103x6 Introduction

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F103x4 and STM32F103x6 low-density performance line microcontrollers. For more details on the whole STMicroelectronics STM32F103xx family, please refer to
Section 2.2: Full compatibility throughout the family.
The low-density STM32F103xx datasheet should be read in conjunction with the low-, medium- and high-density STM32F10xxx reference manual. The reference and Flash programming manuals are both available from the STMicroelectronics website www.st.com.
For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical Reference Manual, available from the www.arm.com website at the following address: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.

2 Description

The STM32F103x4 and STM32F103x6 performance line family incorporates the high­performance ARM Cortex™-M3 32-bit RISC core operating at a 72 MHz frequency, high­speed embedded memories (Flash memory up to 32 Kbytes and SRAM up to 6 Kbytes), and an extensive range of enhanced I/Os and peripherals connected to two APB buses. All devices offer two 12-bit ADCs, three general purpose 16-bit timers plus one PWM timer, as well as standard and advanced communication interfaces: up to two I USARTs, an USB and a CAN.
The STM32F103xx low-density performance line family operates from a 2.0 to 3.6 V power supply. It is available in both the –40 to +85 °C temperature range and the –40 to +105 °C extended temperature range. A comprehensive set of power-saving mode allows the design of low-power applications.
The STM32F103xx low-density performance line family includes devices in four different package types: from 36 pins to 64 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.
These features make the STM32F103xx low-density performance line microcontroller family suitable for a wide range of applications such as motor drives, application control, medical and handheld equipment, PC and gaming peripherals, GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, video intercoms, and HVACs.
2
Cs and SPIs, three
Doc ID 15060 Rev 5 9/87
Page 10
Description STM32F103x4, STM32F103x6

2.1 Device overview

Table 2. STM32F103xx low-density device features and peripheral counts

Peripheral
Flash - Kbytes 16 32 16 32 16 32
SRAM - Kbytes 610610610
General-purpose 222222
Advanced-control 111
Timers
SPI 111111
2
I
C 111111
USART 222222
USB 111111
Communication
CAN 1 1 1 1 1 1
GPIOs 26 37 51
STM32F103Tx
STM32F103Cx STM32F103Rx
12-bit synchronized ADC
Number of channels
CPU frequency 72 MHz
Operating voltage 2.0 to 3.6 V
Operating temperatures
Packages VFQFPN36 LQFP48, VFQFPN48 LQFP64, TFBGA64
Ambient temperatures: –40 to +85 °C /–40 to +105 °C (see Ta bl e 9 )
2
10 channels
Junction temperature: –40 to + 125 °C (see Ta b le 9 )
2
10 channels
2
16 channels
10/87 Doc ID 15060 Rev 5
Page 11
STM32F103x4, STM32F103x6 Description

Figure 1. STM32F103xx performance line block diagram

TRACECLK TRACED[0:3] as AS
NJTRST
JTDI
JTCK/ SWCLK
JTMS/SWDIO
JTDO as AF
VDDA VSSA
51AF
PA[15: 0]
PB[15: 0]
PC[15:0 ]
4 Chann els 3 com pl. channels
ETR and BKIN
PD[2: 0]
MOSI,MISO,
SCK,NSS as AF
RX,TX, CTS, RTS, Smart Card as AF
16 AF V
REF+
NRST
TPIU
SW/JTAG
Cortex-M3 CPU
F
max
SUPERVISION
EXTI
WAKEUP
GPIOA
GPIOB
GPIOC
GPIOD
TIM1
SPI
USART1
@VDDA
12bit ADC1
12bit ADC2
Trace/trig
: 72 M
NVIC
GP DMA
7 channels
@VDDA
SUPPLY
POR / PDR
PVD
pbu s
Hz
Dbus
System
Rst
Int
IF
IFIF
Ibus
Trace
Cont roller
obl
Flash 32 KB
64 bit
Flash
interface
SRAM
=48/72 MHz
max
AHB:F
10 KB
PCLK1 PCLK2
HCLK FCLK
RC 8 MHz
RC 40 kHz
@VDDA
AHB2 APB 1
PLL &
CLOCK MANA GT
@VBAT
=24 / 36 MHz
max
APB1 : F
BusM atrix
AHB2 APB2
=48 / 72 MHz
max
APB2 : F
POWER
VOLT. REG.
3.3V TO 1.8V
@VDD
@VDD
XTAL OSC
4-16 MHz
IWDG
Stand by
int erface
XTAL 32 kHz
Back up
RTC
reg
AWU
Backu p i nterf ace
TIM2
TIM3
USART2
I2C
bxCAN
USB 2.0 FS
SRAM 512B
WWDG
V
= 2 to 3.6V
DD
V
SS
OSC_IN OSC_OUT
V
BAT
OSC32_IN OSC32_OUT
TAMPER-RTC
4 Chann els
4 Chann els
RX,TX, CTS, RTS, CK, SmartCard as AF
SCL,SDA ,SMBA as AF
USBDP/CA N_TX USBDM/CAN_RX
Temp sens or
1. TA = –40 °C to +105 °C (junction temperature up to 125 °C).
2. AF = alternate function on I/O port pin.
Doc ID 15060 Rev 5 11/87
ai15175c
Page 12
Description STM32F103x4, STM32F103x6
HSE OSC
4-16 MHz
OSC_IN
OSC_OUT
OSC32_IN
OSC32_OUT
LSE OSC
32.768 kHz
HSI RC
8 MHz
LSI RC 40 kHz
to Independent Watchdog (IWDG)
PLL
x2, x3, x4
PLLMUL
Legend:
MCO
Clock Output
Main
PLLXTPRE
/2
..., x16
AHB Prescaler /1, 2..512
/2
PLLCLK
HSI
HSE
APB1
Prescaler
/1, 2, 4, 8, 16
ADC Prescaler /2, 4, 6, 8
ADCCLK
PCLK1
HCLK
PLLCLK
to AHB bus, core, memory and DMA
USBCLK
to USB interface
to TIM2, TIM3
USB
Prescaler
/1, 1.5
to ADC
LSE
LSI
HSI
/128
/2
HSI
HSE
peripherals
to APB1
Peripheral Clock
Enable (13 bits)
Enable (3 bits)
P
eripheral Clock
APB2
Prescaler
/1, 2, 4, 8, 16
PCLK2
to TIM1
peripherals
to APB2
Peripheral Clock
Enable (11 bits)
Enable (1 bit)
Peripheral Clock
48 MHz
72 MHz max
72 MHz
72 MHz max
36 MHz max
to RTC
PLLSRC
SW
MCO
CSS
to Cortex System timer
/8
Clock
Enable (3 bits)
SYSCLK
max
RTCCLK
RTCSEL[1:0]
TIM1CLK
TIMXCLK
IWDGCLK
SYSCLK
FCLK Cortex free running clock
TIM2, TIM3 If (APB1 prescaler =1) x1 else x2
TIM1 timer If (APB2 prescaler =1) x1 else x2
HSE = high-speed external clock signal HSI = high-speed internal clock signal LSI = low-speed internal clock signal LSE = low-speed external clock signal
ai15176

Figure 2. Clock tree

1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is 64 MHz.
2. For the USB function to be available, both HSE and PLL must be enabled, with USBCLK running at 48 MHz.
3. To have an ADC conversion time of 1 µs, APB2 must be at 14 MHz, 28 MHz or 56 MHz.
12/87 Doc ID 15060 Rev 5
Page 13
STM32F103x4, STM32F103x6 Description

2.2 Full compatibility throughout the family

The STM32F103xx is a complete family whose members are fully pin-to-pin, software and feature compatible. In the reference manual, the STM32F103x4 and STM32F103x6 are identified as low-density devices, the STM32F103x8 and STM32F103xB are referred to as medium-density devices, and the STM32F103xC, STM32F103xD and STM32F103xE are referred to as high-density devices.
Low- and high-density devices are an extension of the STM32F103x8/B devices, they are specified in the STM32F103x4/6 and STM32F103xC/D/E datasheets, respectively. Low­density devices feature lower Flash memory and RAM capacities, less timers and peripherals. High-density devices have higher Flash memory and RAM capacities, and additional peripherals like SDIO, FSMC, I the other members of the STM32F103xx family.
The STM32F103x4, STM32F103x6, STM32F103xC, STM32F103xD and STM32F103xE are a drop-in replacement for STM32F103x8/B medium-density devices, allowing the user to try different memory densities and providing a greater degree of freedom during the development cycle.
Moreover, the STM32F103xx performance line family is fully compatible with all existing STM32F101xx access line and STM32F102xx USB access line devices.

Table 3. STM32F103xx family

2
S and DAC, while remaining fully compatible with
Low-density devices Medium-density devices High-density devices
Pinout
144
100
64
48
36
1. For orderable part numbers that do not show the A internal code after the temperature range code (6 or 7), the reference datasheet for electrical characteristics is that of the STM32F103x8/B medium-density devices.
16 KB Flash
6 KB RAM 10 KB RAM 20 KB RAM 20 KB RAM 48 KB RAM 64 KB RAM 64 KB RAM
2 × USARTs 2 × 16-bit timers 1 × SPI, 1 × I CAN, 1 × PWM timer 2 × ADCs
32 KB
Flash
2
C, USB,
(1)
64 KB
Flash
3 × USARTs 3 × 16-bit timers 2 × SPIs, 2 × I CAN, 1 × PWM timer 2 × ADCs
128 KB
Flash
2
Cs, USB,
256 KB
Flash
5 × USARTs 4 × 16-bit timers, 2 × basic timers 3 × SPIs, 2 × I USB, CAN, 2 × PWM timers 3 × ADCs, 2 × DACs, 1 × SDIO FSMC (100 and 144 pins)
384 KB
Flash
2
Ss, 2 × I2Cs
512 KB
Flash
Doc ID 15060 Rev 5 13/87
Page 14
Description STM32F103x4, STM32F103x6

2.3 Overview

2.3.1 ARM® Cortex™-M3 core with embedded Flash and SRAM

The ARM Cortex™-M3 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.
The ARM Cortex™-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.
The STM32F103xx performance line family having an embedded ARM core, is therefore compatible with all ARM tools and software.
Figure 1 shows the general block diagram of the device family.

2.3.2 Embedded Flash memory

16 or 32 Kbytes of embedded Flash is available for storing programs and data.

2.3.3 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link­time and stored at a given memory location.

2.3.4 Embedded SRAM

Six or ten Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states.

2.3.5 Nested vectored interrupt controller (NVIC)

The STM32F103xx performance line embeds a nested vectored interrupt controller able to handle up to 43 maskable interrupt channels (not including the 16 interrupt lines of Cortex™-M3) and 16 priority levels.
Closely coupled NVIC gives low-latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail-chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
14/87 Doc ID 15060 Rev 5
Page 15
STM32F103x4, STM32F103x6 Description
This hardware block provides flexible interrupt management features with minimal interrupt latency.

2.3.6 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 19 edge detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 51 GPIOs can be connected to the 16 external interrupt lines.

2.3.7 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator).
Several prescalers allow the configuration of the AHB frequency, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and the high-speed APB domains is 72 MHz. The maximum allowed frequency of the low-speed APB domain is 36 MHz. See Figure 2 for details on the clock tree.

2.3.8 Boot modes

At startup, boot pins are used to select one of three boot options:
Boot from User Flash
Boot from System Memory
Boot from embedded SRAM
The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART1. For further details please refer to AN2606.

2.3.9 Power supply schemes

V
V
V
For more details on how to connect power pins, refer to Figure 11: Power supply scheme.
= 2.0 to 3.6 V: external power supply for I/Os and the internal regulator.
DD
Provided externally through V
, V
SSA
= 2.0 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs
DDA
and PLL (minimum voltage to be applied to V V
and V
DDA
= 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup
BAT
must be connected to V
SSA
registers (through power switch) when V

2.3.10 Power supply supervisor

The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains
DD
pins.
is 2.4 V when the ADC is used).
DDA
and VSS, respectively.
DD
is not present.
DD
Doc ID 15060 Rev 5 15/87
Page 16
Description STM32F103x4, STM32F103x6
in reset mode when V
DD
external reset circuit.
The device features an embedded programmable voltage detector (PVD) that monitors the V
DD/VDDA
generated when V than the V
power supply and compares it to the V
DD/VDDA
threshold. The interrupt service routine can then generate a warning
PVD
message and/or put the MCU into a safe state. The PVD is enabled by software.
Refer to Table 11: Embedded reset and power control block characteristics for the values of V
POR/PDR
and V
PVD
.

2.3.11 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR) and power down.
MR is used in the nominal regulation mode (Run)
LPR is used in the Stop mode
Power down is used in Standby mode: the regulator output is in high impedance: the
kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost)
This regulator is always enabled after reset. It is disabled in Standby mode, providing high impedance output.

2.3.12 Low-power modes

is below a specified threshold, V
threshold. An interrupt can be
drops below the V
PVD
threshold and/or when VDD/V
PVD
POR/PDR
, without the need for an
is higher
DDA
The STM32F103xx performance line supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.
Stop mode
The Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode. The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm or the USB wakeup.
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs.
Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop
or Standby mode.
16/87 Doc ID 15060 Rev 5
Page 17
STM32F103x4, STM32F103x6 Description

2.3.13 DMA

The flexible 7-channel general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management avoiding the generation of interrupts when the controller reaches the end of the buffer.
Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.
The DMA can be used with the main peripherals: SPI, I
2
C, USART, general-purpose and
advanced-control timers TIMx and ADC.

2.3.14 RTC (real-time clock) and backup registers

The RTC and the backup registers are supplied through a switch that takes power either on V
supply when present or through the V
DD
registers used to store 20 bytes of user application data when V
The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-power RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural crystal deviation. The RTC features a 32-bit programmable counter for long-term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.
pin. The backup registers are ten 16-bit
BAT
power is not present.
DD

2.3.15 Timers and watchdogs

The low-density STM32F101xx performance line devices include an advanced-control timer, two general-purpose timers, two watchdog timers and a SysTick timer.
Ta bl e 4 compares the features of the advanced-control and general-purpose timers.
Table 4. Timer feature comparison
Timer
TIM1 16-bit
TIM2,
TIM3
Counter
resolution
16-bit
Counter
type
Up,
down,
up/down
Up,
down,
up/down
Prescaler
factor
Any integer
between 1 and 65536
Any integer
between 1 and 65536
DMA request
generation
Ye s 4 Ye s
Ye s 4 N o
Capture/compare
channels
Complementary
outputs
Doc ID 15060 Rev 5 17/87
Page 18
Description STM32F103x4, STM32F103x6
Advanced-control timer (TIM1)
The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable inserted dead-times. It can also be seen as a complete general-purpose timer. The 4 independent channels can be used for
Input capture
Output compare
PWM generation (edge- or center-aligned modes)
One-pulse mode output
If configured as a general-purpose 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switch driven by these outputs.
Many features are shared with those of the general-purpose TIM timers which have the same architecture. The advanced-control timer can therefore work together with the TIM timers via the Timer Link feature for synchronization or event chaining.
General-purpose timers (TIMx)
There are up to two synchronizable general-purpose timers embedded in the STM32F103xx performance line devices. These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages. The general-purpose timers can work together with the advanced-control timer via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. They all have independent DMA request generation.
These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.
Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently of the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. The counter can be frozen in debug mode.
Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.
18/87 Doc ID 15060 Rev 5
Page 19
STM32F103x4, STM32F103x6 Description
SysTick timer
This timer is dedicated for OS, but could also be used as a standard downcounter. It features:
A 24-bit downcounter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source

2.3.16 I²C bus

The I²C bus interface can operate in multimaster and slave modes. It can support standard and fast modes.
It supports dual slave addressing (7-bit only) and both 7/10-bit addressing in master mode. A hardware CRC generation/verification is embedded.
It can be served by DMA and they support SM Bus 2.0/PM Bus.

2.3.17 Universal synchronous/asynchronous receiver transmitter (USART)

One of the USART interfaces is able to communicate at speeds of up to 4.5 Mbit/s. The other available interface communicates at up to 2.25 Mbit/s. They provide hardware management of the CTS and RTS signals, IrDA SIR ENDEC support, are ISO 7816 compliant and have LIN Master/Slave capability.
All USART interfaces can be served by the DMA controller.

2.3.18 Serial peripheral interface (SPI)

The SPI interface is able to communicate up to 18 Mbits/s in slave and master modes in full­duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.
The SPI interface can be served by the DMA controller.

2.3.19 Controller area network (CAN)

The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.

2.3.20 Universal serial bus (USB)

The STM32F103xx performance line embeds a USB device peripheral compatible with the USB full-speed 12 Mbs. The USB interface implements a full-speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator).
Doc ID 15060 Rev 5 19/87
Page 20
Description STM32F103x4, STM32F103x6

2.3.21 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current­capable except for analog inputs.
The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.
I/Os on APB2 with up to 18 MHz toggling speed

2.3.22 ADC (analog-to-digital converter)

Two 12-bit analog-to-digital converters are embedded into STM32F103xx performance line devices and each ADC shares up to 16 external channels, performing conversions in single­shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.
Additional logic functions embedded in the ADC interface allow:
Simultaneous sample and hold
Interleaved sample and hold
Single shunt
The ADC can be served by the DMA controller.
An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.
The events generated by the general-purpose timers (TIMx) and the advanced-control timer (TIM1) can be internally connected to the ADC start trigger, injection trigger, and DMA trigger respectively, to allow the application to synchronize A/D conversion and timers.

2.3.23 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 2 V < V
< 3.6 V. The temperature sensor is internally
DDA
connected to the ADC12_IN16 input channel which is used to convert the sensor output voltage into a digital value.

2.3.24 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP Interface is embedded. and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.
20/87 Doc ID 15060 Rev 5
Page 21
STM32F103x4, STM32F103x6 Pinouts and pin description
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
17 18 19 20 21 22 23 24 29 30 31 3225 26 27 28
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
VBAT
PC13-TAMPER-RTC
PC14-OSC32_IN
PC15-OSC32_OUT
PD0 OSC_IN
PD1 OSC_OUT
NRST
PC0 PC1 PC2
PC3 VSSA VDDA
PA 0- W K UP
PA 1 PA 2
VDD_3
VSS_3
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA 1 5
PA 14
VDD_2 VSS_2 PA 1 3 PA 1 2 PA 1 1 PA 1 0 PA 9 PA 8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12
PA 3
VSS_4
VDD_4
PA 4
PA 5
PA 6
PA 7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
VSS_1
VDD_1
LQFP64
ai14392

3 Pinouts and pin description

Figure 3. STM32F103xx performance line LQFP64 pinout

Doc ID 15060 Rev 5 21/87
Page 22
Pinouts and pin description STM32F103x4, STM32F103x6
AI15494
PB2
PC14-
OSC32_IN
PA7PA4
PA2
PA15
PB11
PB1PA6PA3
H
PB10
PC5PC4
D PA8
PA9
BOOT0PB8
C
PC9
PA11
PB6
PC12
V
DDA
PB9
B
PA12
PC10
PC15-
OSC32_OUT
PB3
PD2
A
87654321
V
SS_4
OSC_IN
OSC_OUT V
DD_4
G
F
E
PC2
V
REF+
PC13-
TAMPER-RTC
PB4 PA13PA14
PB7
PB5
V
SS_3
PC7 PC8PC0NRST PC1
PB0PA5 PB14
V
DD_2
V
DD_3
PB13
V
BAT
PC11
PA10
V
SS_2
V
SS_1
PC6V
SSA
PA1
V
DD_1
PB15
PB12
PA0-WKUP

Figure 4. STM32F103xx performance line TFBGA64 ballout

22/87 Doc ID 15060 Rev 5
Page 23
STM32F103x4, STM32F103x6 Pinouts and pin description
ai18300
VDD_3
VSS_3
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PA14
PA 3
PA 4
PA 5
PA 6
PA 7
PB0
PB1
PB2
PB10
PB11
VSS_1
VDD_1
VBAT
PC13-TAMPER-RTC
PC14-OSC32_IN
PC15-OSC32_OUT
PD0-OSC_IN
PD1-OSC_OUT
NRST VSSA VDDA
PA0-WKUP
PA 1
PA 2
VDD_2 VSS_2 PA13 PA12 PA11 PA10 PA 9 PA 8 PB15 PB14 PB13 PB12
48
VFQFPN48
47 46
45 444342 41
40 39 38 37
36
35
34
33
32
31
30
29
28
27
26
25
13
14 15
16 171819 20
21 22 23 24
1
2
3
4
5
6
7
8
9
10
11
12

Figure 5. STM32F103xx performance line LQFP48 pinout

VDD_3
VSS_3
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PA1 5
PA 14
PC13-TAMPER-RTC
VBAT
PC14-OSC32_IN
PC15-OSC32_OUT
PD0-OSC_IN
PD1-OSC_OUT
NRST
VSSA
VDDA
PA 0- W K UP
PA 1 PA 2
48 47 46 45
1 2 3 4 5 6 7 8 9 10 11
12
13 14 15 16 17 18 19 20 21 22
PA 3
44 43 42 41 40 39 38 37
LQFP48
PA 4
PA 5
PA 6
PA 7
PB0
PB1
PB2
VDD_2
36
VSS_2
35
PA1 3
34
PA1 2
33
PA1 1
32
PA1 0
31
PA9
30
PA8
29
PB15
28 27
PB14
26
PB13
25
PB12
24
23
PB10
PB11
VSS_1
VDD_1
ai14393b

Figure 6. STM32F103xx performance line VFQFPN48 pinout

Doc ID 15060 Rev 5 23/87
Page 24
Pinouts and pin description STM32F103x4, STM32F103x6
V
SS_3
BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PA14
36 35 34 33 32 31 30 29 28
V
DD_3
1
27
V
DD_2
OSC_IN/PD0
2
26
V
SS_2
OSC_OUT/PD1
3
25
PA13
NRST
4
QFN36
24
PA12
V
SSA
5
23 PA11
V
DDA
6
22
PA10
PA0-WKUP
7
21
PA 9
PA 1
8
20
PA 8
PA 2 9
19
V
DD_1
10 11 12 13 14 15 16 17 18
PA 3
PA 4
PA 5
PA 6
PA 7
PB0
PB1
PB2
V
SS_1
ai14654

Figure 7. STM32F103xx performance line VFQFPN36 pinout

24/87 Doc ID 15060 Rev 5
Page 25
STM32F103x4, STM32F103x6 Pinouts and pin description
Pins
LQFP64
TFBGA64
Pin name
VFQFPN36
PC13-TAMPER-
RTC
OSC32_OUT
BAT
(5)
PC15-
(2)
(1)
Type
I / O Level
SV
I/O PC13
(5)
I/O PC14
I/O PC15
(5)
Main
function
(3)
(after reset)
BAT
(6)
(6)
(6)
Alternate functions
Default Remap
TAMPER-RTC
OSC32_IN
OSC32_OUT
Table 5. Low-density STM32F103xx pin definitions
LQFP48/
VFQFPN48
11B2- V
22A2-
3 3 A1 - PC14-OSC32_IN
44B1-
5 5 C1 2 OSC_IN I OSC_IN
6 6 D1 3 OSC_OUT O OSC_OUT
7 7 E1 4 NRST I/O NRST
- 8 E3 - PC0 I/O PC0 ADC12_IN10
- 9 E2 - PC1 I/O PC1 ADC12_IN11
- 10 F2 - PC2 I/O PC2 ADC12_IN12
- 11 - - PC3 I/O PC3 ADC12_IN13
--G1- V
812F15 V
913H16 V
REF+
SSA
DDA
(7)
SV
SV
SV
REF+
SSA
DDA
WKUP/USART2_CTS/
10 14 G2 7 PA0-WKUP I/O PA0
ADC12_IN0/
TIM2_CH1_ETR
11 15 H2 8 PA1 I/O PA1
12 16 F3 9 PA2 I/O PA2
13 17 G3 10 PA3 I/O PA3
-18C2- V
-19D2- V
SS_4
DD_4
SV
SV
SS_4
DD_4
14 20 H3 11 PA4 I/O PA4
15 21 F4 12 PA5 I/O PA5 SPI1_SCK
16 22 G4 13 PA6 I/O PA6
17 23 H4 14 PA7 I/O PA7
USART2_RTS/
ADC12_IN1/ TIM2_CH2
USART2_TX/
ADC12_IN2/ TIM2_CH3
USART2_RX/
ADC12_IN3/TIM2_CH4
SPI1_NSS
USART2_CK/ADC12_IN4
(8)
SPI1_MISO
ADC12_IN6/TIM3_CH1
SPI1_MOSI
ADC12_IN7/TIM3_CH2
- 24 H5 PC4 I/O PC4 ADC12_IN14
(8)
(8)
(8)
(8)
(8)
/
/ ADC12_IN5
(8)
/
(8)
(8)
/
(8)
(4)
TIM1_BKIN
TIM1_CH1N
Doc ID 15060 Rev 5 25/87
Page 26
Pinouts and pin description STM32F103x4, STM32F103x6
Table 5. Low-density STM32F103xx pin definitions (continued)
(4)
TIM1_CH2N
TIM1_CH3N
(8)
/
/
TIM2_CH1_ETR/
PA15 / SPI1_NSS
LQFP48/
VFQFPN48
Pins
LQFP64
TFBGA64
VFQFPN36
Pin name
(1)
Typ e
(2)
Main
function
(after reset)
I / O Level
(3)
Alternate functions
Default Remap
- 25 H6 PC5 I/O PC5 ADC12_IN15
18 26 F5 15 PB0 I/O PB0 ADC12_IN8/TIM3_CH3
19 27 G5 16 PB1 I/O PB1 ADC12_IN9/TIM3_CH4
(8)
(8)
20 28 G6 17 PB2 I/O FT PB2/BOOT1
21 29 G7 - PB10 I/O FT PB10 TIM2_CH3
22 30 H7 - PB11 I/O FT PB11 TIM2_CH4
23 31 D6 18 V
24 32 E6 19 V
SS_1
DD_1
25 33 H8 - PB12 I/O FT PB12 TIM1_BKIN
26 34 G8 - PB13 I/O FT PB13 TIM1_CH1N
27 35 F8 - PB14 I/O FT PB14 TIM1_CH2N
28 36 F7 - PB15 I/O FT PB15 TIM1_CH3N
SV
SV
SS_1
DD_1
(8)
(8)
(8)
(8)
- 37 F6 - PC6 I/O FT PC6 TIM3_CH1
38 E7 - PC7 I/O FT PC7 TIM3_CH2
39 E8 - PC8 I/O FT PC8 TIM3_CH3
- 40 D8 - PC9 I/O FT PC9 TIM3_CH4
29 41 D7 20 PA8 I/O FT PA8
30 42 C7 21 PA9 I/O FT PA9
31 43 C6 22 PA10 I/O FT PA10 USART1_RX
32 44 C8 23 PA11 I/O FT PA11
33 45 B8 24 PA12 I/O FT PA12
USART1_CK/
TIM1_CH1/MCO
USART1_TX
TIM1_CH2
(8)
(8)
(8)
/ TIM1_CH3
/
USART1_CTS/ CAN_RX
TIM1_CH4 / USBDM
USART1_RTS/ CAN_TX
TIM1_ETR / USBDP
(8)
34 46 A8 25 PA13 I/O FT JTMS/SWDIO PA13
35 47 D5 26 V
36 48 E5 27 V
SS_2
DD_2
SV
SV
SS_2
DD_2
37 49 A7 28 PA14 I/O FT JTCK/SWCLK PA14
38 50 A6 29 PA15 I/O FT JTDI
- 51 B7 PC10 I/O FT PC10
- 52 B6 PC11 I/O FT PC11
- 53 C5 PC12 I/O FT PC12
26/87 Doc ID 15060 Rev 5
Page 27
STM32F103x4, STM32F103x6 Pinouts and pin description
Table 5. Low-density STM32F103xx pin definitions (continued)
(4)
TIM2_CH2 / PB3/
TRACESWO
SPI1_SCK
TIM3_CH1 /PB4
SPI1_MISO
TIM3_CH2 / SPI1_MOSI
USART1_RX
I2C1_SCL
/CAN_RX
I2C1_SDA /
CAN_TX
LQFP48/
VFQFPN48
Pins
LQFP64
TFBGA64
VFQFPN36
Pin name
(1)
Typ e
(2)
Main
function
(after reset)
I / O Level
5 5 C1 2 PD0 I/O FT OSC_IN
6 6 D1 3 PD1 I/O FT OSC_OUT
(9)
(3)
(9)
Alternate functions
Default Remap
54 B5 - PD2 I/O FT PD2 TIM3_ETR
39 55 A5 30 PB3 I/O FT JTDO
40 56 A4 31 PB4 I/O FT NJTRST
41 57 C4 32 PB5 I/O PB5 I2C1_SMBA
(8)
42 58 D3 33 PB6 I/O FT PB6 I2C1_SCL
43 59 C3 34 PB7 I/O FT PB7 I2C1_SDA
/ USART1_TX
(8)
44 60 B4 35 BOOT0 I BOOT0
45 61 B3 - PB8 I/O FT PB8
46 62 A3 - PB9 I/O FT PB9
47 63 D4 36 V
48 64 E4 1 V
1. I = input, O = output, S = supply.
2. FT = 5 V tolerant.
3. Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower number of peripheral that is included. For example, if a device has only one SPI and two USARTs, they will be called SPI1 and USART1 & USART2, respectively. Refer to Table 2 on page 10.
4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).
5. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED).
6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com.
7. Unlike in the LQFP64 package, there is no PC3 in the TFBGA64 package. The V
8. This alternate function can be remapped by software to some other port pins (if available on the used package). For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com.
9. The pins number 2 and 3 in the VFQFPN36 package, 5 and 6 in the LQFP48 and LQFP64 packages and C1 and C2 in the TFBGA64 package are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual.
SS_3
DD_3
SV
SV
SS_3
DD_3
functionality is provided instead.
REF+
Doc ID 15060 Rev 5 27/87
Page 28
Memory mapping STM32F103x4, STM32F103x6

4 Memory mapping

The memory map is shown in Figure 8.

Figure 8. Memory map

0xFFFF FFFF
7
0xE010 0000
0xE000 0000
6
0xC000 0000
5
0xA000 0000
4
0x8000 0000
3
0x6000 0000
2
0x4000 0000
1
0x2000 0000
0
0x0000 0000
Cortex-M3 Internal
Peripherals
Peripherals
SRAM
Reserved
0x1FFF FFFF
0x1FFF F80F
0x1FFF F800
0x1FFF F000
0x0801 FFFF
0x0800 0000
0x0000 0000
reserved
Option Bytes
System memory
reserved
Flash memory
Aliased to Flash or system memory depending on BOOT pins
APB memory space
0xFFFF FFFF
0x4002 3400
0x4002 3000
0x4002 2400
0x4002 2000
0x4002 1400
0x4002 1000
0x4002 0400
0x4002 0000
0x4001 3C00
0x4001 3800
0x4001 3400
0x4001 3000
0x4001 2C00
0x4001 2800
0x4001 2400
0x4001 1800
0x4001 1400
0x4001 1000
0x4001 0C00
0x4001 0800
0x4001 0400
0x4001 0000
0x4000 7400
0x4000 7000
0x4000 6C00
0x4000 6800
0x4000 6400
0x4000 6000
0x4000 5C00
0x4000 5800
0x4000 5400
0x4000 4800
0x4000 4400
0x4000 3400
0x4000 3000
0x4000 2C00
0x4000 2800
0x4000 0800
0x4000 0400
0x4000 0000
reserved
CRC
reserved
Flash Interface
reserved
RCC
reserved
DMA
reserved
USART1
reserved
SPI
TIM1
ADC2
ADC1
reserved
Port D
Port C
Port B
Port A
EXTI
AFIO
reserved
PWR
BKP
reserved
bxCAN
shared 512 byte
USB/CAN SRAM
USB Registers
reserved
I2C
reserved
USART2
reserved
IWDG
WWDG
RTC
reserved
TIM3
TIM2
ai15177c
28/87 Doc ID 15060 Rev 5
Page 29
STM32F103x4, STM32F103x6 Electrical characteristics

5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to VSS.

5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at T the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3Σ).

5.1.2 Typical values

Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the 2V≤ V tested.
3.6 V voltage range). They are given only as design guidelines and are not
DD
= 25 °C and TA = TAmax (given by
A
Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 9.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 10.
(mean±2Σ).
Doc ID 15060 Rev 5 29/87
Page 30
Electrical characteristics STM32F103x4, STM32F103x6
ai14141
C = 50 pF
STM32F103xx pin
ai14142
STM32F103xx pin
V
IN
Figure 9. Pin loading conditions Figure 10. Pin input voltage

5.1.6 Power supply scheme

Figure 11. Power supply scheme
V
BAT
1.8-3.6V
Power switch
Backup circuitry
(OSC32K,RTC,
Wakeup logic
Backup registers)
OUT
GP I/O s
IN
Logic
Level shifter
V
DD
V
DD
10 nF
+ 1 µF
V
DD
5 × 100 nF + 1 × 4.7 µF
V
REF
10 nF
+ 1 µF
1/2/3/4/5
V
SS
1/2/3/4/5
V
DDA
V
REF+
V
SSA
Regulator
ADC
V
REF-
Analo g:
RCs, PLL,
Caution: In Figure 11, the 4.7 µF capacitor must be connected to V
IO
...
DD3
Kernel logic
(CPU, Digital
& Memories)
ai15496
.
30/87 Doc ID 15060 Rev 5
Page 31
STM32F103x4, STM32F103x6 Electrical characteristics
ai14126
V
BAT
V
DD
V
DDA
IDD_V
BAT
I
DD

5.1.7 Current consumption measurement

Figure 12. Current consumption measurement scheme

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in Table 6: Voltage characteristics,
Table 7: Current characteristics, and Table 8: Thermal characteristics may cause permanent
damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 6. Voltage characteristics

Symbol Ratings Min Max Unit
VDD − V
(2)
V
IN
|ΔV
DDx
|V
VSS|
SSX
V
ESD(HBM)
1. All main power (VDD, V supply, in the permitted range.
2. VIN maximum must always be respected. Refer to Table 7: Current characteristics for the maximum allowed injected current values.
External main supply voltage (including
SS
V
and VDD)
DDA
(1)
Input voltage on five volt tolerant pin V
Input voltage on any other pin V
| Variations between different V
power pins 50
DD
Variations between all the different ground pins
Electrostatic discharge voltage (human body model)
) and ground (VSS, V
DDA
) pins must always be connected to the external power
SSA
–0.3 4.0
0.3 V
SS
0.3 4.0
SS
DD
+ 4.0
50
see Section 5.3.11: Absolute
maximum ratings (electrical
sensitivity)
V
mV
Doc ID 15060 Rev 5 31/87
Page 32
Electrical characteristics STM32F103x4, STM32F103x6

Table 7. Current characteristics

Symbol Ratings Max. Unit
(1)
(1)
(5)
is the absolute sum of the
INJ(PIN)
150
150
-5/+0
± 5
± 25
INJ(PIN)
INJ(PIN)
mA
must
must
I
VDD
I
VSS
Total current into VDD/V
Total current out of V
SS
power lines (source)
DDA
ground lines (sink)
Output current sunk by any I/O and control pin 25
I
IO
I
INJ(PIN)
ΣI
INJ(PIN)
1. All main power (VDD, V supply, in the permitted range.
2. Negative injection disturbs the analog performance of the device. See note in Section 5.3.18: 12-bit ADC
characteristics.
3. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. I never be exceeded. Refer to Table 6: Voltage characteristics for the maximum allowed input voltage values.
4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. I never be exceeded. Refer to Table 6: Voltage characteristics for the maximum allowed input voltage values.
5. When several inputs are submitted to a current injection, the maximum ΣI positive and negative injected currents (instantaneous values).
Output current source by any I/Os and control pin 25
Injected current on five volt tolerant pins
(2)
Injected current on any other pin
(4)
(3)
Total injected current (sum of all I/O and control pins)
) and ground (VSS, V
DDA
) pins must always be connected to the external power
SSA

Table 8. Thermal characteristics

Symbol Ratings Value Unit
T
STG
T
J
Storage temperature range –65 to +150 °C
Maximum junction temperature 150 °C

5.3 Operating conditions

5.3.1 General operating conditions

Table 9. General operating conditions
Symbol Parameter Conditions Min Max Unit
f
HCLK
PCLK1
f
PCLK2
V
V
DDA
V
DD
BAT
Internal AHB clock frequency 0 72
Internal APB1 clock frequency 0 36
Internal APB2 clock frequency 0 72
Standard operating voltage 2 3.6 V
Analog operating voltage (ADC not used)
(1)
Analog operating voltage (ADC used)
Backup operating voltage 1.8 3.6 V
Must be the same potential
(2)
as V
DD
MHzf
23.6
V
2.4 3.6
32/87 Doc ID 15060 Rev 5
Page 33
STM32F103x4, STM32F103x6 Electrical characteristics
Table 9. General operating conditions (continued)
Symbol Parameter Conditions Min Max Unit
TFBGA64 308
Power dissipation at T
P
D
for suffix 6 or TA = 105 °C for
(3)
suffix 7
= 85 °C
A
LQFP64 444
mW
LQFP48 363
VFQFPN36 1000
Ambient temperature for 6 suffix version
A
T
Ambient temperature for 7 suffix version
Maximum power dissipation –40 85
Low power dissipation
Maximum power dissipation –40 105
Low power dissipation
6 suffix version –40 105
T
J Junction temperature range
7 suffix version –40 125
1. When the ADC is used, refer to Table 46: ADC characteristics.
2. It is recommended to power V between V
3. If T
4. In low power dissipation state, T
is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 6.2: Thermal
A
characteristics on page 81).
Table 6.2: Thermal characteristics on page 81).
DD
and V
can be tolerated during power-up and operation.
DDA
and V
DD
can be extended to this range as long as TJ does not exceed TJmax (see
A
from the same source. A maximum difference of 300 mV
DDA

5.3.2 Operating conditions at power-up / power-down

Subject to general operating conditions for TA.
Table 10. Operating conditions at power-up / power-down
Symbol Parameter Conditions Min Max Unit
t
VDD
VDD rise time rate 0
fall time rate 20
V
DD
(4)
(4)
–40 105
°C
°C
–40 125
°C
µs/V

5.3.3 Embedded reset and power control block characteristics

The parameters given in Tab l e 1 1 are derived from tests performed under ambient temperature and V
supply voltage conditions summarized in Tab l e 9.
DD
Doc ID 15060 Rev 5 33/87
Page 34
Electrical characteristics STM32F103x4, STM32F103x6
Table 11. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
PLS[2:0]=000 (rising edge) 2.1 2.18 2.26 V
PLS[2:0]=000 (falling edge) 2 2.08 2.16 V
PLS[2:0]=001 (rising edge) 2.19 2.28 2.37 V
PLS[2:0]=001 (falling edge) 2.09 2.18 2.27 V
PLS[2:0]=010 (rising edge) 2.28 2.38 2.48 V
PLS[2:0]=010 (falling edge) 2.18 2.28 2.38 V
PLS[2:0]=011 (rising edge) 2.38 2.48 2.58 V
V
PVD
Programmable voltage detector level selection
PLS[2:0]=011 (falling edge) 2.28 2.38 2.48 V
PLS[2:0]=100 (rising edge) 2.47 2.58 2.69 V
PLS[2:0]=100 (falling edge) 2.37 2.48 2.59 V
PLS[2:0]=101 (rising edge) 2.57 2.68 2.79 V
PLS[2:0]=101 (falling edge) 2.47 2.58 2.69 V
PLS[2:0]=110 (rising edge) 2.66 2.78 2.9 V
PLS[2:0]=110 (falling edge) 2.56 2.68 2.8 V
PLS[2:0]=111 (rising edge) 2.76 2.88 3 V
PLS[2:0]=111 (falling edge) 2.66 2.78 2.9 V
(2)
V
PVDhyst
V
POR/PDR
V
PDRhyst
T
RSTTEMPO
1. The product behavior is guaranteed by design down to the minimum V
2. Guaranteed by design, not tested in production.
PVD hysteresis 100 mV
Power on/power down reset threshold
(2)
PDR hysteresis 40 mV
(2)
Reset temporization 1 2.5 4.5 ms
Falling edge
Rising edge 1.84 1.92 2.0 V
POR/PDR
1.8
value.
(1)
1.88 1.96 V
34/87 Doc ID 15060 Rev 5
Page 35
STM32F103x4, STM32F103x6 Electrical characteristics

5.3.4 Embedded reference voltage

The parameters given in Tab l e 1 2 are derived from tests performed under ambient temperature and V
Table 12. Embedded internal reference voltage
Symbol Parameter Conditions Min
supply voltage conditions summarized in Tab l e 9.
DD
Typ
Max Unit
V
REFINT
T
S_vrefint
Internal reference voltage
ADC sampling time when
(1)
reading the internal reference voltage
Internal reference voltage
RERINT
(2)
spread over the temperature
V
range
(2)
T
Coeff
1. Shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design, not tested in production.
Temperature coefficient 100 ppm/°C

5.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 12: Current consumption
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code.
–40 °C < T
–40 °C < T
< +105 °C 1.16 1.20 1.26 V
A
< +85 °C 1.16 1.20 1.24 V
A
17.1
(2)
5.1
VDD = 3 V ±10 mV 10 mV
µs
Maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at V
All peripherals are disabled except when explicitly mentioned
The Flash memory access time is adjusted to the f
to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above)
Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)
When the peripherals are enabled f
PCLK1
= f
HCLK
The parameters given in Tab l e 1 3, Ta b le 14 and Tab le 1 5 are derived from tests performed under ambient temperature and V
supply voltage conditions summarized in Ta bl e 9 .
DD
Doc ID 15060 Rev 5 35/87
or VSS (no load)
DD
frequency (0 wait state from 0
HCLK
/2, f
PCLK2
= f
HCLK
Page 36
Electrical characteristics STM32F103x4, STM32F103x6
Table 13. Maximum current consumption in Run mode, code with data processing
running from Flash
(1)
Max
Symbol Parameter Conditions f
HCLK
= 85 °C TA = 105 °C
T
A
Unit
72 MHz 45 46
48 MHz 32 33
External clock
(2)
peripherals enabled
36 MHz 26 27
, all
24 MHz 18 19
16 MHz 13 14
I
DD
Supply current in Run mode
8 MHz 7 8
mA
72 MHz 30 31
48 MHz 23 24
External clock
(2)
peripherals disabled
36 MHz 19 20
, all
24 MHz 13 14
16 MHz 10 11
8 MHz 6 7
1. Based on characterization, not tested in production.
2. External clock is 8 MHz and PLL is on when f
Table 14. Maximum current consumption in Run mode, code with data processing
HCLK
> 8 MHz.
running from RAM
(1)
Max
Symbol Parameter Conditions f
72 MHz 41 42
48 MHz 27 28
External clock
(2)
peripherals enabled
36 MHz 20 21
, all
24 MHz 14 15
16 MHz 10 11
Supply
I
DD
current in Run mode
8 MHz 6 7
72 MHz 27 28
48 MHz 19 20
External clock
(2)
peripherals disabled
36 MHz 15 16
, all
24 MHz 10 11
16 MHz 7 8
8 MHz 5 6
1. Based on characterization, tested in production at V
2. External clock is 8 MHz and PLL is on when f
HCLK
> 8 MHz.
DD
HCLK
max, f
HCLK
T
= 85 °C TA = 105 °C
A
max.
Unit
mA
36/87 Doc ID 15060 Rev 5
Page 37
STM32F103x4, STM32F103x6 Electrical characteristics
0
5
10
15
20
25
30
35
40
45
– 45°C 25 °C 70 °C 85 °C 105 °C
Temperature (°C)
Consumption (mA)
72 MHz
36 MHz
16 MHz
8 MHz
0
5
10
15
20
25
30
– 45°C 25 °C 70 °C 85 °C 105 °C
Temperature (°C)
Consumption (mA)
72 MHz
36 MHz
16 MHz
8 MHz
Figure 13. Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals enabled
Figure 14. Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals disabled
Doc ID 15060 Rev 5 37/87
Page 38
Electrical characteristics STM32F103x4, STM32F103x6
Table 15. Maximum current consumption in Sleep mode, code running from Flash
or RAM
(1)
Max
Symbol Parameter Conditions f
72 MHz 26 27
48 MHz 17 18
External clock
(2)
peripherals enabled
36 MHz 14 15
, all
24 MHz 10 11
16 MHz 7 8
I
DD
Supply current in Sleep mode
8 MHz 4 5
72 MHz 7.5 8
48 MHz 6 6.5
External clock
(2)
peripherals disabled
36 MHz 5 5.5
, all
24 MHz 4.5 5
16 MHz 4 4.5
8 MHz 3 4
HCLK
T
= 85 °C TA = 105 °C
A
Unit
mA
1. based on characterization, tested in production at V
2. External clock is 8 MHz and PLL is on when f
HCLK
DD max
> 8 MHz.
, f
max with peripherals enabled.
HCLK
38/87 Doc ID 15060 Rev 5
Page 39
STM32F103x4, STM32F103x6 Electrical characteristics
0
0.5
1
1.5
2
2.5
–40 °C 25 °C 70 °C 85 °C 105 °C
Temperature (°C)
Consumption ( µA )
2 V
2.4 V
3 V
3.6 V
ai17351
Table 16. Typical and maximum current consumptions in Stop and Standby modes
Symbol Parameter Conditions
(1)
Typ
V
DD/VBAT
= 2.0 V
VDD/V
= 2.4 V
BAT
VDD/V
= 3.3 V
BAT
TA =
85 °C
Regulator in Run mode, low-speed
I
DD
Supply current in Stop mode
Supply current in Standby mode
and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)
Regulator in Low Power mode, low­speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)
Low-speed internal RC oscillator and independent watchdog ON
Low-speed internal RC oscillator ON, independent watchdog OFF
Low-speed internal RC oscillator and independent watchdog OFF, low-
- 21.3 21.7 160 200
- 11.3 11.7 145 185
-2.753.4--
-2.553.2--
- 1.55 1.9 3.2 4.5
speed oscillator and RTC OFF
I
DD_VBAT
Backup domain supply
Low-speed oscillator and RTC ON 0.9 1.1 1.4 1.9
(2)
current
1. Typical values are measured at TA = 25 °C.
2. Based on characterization, not tested in production.
Max
TA =
105 °C
2.2
Unit
µA
Figure 15. Typical current consumption on V
V
values
BAT
with RTC on versus temperature at different
BAT
Doc ID 15060 Rev 5 39/87
Page 40
Electrical characteristics STM32F103x4, STM32F103x6
0
20
40
60
80
100
120
–45 °C 25 °C 85 °C 105 °C
Temperature (°C)
Consumption (µA)
3.3 V
3.6 V
0
10
20
30
40
50
60
70
80
90
–45 °C 25 °C 85 °C 105 °C
Temperature (°C)
Consumption (µA)
3.3 V
3.6 V
Figure 16. Typical current consumption in Stop mode with regulator in Run mode versus
temperature at V
= 3.3 V and 3.6 V
DD
Figure 17. Typical current consumption in Stop mode with regulator in Low-power mode versus
temperature at V
40/87 Doc ID 15060 Rev 5
= 3.3 V and 3.6 V
DD
Page 41
STM32F103x4, STM32F103x6 Electrical characteristics
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
–45 °C 25 °C 85 °C 105 °C
Temperature (°C)
Consumpt ion (µA)
3.3 V
3.6 V
Figure 18. Typical current consumption in Standby mode versus temperature at
V
= 3.3 V and 3.6 V
DD
Typical current consumption
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at V
All peripherals are disabled except if it is explicitly mentioned.
The Flash access time is adjusted to f
frequency (0 wait state from 0 to 24 MHz, 1
HCLK
wait state from 24 to 48 MHz and 2 wait states above).
Ambient temperature and V
Prefetch is ON (Reminder: this bit must be set before clock setting and bus prescaling)
When the peripherals are enabled f
f
/4
PCLK2
supply voltage conditions summarized in Tab le 9 .
DD
= f
PCLK1
HCLK
or VSS (no load).
DD
/4, f
PCLK
2 = f
HCLK
/2, f
ADCCLK
=
Doc ID 15060 Rev 5 41/87
Page 42
Electrical characteristics STM32F103x4, STM32F103x6
Table 17. Typical current consumption in Run mode, code with data processing
running from Flash
(1)
Typ
Symbol Parameter Conditions f
HCLK
All peripherals
enabled
(2)
All peripherals
disabled
72 MHz 31.3 24.5
48 MHz 21.9 17.4
36 MHz 17.2 13.8
24 MHz 11.2 8.9
16 MHz 8.1 6.6
External clock
(3)
8 MHz 5 4.2
4 MHz 3 2.6
2 MHz 2 1.8
1 MHz 1.5 1.4
500 kHz 1.2 1.2
Supply
I
DD
current in Run mode
125 kHz 1.05 1
64 MHz 27.6 21.6
48 MHz 21.2 16.7
36 MHz 16.5 13.1
Running on high speed internal RC (HSI), AHB prescaler used to reduce the frequency
24 MHz 10.5 8.2
16 MHz 7.4 5.9
8 MHz 4.3 3.6
4 MHz 2.4 2
2 MHz 1.5 1.3
1 MHz 1 0.9
500 kHz 0.7 0.65
125 kHz 0.5 0.45
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).
3. External clock is 8 MHz and PLL is on when f
HCLK
> 8 MHz.
Unit
mA
mA
42/87 Doc ID 15060 Rev 5
Page 43
STM32F103x4, STM32F103x6 Electrical characteristics
Table 18. Typical current consumption in Sleep mode, code running from Flash or
RAM
(1)
Typ
Symbol Parameter Conditions f
72 MHz 12.6 5.3
48 MHz 8.7 3.8
36 MHz 6.7 3.1
24 MHz 4.8 2.3
16 MHz 3.4 1.8
External clock
(3)
8 MHz 2 1.2
4 MHz 1.5 1.1
2 MHz 1.25 1
1 MHz 1.1 0.98
500 kHz 1.05 0.96
Supply
I
DD
current in Sleep mode
125 kHz 1 0.95
64 MHz 10.6 4.2
48 MHz 8.1 3.2
HCLK
All peripherals
enabled
(2)
All peripherals
disabled
Unit
mA
36 MHz 6.1 2.5
24 MHz 4.2 1.7
Running on high speed internal RC (HSI), AHB prescaler used to reduce the frequency
16 MHz 2.8 1.2
8 MHz 1.4 0.55
4 MHz 0.9 0.5
2 MHz 0.7 0.45
1 MHz 0.55 0.42
500 kHz 0.48 0.4
125 kHz 0.4 0.38
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).
3. External clock is 8 MHz and PLL is on when f
HCLK
> 8 MHz.
Doc ID 15060 Rev 5 43/87
Page 44
Electrical characteristics STM32F103x4, STM32F103x6
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Ta bl e 1 9 . The MCU is placed under the following conditions:
all I/O pins are in input mode with a static value at V
all peripherals are disabled unless otherwise mentioned
the given value is calculated by measuring the current consumption
with all peripherals clocked off
with only one peripheral clocked on
ambient operating temperature and V
supply voltage conditions summarized in
DD
Ta bl e 6
Table 19. Peripheral current consumption
(1)
Peripheral Typical consumption at 25 °C Unit
TIM2 1.2
TIM3 1.2
or VSS (no load)
DD
APB1
USART2 0.35
I2C 0.39
USB 0.65
CAN 0.72
GPIO A 0.47
GPIO B 0.47
GPIO C 0.47
GPIO D 0.47
APB2
ADC1
(2)
ADC2 1.78
TIM1 1.6
SPI 0.43
USART1 0.85
1. f
2. Specific conditions for ADC: f
= 72 MHz, f
HCLK
in the ADC_CR2 register is set to 1.
APB1
= f
HCLK
/2, f
HCLK
= f
APB2
HCLK
= 56 MHz, f
, default prescaler value for each peripheral.
= f
APB1

5.3.6 External clock source characteristics

HCLK
/2, f
APB2
= f
1.81
HCLK
, f
ADCCLK
= f
APB2/4
mA
mA
, ADON bit
High-speed external user clock generated from an external source
The characteristics given in Tab l e 2 0 result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Ta bl e 9 .
44/87 Doc ID 15060 Rev 5
Page 45
STM32F103x4, STM32F103x6 Electrical characteristics
Table 20. High-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
f
HSE_ext
V
HSEH
V
HSEL
t
w(HSE)
t
w(HSE)
t
r(HSE)
t
f(HSE)
C
in(HSE)
DuCy
I
1. Guaranteed by design, not tested in production.
User external clock source frequency
(1)
OSC_IN input pin high level voltage 0.7V
OSC_IN input pin low level voltage V
OSC_IN high or low time
OSC_IN rise or fall time
OSC_IN input capacitance
Duty cycle 45 55 %
(HSE)
OSC_IN Input leakage current VSS≤ VIN≤ V
L
(1)
(1)
(1)
DD
1825MHz
DD
SS
5
5pF
V
DD
0.3V
DD
20
±1 µA
Low-speed external user clock generated from an external source
The characteristics given in Tab l e 2 1 result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Ta bl e 9 .
Table 21. Low-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
V
ns
f
LSE_ext
V
LSEH
V
LSEL
t
w(LSE)
t
w(LSE)
t
r(LSE)
t
f(LSE)
C
in(LSE)
DuCy
I
1. Guaranteed by design, not tested in production.
User External clock source frequency
(1)
OSC32_IN input pin high level voltage
OSC32_IN input pin low level voltage
OSC32_IN high or low time
OSC32_IN rise or fall time
OSC32_IN input capacitance
Duty cycle 30 70 %
(LSE)
OSC32_IN Input leakage
L
current
(1)
(1)
(1)
V
SS
VIN≤ V
DD
0.7V
V
450
32.768 1000 kHz
DD
SS
5pF
V
DD
0.3V
DD
50
±1 µA
V
ns
Doc ID 15060 Rev 5 45/87
Page 46
Electrical characteristics STM32F103x4, STM32F103x6
ai14143
OS C _I N
EXTERNAL
STM32F103xx
CLOCK SO URCE
V
HSEH
t
f(HSE)
t
W(HSE)
I
L
90%
10%
T
HSE
t
t
r(HSE)
t
W(HSE)
f
HSE_ext
V
HSEL
ai14144b
OSC32_IN
EXTERNAL
STM32F103xx
CLOCK SO URCE
V
LSEH
t
f(LSE)
t
W(LSE)
I
L
90%
10%
T
LSE
t
t
r(LSE)
t
W(LSE)
f
LSE_ext
V
LSEL
Figure 19. High-speed external clock source AC timing diagram
Figure 20. Low-speed external clock source AC timing diagram
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Ta bl e 2 2. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).
46/87 Doc ID 15060 Rev 5
Page 47
STM32F103x4, STM32F103x6 Electrical characteristics
ai14145
OSC_OUT
OSC_IN
f
HSE
C
L1
R
F
STM32F103xx
8 MHz resonator
R
EXT
(1)
C
L2
Resonator with integrated capacitors
Bias
controlled
gain
Table 22. HSE 4-16 MHz oscillator characteristics
(1) (2)
Symbol Parameter Conditions Min Typ Max Unit
f
OSC_IN
R
Oscillator frequency 4 8 16 MHz
Feedback resistor 200 kΩ
F
Recommended load capacitance
C
versus equivalent serial resistance of the crystal (R
i
HSE driving current
2
g
t
SU(HSE
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Based on characterization, not tested in production.
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.
4. t
SU(HSE)
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer
Oscillator transconductance Startup 25 mA/V
m
(4)
startup time VDD is stabilized 2 ms
is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
(3)
)
S
RS = 30 Ω 30 pF
= 3.3 V, VIN=V
V
DD
SS
with 30 pF load
1mA
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 21). C
and C
L1
are usually the
L2
same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C
and CL2. PCB and MCU pin capacitance must be included (10 pF
L1
can be used as a rough estimate of the combined pin and board capacitance) when sizing C
and CL2. Refer to the application note AN2867 “Oscillator design guide for ST
L1
microcontrollers” available from the ST website www.st.com.
Figure 21. Typical application with an 8 MHz crystal
1. R
value depends on the crystal characteristics.
EXT
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Ta bl e 2 3. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).
Doc ID 15060 Rev 5 47/87
Page 48
Electrical characteristics STM32F103x4, STM32F103x6
Table 23. LSE oscillator characteristics (f
= 32.768 kHz)
LSE
(1) (2)
Symbol Parameter Conditions Min Typ Max Unit
R
F
Feedback resistor 5 MΩ
Recommended load capacitance
R
C
I
2
g
m
versus equivalent serial resistance of the crystal (R
)
S
LSE driving current
Oscillator transconductance 5 µA/V
= 30 KΩ 15 pF
S
= 3.3 V
V
DD
VIN = V
SS
1.4 µA
TA = 50 °C 1.5
T
= 25 °C 2.5
A
T
= 10 °C 4
A
= 0 °C 6
T
is
t
1. Based on characterization, not tested in production.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for
3. t
(3)
SU(LSE)
ST microcontrollers”.
SU(LSE)
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer
Startup time
is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
V
DD
stabilized
A
= -10 °C 10
T
A
T
= -20 °C 17
A
= -30 °C 32
T
A
T
= -40 °C 60
A
s
Note: For CL1 and C
it is recommended to use high-quality ceramic capacitors in the 5 pF to
L2
15 pF range selected to match the requirements of the crystal or resonator. C usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C Load capacitance C C
is the pin capacitance and board or trace PCB-related capacitance. Typically, it is
stray
has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + C
L
and CL2.
L1
between 2 pF and 7 pF.
Caution: To avoid exceeding the maximum value of C
to use a resonator with a load capacitance C capacitance of 12.5 pF. Example: if you choose a resonator with a load capacitance of C then C
= CL2 = 8 pF.
L1
and C
L1
and CL2 (15 pF) it is strongly recommended
L1
7 pF. Never use a resonator with a load
L
= 6 pF, and C
L
stray
stray
L2,
where
= 2 pF,
are
48/87 Doc ID 15060 Rev 5
Page 49
STM32F103x4, STM32F103x6 Electrical characteristics
ai14146
OSC32_OUT
OSC32_IN
f
LSE
C
L1
R
F
STM32F103xx
32.768 kHz resonator
C
L2
Resonator with integrated capacitors
Bias
controlled
gain
Figure 22. Typical application with a 32.768 kHz crystal

5.3.7 Internal clock source characteristics

The parameters given in Tab l e 2 4 are derived from tests performed under ambient temperature and V
High-speed internal (HSI) RC oscillator
Table 24. HSI oscillator characteristics
supply voltage conditions summarized in Tab l e 9 .
DD
(1)
Symbol Parameter Conditions Min Typ Max Unit
f
HSI
DuCy
ACC
t
su(HSI)
I
DD(HSI)
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
2. Refer to application note AN2868 “STM32F10xxx internal RC oscillator (HSI) calibration” available from the ST website www.st.com.
3. Guaranteed by design, not tested in production.
4. Based on characterization, not tested in production.
Frequency 8 MHz
Duty cycle 45 55 %
(HSI)
User-trimmed with the RCC_CR
(2)
register
Accuracy of the HSI
HSI
oscillator
HSI oscillator
(4)
startup time
HSI oscillator power
(4)
consumption
Factory­calibrated
TA = –40 to 105 °C –2 2.5 %
= –10 to 85 °C –1.5 2.2 %
T
A
(4)
T
= 0 to 70 °C –1.3 2 %
A
= 25 °C –1.1 1.8 %
T
A
12µs
80 100 µA
(3)
1
%
Doc ID 15060 Rev 5 49/87
Page 50
Electrical characteristics STM32F103x4, STM32F103x6
Low-speed internal (LSI) RC oscillator
Table 25. LSI oscillator characteristics
(1)
Symbol Parameter
(2)
f
LSI
t
su(LSI)
I
DD(LSI)
1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.
2. Based on characterization, not tested in production.
3. Guaranteed by design, not tested in production.
Frequency 30 40 60 kHz
(3)
LSI oscillator startup time 85 µs
(3)
LSI oscillator power consumption 0.65 1.2 µA
Min
Typ Max Uni t
Wakeup time from low-power mode
The wakeup times given in Ta bl e 2 6 is measured on a wakeup phase with a 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:
Stop or Standby mode: the clock source is the RC oscillator
Sleep mode: the clock source is the clock that was set before entering Sleep mode.
All timings are derived from tests performed under ambient temperature and V voltage conditions summarized in Tabl e 9 .
supply
DD
50/87 Doc ID 15060 Rev 5
Page 51
STM32F103x4, STM32F103x6 Electrical characteristics
Table 26. Low-power mode wakeup timings
Symbol Parameter Typ Unit
t
WUSLEEP
(1)
Wakeup from Sleep mode 1.8 µs
Wakeup from Stop mode (regulator in run mode) 3.6
t
WUSTOP
(1)
Wakeup from Stop mode (regulator in low power mode)
t
WUSTDBY
1. The wakeup times are measured from the wakeup event to the point in which the user application code reads the first instruction.
(1)
Wakeup from Standby mode 50 µs

5.3.8 PLL characteristics

The parameters given in Tab l e 2 7 are derived from tests performed under ambient temperature and V
Table 27. PLL characteristics
Symbol Parameter
f
PLL_IN
f
PLL_OUT
t
LOCK
Jitter Cycle-to-cycle jitter 300 ps
1. Based on characterization, not tested in production.
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by f
supply voltage conditions summarized in Tab l e 9 .
DD
PLL input clock
PLL input clock duty cycle 40 60 %
PLL multiplier output clock 16 72 MHz
PLL lock time 200 µs
PLL_OUT
5.4
µs
Val ue
(1)
Min
(2)
.
18.0 25 MHz
Typ M ax
(1)
Unit

5.3.9 Memory characteristics

Flash memory
The characteristics are given at TA = 40 to 105 °C unless otherwise specified.
Table 28. Flash memory characteristics
Symbol Parameter Conditions Min
t
t
ERASE
t
16-bit programming time TA = –40 to +105 °C 40 52.5 70 µs
prog
Page (1 KB) erase time TA = –40 to +105 °C 20 40 ms
Mass erase time TA = –40 to +105 °C 20 40 ms
ME
(1)
Typ Max
(1)
Unit
Doc ID 15060 Rev 5 51/87
Page 52
Electrical characteristics STM32F103x4, STM32F103x6
Table 28. Flash memory characteristics (continued)
Symbol Parameter Conditions Min
Read mode
= 72 MHz with 2 wait
f
HCLK
states, VDD = 3.3 V
I
DD
Supply current
Write / Erase modes
= 72 MHz, VDD = 3.3 V
f
HCLK
Power-down mode / Halt,
= 3.0 to 3.6 V
V
DD
V
1. Guaranteed by design, not tested in production.
Programming voltage 2 3.6 V
prog
(1)
Typ Max
(1)
Unit
20 mA
5mA
50 µA
Table 29. Flash memory endurance and data retention
Val ue
Symbol Parameter Conditions
= –40 to +85 °C (6 suffix versions)
T
N
END
t
RET
Endurance
Data retention
A
T
= –40 to +105 °C (7 suffix versions)
A
1 kcycle
10 kcycles
(2)
at TA = 85 °C
(2)
at TA = 105 °C 10
(2)
at TA = 55 °C 20
Min
30
(1)
10
Typ M ax
Unit
kcycles
Years1 kcycle
1. Based on characterization, not tested in production.
2. Cycling performed over the whole temperature range.

5.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is
SS
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Tab l e 3 0 . They are based on the EMS levels and classes defined in application note AN1709.
DD
and
52/87 Doc ID 15060 Rev 5
Page 53
STM32F103x4, STM32F103x6 Electrical characteristics
Table 30. EMS characteristics
Symbol Parameter Conditions
= 3.3 V, TA = +25 °C,
V
V
V
FESD
EFTB
Voltage limits to be applied on any I/O pin to induce a functional disturbance
Fast transient voltage burst limits to be applied through 100 pF on VDD and V
SS
pins to induce a functional disturbance
DD
f
= 72 MHz
HCLK
conforms to IEC 61000-4-2
V
= 3.3 V, TA = +25 °C,
DD
f
= 72 MHz
HCLK
conforms to IEC 61000-4-4
Level/
Class
2B
4A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.
Table 31. EMI characteristics
Symbol Parameter Conditions
S
EMI
Peak level V
= 3.3 V, TA = 25 °C
DD
Monitored
frequency band
Max vs. [f
8/48 MHz 8/72 MHz
HSE/fHCLK
0.1 to 30 MHz 12 12
130 MHz to 1GHz 23 29
SAE EMI Level 4 4 -
]
Unit
dBµV30 to 130 MHz 22 19
Doc ID 15060 Rev 5 53/87
Page 54
Electrical characteristics STM32F103x4, STM32F103x6

5.3.11 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.
Table 32. ESD absolute maximum ratings
Symbol Ratings Conditions Class Maximum value
= +25 °C
T
V
ESD(HBM)
Electrostatic discharge voltage (human body model)
Electrostatic discharge
V
ESD(CDM)
voltage (charge device model)
1. Based on characterization results, not tested in production.
A
conforming to JESD22-A114
TA = +25 °C conforming to JESD22-C101
2 2000
II 500
(1)
Unit
V
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 33. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class T
= +105 °C conforming to JESD78A II level A
A
54/87 Doc ID 15060 Rev 5
Page 55
STM32F103x4, STM32F103x6 Electrical characteristics

5.3.12 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below VSS or above V operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.
Functional susceptibilty to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation).
The test results are given in Tab l e 3 4
Table 34. I/O current injection susceptibility
Symbol Description
(for standard, 3 V-capable I/O pins) should be avoided during normal product
DD
Functional susceptibility
Negative injection
Positive
injection
Unit
I
INJ
Injected current on OSC_IN32, OSC_OUT32, PA4, PA5, PC13
Injected current on all FT pins -5 +0
Injected current on any other pin -5 +5
-0 +0
mA
Doc ID 15060 Rev 5 55/87
Page 56
Electrical characteristics STM32F103x4, STM32F103x6

5.3.13 I/O port characteristics

General input/output characteristics
Unless otherwise specified, the parameters given in Ta bl e 3 5 are derived from tests performed under the conditions summarized in Tab l e 9 . All I/Os are CMOS and TTL compliant.
Table 35. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
Standard IO input low level voltage
V
IL
IO FT
(1)
voltage
Standard IO input high level voltage
V
IH
IO FT
(1)
voltage
input low level
input high level
–0.3 0.28*(V
–0.3 0.32*(V
0.41*(V
> 2 V
V
DD
V
2 V 5.2
DD
0.42*(V
-2 V)+1.3 V VDD+0.3 V
DD
-2 V)+1 V
DD
-2 V)+0.8 V V
DD
-2V)+0.75 V V
DD
5.5
Standard IO Schmitt trigger voltage
hys
hysteresis
V
IO FT Schmitt trigger voltage hysteresis
Input leakage current
I
lkg
(2)
(2)
V
Standard I/Os
(4)
VIN≤ V
SS
V
IN
DD
= 5 V
I/O FT
R
R
1. FT = Five-volt tolerant. In order to sustain a voltage higher than VDD+0.3 the internal pull-up/pull-down resistors must be
2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.
3. With a minimum of 100 mV.
4. Leakage could be higher than max. if negative current is injected on adjacent pins.
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
Weak pull-up equivalent
PU
PD
C
IO
disabled.
PMOS/NMOS contribution
(5)
resistor
Weak pull-down equivalent resistor
(5)
I/O pin capacitance 5 pF
to the series resistance is minimum (~10% order).
V
= V
IN
SS
V
= V
IN
DD
200 mV
DD
(3)
5% V
±1
3
30 40 50 kΩ
30 40 50 kΩ
V
mV
µA
56/87 Doc ID 15060 Rev 5
Page 57
STM32F103x4, STM32F103x6 Electrical characteristics
AIB
6$$6



)NPUTRANGE
NOTGUARANTEED


6
)(
6
$$


#-/3STANDARDREQUIREMENT6
)(
6
$$

6)(6),6
#-/3STANDARDREQUIREMENT6
),
6
$$







7
),MAX
7
)(MIN
6
$$

6
),
AI

)NPUTRANGE
NOTGUARANTEED
6)(6),6






44,REQUIREMENTS 6)(6
6
)(
6
$$

6
),
6
$$

44,REQUIREMENTS 6),6
6$$6
7
),MAX
7
)(MIN
All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in Figure 23 and Figure 24 for standard I/Os, and in Figure 25 and Figure 26 for 5 V tolerant I/Os.
Figure 23. Standard I/O input characteristics - CMOS port
Figure 24. Standard I/O input characteristics - TTL port
Doc ID 15060 Rev 5 57/87
Page 58
Electrical characteristics STM32F103x4, STM32F103x6
6$$


#-/3STANDARDREQUIREMENTS6
)(
6
$$
#-/3STANDARDREQUIRMENT6
),
6
$$





 
 
 
6)(6),6
6$$6
)NPUTRANGE
NOTGUARANTEED
AIB
6
)(
6
$$

6
),
6
$$




NOTGUARANTEED
)NPUTRANGE


44,REQUIREMENT6)(6
6
)(
6
$$

6
),
6
$$

44,REQUIREMENTS6),6
6)(6),6
6$$6
7
),MAX
7
)(MIN
AI
Figure 25. 5 V tolerant I/O input characteristics - CMOS port
Figure 26. 5 V tolerant I/O input characteristics - TTL port
58/87 Doc ID 15060 Rev 5
Page 59
STM32F103x4, STM32F103x6 Electrical characteristics
Output driving current
The GPIOs (general-purpose inputs/outputs) can sink or source up to ±8 mA, and sink or source up to ±20 mA (with a relaxed V
OL/VOH
).
In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 5.2:
The sum of the currents sourced by all the I/Os on V
consumption of the MCU sourced on V I
(see Ta bl e 7 ).
VDD
The sum of the currents sunk by all the I/Os on V
consumption of the MCU sunk on V I
(see Ta bl e 7 ).
VSS
cannot exceed the absolute maximum rating
DD,
cannot exceed the absolute maximum rating
SS
SS
plus the maximum Run
DD,
plus the maximum Run
Output voltage levels
Unless otherwise specified, the parameters given in Ta bl e 3 6 are derived from tests performed under ambient temperature and V
Ta bl e 9 . All I/Os are CMOS and TTL compliant.
Table 36. Output voltage characteristics
Symbol Parameter Conditions Min Max Unit
supply voltage conditions summarized in
DD
Output low level voltage for an I/O pin
(1)
V
OL
V
OH
V
OL
V
OH
V
OL
V
OH
V
OL
V
OH
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 7 and the sum of I
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 7 and the sum of I
4. Based on characterization data, not tested in production.
when 8 pins are sunk at same time
Output high level voltage for an I/O pin
(3)
when 8 pins are sourced at same time
Output low level voltage for an I/O pin
(1)
when 8 pins are sunk at same time
Output high level voltage for an I/O pin
(3)
when 8 pins are sourced at same time
Output low level voltage for an I/O pin
(1)(4)
when 8 pins are sunk at same time
Output high level voltage for an I/O pin
(3)(4)
when 8 pins are sourced at same time
Output low level voltage for an I/O pin
(1)(4)
when 8 pins are sunk at same time
Output high level voltage for an I/O pin
(3)(4)
when 8 pins are sourced at same time
(I/O ports and control pins) must not exceed I
IO
(I/O ports and control pins) must not exceed I
IO
CMOS port
I
IO
2.7 V < V
TTL port
I
IO
2.7 V < V
I
= +20 mA
IO
2.7 V < V
I
IO
2 V < VDD < 2.7 V
= +8 mA
< 3.6 V
DD
(2)
=+ 8mA
< 3.6 V
DD
< 3.6 V
DD
= +6 mA
.
VSS
(2)
VDD
,
–0.4
V
DD
0.4
0.4
2.4
1.3
–1.3
V
DD
0.4
–0.4
V
DD
.
V
V
V
V
Doc ID 15060 Rev 5 59/87
Page 60
Electrical characteristics STM32F103x4, STM32F103x6
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 27 and
Ta bl e 3 7 , respectively.
Unless otherwise specified, the parameters given in Ta bl e 3 7 are derived from tests performed under the ambient temperature and V in Ta bl e 9 .
Table 37. I/O AC characteristics
(1)
supply voltage conditions summarized
DD
MODEx[1:0]
bit value
10
01
11
Symbol Parameter Conditions Min Max Unit
(1)
f
max(IO)out
t
f(IO)out
t
r(IO)out
f
max(IO)out
t
f(IO)out
t
r(IO)out
F
max(IO)out
t
f(IO)out
t
r(IO)out
Maximum frequency
Output high to low level fall time
Output low to high level rise time
Maximum frequency
Output high to low level fall time
Output low to high level rise time
Maximum frequency
Output high to low level fall time
Output low to high level rise time
(2)
CL = 50 pF, V
= 50 pF, V
C
L
(2)
CL = 50 pF, V
= 50 pF, V
C
L
CL = 30 pF, V
(2)
= 50 pF, VDD = 2.7 V to 3.6 V 30 MHz
C
L
= 50 pF, V
C
L
= 30 pF, V
C
L
= 50 pF, V
C
L
CL = 50 pF, V
= 30 pF, V
C
L
CL = 50 pF, V
CL = 50 pF, V
= 2 V to 3.6 V 2 MHz
DD
= 2 V to 3.6 V
DD
= 2 V to 3.6 V 10 MHz
DD
= 2 V to 3.6 V
DD
= 2.7 V to 3.6 V 50 MHz
DD
= 2 V to 2.7 V 20 MHz
DD
= 2.7 V to 3.6 V 5
DD
= 2.7 V to 3.6 V 8
DD
= 2 V to 2.7 V 12
DD
= 2.7 V to 3.6 V 5
DD
= 2.7 V to 3.6 V 8
DD
= 2 V to 2.7 V 12
DD
125
125
25
25
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
Pulse width of
-t
EXTIpw
external signals detected by the EXTI
10 ns
controller
1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a description of GPIO Port configuration register.
2. The maximum frequency is defined in Figure 27.
3. Guaranteed by design, not tested in production.
ns
ns
ns
60/87 Doc ID 15060 Rev 5
Page 61
STM32F103x4, STM32F103x6 Electrical characteristics
Figure 27. I/O AC characteristics definition
External
Output
on 50pF
Maximum frequency is achieved if (tr + tf) 2/3)T and if the duty cycle is (45-55%)
t
r(IO)out

5.3.14 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R
Unless otherwise specified, the parameters given in Ta bl e 3 8 are derived from tests performed under the ambient temperature and V in Ta bl e 9 .
Table 38. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
V
IL(NRST)
V
IH(NRST)
V
hys(NRST)
R
V
F(NRST)
V
NF(NRST)
1. Guaranteed by design, not tested in production.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution
to the series resistance must be minimum (~10% order).
(see Ta bl e 3 5 ).
PU
(1)
(1)
PU
(1)
(1)
NRST Input low level voltage –0.5 0.8
NRST Input high level voltage 2 VDD+0.5
NRST Schmitt trigger voltage hysteresis
Weak pull-up equivalent resistor
NRST Input filtered pulse 100 ns
NRST Input not filtered pulse 300 ns
90%
50%
10%
when loaded by 50 pF
(2)
10 %
50%
90%
t
r(IO)out
T
supply voltage conditions summarized
DD
200 mV
V
IN
= V
SS
30 40 50 kΩ
ai14131
V
Doc ID 15060 Rev 5 61/87
Page 62
Electrical characteristics STM32F103x4, STM32F103x6
Figure 28. Recommended NRST pin protection
V
(2)
DD
R
PU
Filter
Internal reset
External reset circuit
(1)
NRST
0.1 µF
STM32F10x
ai14132d
2. The reset network protects the device against parasitic resets.
3. The user must ensure that the level on the NRST pin can go below the V
Table 38. Otherwise the reset will not be taken into account by the device.
max level specified in
IL(NRST)

5.3.15 TIM timer characteristics

The parameters given in Tab l e 3 9 are guaranteed by design.
Refer to Section 5.3.12: I/O current injection characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).
Table 39. TIMx
(1)
characteristics
Symbol Parameter Conditions Min Max Unit
1
t
res(TIM)
f
EXT
Res
t
COUNTER
Timer resolution time
f
Timer external clock frequency on CH1 to CH4
Timer resolution 16 bit
TIM
0
f
TIMxCLK
16-bit counter clock period
TIMxCLK
= 72 MHz
= 72 MHz
13.9 ns
f
TIMxCLK
036MHz
1 65536 when internal clock is selected
f
TIMxCLK
= 72 MHz
0.0139 910 µs
/2
65536 × 65536
t
MAX_COUNT
1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers.
Maximum possible count
f
TIMxCLK
= 72 MHz
59.6 s
t
TIMxCLK
MHz
t
TIMxCLK
t
TIMxCLK
62/87 Doc ID 15060 Rev 5
Page 63
STM32F103x4, STM32F103x6 Electrical characteristics

5.3.16 Communications interfaces

I2C interface characteristics
Unless otherwise specified, the parameters given in Ta bl e 4 0 are derived from tests performed under the ambient temperature, f conditions summarized in Ta bl e 9 .
2
The STM32F103xx performance line
2
I
C communication protocol with the following restrictions: the I/O pins SDA and SCL are
I
C interface meets the requirements of the standard
mapped to are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V
2
The I
C characteristics are described in Ta b le 4 0. Refer also to Section 5.3.12: I/O current
injection characteristics
(SDA and SCL)
Table 40. I2C characteristics
Symbol Parameter
.
is disabled, but is still present.
DD
for more details on the input/output alternate function characteristics
Standard mode I
Min Max Min Max
frequency and VDD supply voltage
PCLK1
2C(1)
Fast mode I2C
(1)(2)
Unit
t
w(SCLL)
t
w(SCLH)
t
su(SDA)
t
h(SDA)
t
r(SDA)
t
r(SCL)
t
f(SDA)
t
f(SCL)
t
h(STA)
t
su(STA)
t
su(STO)
t
w(STO:STA)
C
Guaranteed by design, not tested in production.
1.
2. f
PCLK1
4 MHz to achieve fast mode I maximum I2C fast mode clock.
The maximum hold time of the Start condition has only to be met if the interface does not stretch the low
3. period of SCL signal.
The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the
4. undefined region of the falling edge of SCL.
SCL clock low time 4.7 1.3
SCL clock high time 4.0 0.6
SDA setup time 250 100
SDA data hold time 0
(3)
SDA and SCL rise time 1000 20 + 0.1C
(4)
0
900
300
b
SDA and SCL fall time 300 300
Start condition hold time 4.0 0.6
Repeated Start condition setup time
4.7 0.6
Stop condition setup time 4.0 0.6 μs
Stop to Start condition time (bus free)
Capacitive load for each bus
b
line
must be higher than 2 MHz to achieve standard mode I2C frequencies. It must be higher than
2
C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz
4.7 1.3 μs
400 400 pF
µs
(3)
ns
µs
Doc ID 15060 Rev 5 63/87
Page 64
Electrical characteristics STM32F103x4, STM32F103x6
ai14133d
Start
SDA
100 Ω
4.7kΩ
I²C bus
4.7kΩ
100 Ω
V
DD
V
DD
STM32F10x
SDA
SCL
t
f(SDA)
t
r(SDA)
SCL
t
h(STA)
t
w(SCLH)
t
w(SCLL)
t
su(SDA)
t
r(SCL)
t
f(SCL)
t
h(SDA)
Start repeated
Start
t
su(STA)
t
su(STO)
Stop
t
su(STO:STA)
Figure 29. I2C bus AC waveforms and measurement circuit
Measurement points are done at CMOS levels: 0.3V
1.
Table 41. SCL frequency (f
f
(kHz)
SCL
= 36 MHz.,VDD = 3.3 V)
PCLK1
and 0.7VDD.
DD
400 0x801E
300 0x8028
200 0x803C
100 0x00B4
50 0x0168
20 0x0384
1. RP = External pull-up resistance, f
2. For speeds around 200 kHz, the tolerance on the achieved speed is of tolerance on the achieved speed components used to design the application.
= I2C speed,
SCL
±2%. These variations depend on the accuracy of the external
(1)(2)
I2C_CCR value
R
= 4.7 kΩ
P
±5%. For other speed ranges, the
64/87 Doc ID 15060 Rev 5
Page 65
STM32F103x4, STM32F103x6 Electrical characteristics
SPI interface characteristics
Unless otherwise specified, the parameters given in Ta bl e 4 2 are derived from tests performed under the ambient temperature, f conditions summarized in Ta bl e 9 .
Refer to Section 5.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Table 42. SPI characteristics
Symbol Parameter Conditions Min Max Unit
frequency and VDD supply voltage
PCLKx
f
SCK
1/t
c(SCK)
t
r(SCK)
t
f(SCK)
DuCy(SCK)
t
su(NSS)
t
h(NSS)
t
w(SCKH)
t
w(SCKL)
t
su(MI)
t
su(SI)
t
h(MI)
t
h(SI)
t
a(SO)
t
dis(SO)
t
v(SO)
t
v(MO)
t
h(SO)
t
h(MO)
1. Based on characterization, not tested in production.
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z
SPI clock frequency
SPI clock rise and fall time
SPI slave input clock duty cycle
(1)
NSS setup time Slave mode 4t
(1)
NSS hold time Slave mode 2t
(1)
SCK high and low time
(1)
(1)
Data input setup time
(1)
(1)
Data input hold time
(1)
Data output access
(1)(2)
time
Data output disable
(1)(3)
time
(1)
Data output valid time Slave mode (after enable edge) 25
(1)
Data output valid time Master mode (after enable edge) 5
(1)
Data output hold time
(1)
Master mode 18
MHz
Slave mode 18
Capacitive load: C = 30 pF 8 ns
Slave mode 30 70 %
PCLK
PCLK
Master mode, f presc = 4
= 36 MHz,
PCLK
50 60
Master mode 5
Slave mode 5
Master mode 5
Slave mode 4
Slave mode, f
= 20 MHz 0 3t
PCLK
PCLK
Slave mode 2 10
Slave mode (after enable edge) 15
Master mode (after enable edge) 2
ns
Doc ID 15060 Rev 5 65/87
Page 66
Electrical characteristics STM32F103x4, STM32F103x6
ai14134c
SCK Input
CPHA=0
MOSI
INPUT
MISO
OUT PUT
CPHA=0
MS B O U T
MSB IN
BI T6 O UT
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
NSS input
t
SU(NSS)
t
c(SCK)
t
h(NSS)
t
a(SO)
t
w(SCKH)
t
w(SCKL)
t
v(SO)
t
h(SO)
t
r(SCK)
t
f(SCK)
t
dis(SO)
t
su(SI)
t
h(SI)
ai14135
SCK Input
CPHA=1
MOSI
INPUT
MISO
OUT PUT
CPHA=1
MS B O U T
MSB IN
BI T6 O UT
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
t
SU(NSS)
t
c(SCK)
t
h(NSS)
t
a(SO)
t
w(SCKH)
t
w(SCKL)
t
v(SO)
t
h(SO)
t
r(SCK)
t
f(SCK)
t
dis(SO)
t
su(SI)
t
h(SI)
NSS input
Figure 30. SPI timing diagram - slave mode and CPHA = 0
Figure 31. SPI timing diagram - slave mode and CPHA = 1
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7V
DD
.
(1)
66/87 Doc ID 15060 Rev 5
Page 67
STM32F103x4, STM32F103x6 Electrical characteristics
ai14136
SCK Input
CPHA=0
MOSI
OUTUT
MISO
INP UT
CPHA=0
MSBIN
M SB OUT
BIT6 IN
LSB OUT
LSB IN
CPOL=0
CPOL=1
B I T1 OUT
NSS input
t
c(SCK)
t
w(SCKH)
t
w(SCKL)
t
r(SCK)
t
f(SCK)
t
h(MI)
High
SCK Input
CPHA=1
CPHA=1
CPOL=0
CPOL=1
t
su(MI)
t
v(MO)
t
h(MO)
Figure 32. SPI timing diagram - master mode
(1)
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7V
DD
.
USB characteristics
The USB interface is USB-IF certified (Full Speed).
Table 43. USB startup time
Symbol Parameter Max Unit
t
STARTUP
1. Guaranteed by design, not tested in production.
(1)
USB transceiver startup time 1 µs
Doc ID 15060 Rev 5 67/87
Page 68
Electrical characteristics STM32F103x4, STM32F103x6
ai14137
t
f
Differen tial
data lines
V
SS
V
CR S
t
r
Crossover
points
Table 44. USB DC electrical characteristics
Symbol Parameter Conditions Min.
(1)
Input levels
V
V
DI
CM
V
SE
USB operating voltage
DD
(4)
Differential input sensitivity I(USBDP, USBDM) 0.2
(4)
Differential common mode range Includes V
(4)
Single ended receiver threshold 1.3 2.0
(2)
range 0.8 2.5
DI
3.0
(3)
Output levels
SS
(5)
(5)
2.8 3.6
V
V
1. All the voltages are measured from the local ground potential.
2. To be compliant with the USB 2.0 full-speed electrical specification, the USBDP (D+) pin should be pulled up with a 1.5 k
3. The STM32F103xx USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7-to-3.0 V V
4. Guaranteed by design, not tested in production.
R
5.
Static output level low RL of 1.5 kΩ to 3.6 V
OL
Static output level high RL of 15 kΩ to V
OH
Ω resistor to a 3.0-to-3.6 V voltage range.
DD
is the load connected on the USB drivers
L
voltage range.
(1)
Max.
3.6 V
0.3
Unit
VV
V
Figure 33. USB timings: definition of data signal rise and fall time
Table 45. USB: Full-speed electrical characteristics
Symbol Parameter Conditions Min Max Unit
Driver characteristics
t
t
t
rfm
V
CRS
1. Guaranteed by design, not tested in production.
Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB
2. Specification - Chapter 7 (version 2.0).
Rise time
r
Fall time
f
Rise/ fall time matching tr/t
Output signal crossover voltage 1.3 2.0 V
(2)
(2)
(1)
CL = 50 pF
420ns
CL = 50 pF 4 20 ns
f
90 110 %

5.3.17 CAN (controller area network) interface

Refer to Section 5.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).
68/87 Doc ID 15060 Rev 5
Page 69
STM32F103x4, STM32F103x6 Electrical characteristics

5.3.18 12-bit ADC characteristics

Unless otherwise specified, the parameters given in Ta bl e 4 6 are derived from tests performed under the ambient temperature, f conditions summarized in Ta bl e 9 .
Note: It is recommended to perform a calibration after each power-up.
Table 46. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
frequency and V
PCLK2
supply voltage
DDA
V
DDA
V
REF+
I
VREF
f
ADC
f
S
f
TRIG
V
AIN
R
AIN
R
ADC
C
ADC
t
CAL
t
lat
t
latr
t
S
t
STAB
t
CONV
1. Based on characterization, not tested in production.
2. Guaranteed by design, not tested in production.
3. In devices delivered in VFQFPN and LQFP packages, V connected to V connected to V
4. For external triggers, a delay of 1/f
Power supply 2.4 3.6 V
(3)
Positive reference voltage 2.4 V
(3)
Current on the V
input pin 160
REF
ADC clock frequency 0.6 14 MHz
(2)
Sampling rate 0.05 1 MHz
f
= 14 MHz 823 kHz
(2)
External trigger frequency
(3)
Conversion voltage range
(2)
External input impedance
(2)
Sampling switch resistance 1 kΩ
Internal sample and hold
(2)
ADC
See Equation 1 and
Ta bl e 4 7 for details
capacitor
f
= 14 MHz 5.9 µs
(2)
Calibration time
Injection trigger conversion
(2)
ADC
= 14 MHz 0.214 µs
f
ADC
latency
= 14 MHz 0.143 µs
f
Regular trigger conversion
(2)
ADC
latency
f
= 14 MHz 0.107 17.1 µs
(2)
Sampling time
(2)
Power-up tim e 0 0 1 µs
Total conversion time
(2)
ADC
f
= 14 MHz 1 18 µs
ADC
(including sampling time)
. Devices that come in the TFBGA64 package have a V
SSA
), see Table 5 and Figure 4.
SSA
must be added to the latency specified in Table 46.
PCLK2
0 (V
ground)
14 to 252 (t successive approximation)
is internally connected to V
REF+
REF+
DDA
(1)
220
(1)
17 1/f
tied to
SSA
V
REF+
50 kΩ
8pF
83 1/f
(4)
3
(4)
2
1.5 239.5 1/f
for sampling +12.5 for
S
pin but no V
DDA
and V
REF-
REF-
pin (V
is internally
is internally
REF-
1/f
1/f
1/f
V
µA
ADC
V
ADC
ADC
ADC
ADC
ADC
Doc ID 15060 Rev 5 69/87
Page 70
Electrical characteristics STM32F103x4, STM32F103x6
R
AIN
T
S
f
ADCCADC
2
N2+
()ln××
------------------------------------------------------------- - R
ADC
<
Equation 1: R
max formula:
AIN
The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
Table 47. R
Ts (cycles) tS (µs) R
max for f
AIN
= 14 MHz
ADC
(1)
max (kΩ)
AIN
1.5 0.11 0.4
7.5 0.54 5.9
13.5 0.96 11.4
28.5 2.04 25.2
41.5 2.96 37.2
55.5 3.96 50
71.5 5.11 NA
239.5 17.1 NA
1. Based on characterization, not tested in production.
Table 48. ADC accuracy - limited test conditions
Symbol Parameter Test conditions Typ Max
(1) (2)
(3)
Unit
ET Total unadjusted error
EO Offset error ±1 ±1.5
EG Gain error ±0.5 ±1.5
ED Differential linearity error ±0.7 ±1
EL Integral linearity error ±0.8 ±1.5
1. ADC DC accuracy values are measured after internal calibration.
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non­robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I affect the ADC accuracy.
3. Based on characterization, not tested in production.
f
= 56 MHz,
PCLK2
f
= 14 MHz, R
ADC
= 3 V to 3.6 V
V
DDA
< 10 kΩ,
AIN
TA = 25 °C Measurements made after
ADC calibration
and ΣI
INJ(PIN)
±1.3 ±2
in Section 5.3.12 does not
INJ(PIN)
LSB
70/87 Doc ID 15060 Rev 5
Page 71
STM32F103x4, STM32F103x6 Electrical characteristics
E
O
E
G
1LSB
IDEAL
(1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line
E
T
=Total Unadjusted Error: maximum deviation
between the actual and the ideal transfer curves.
E
O
=Offset Error: deviation between the first actual
transition and the first ideal one.
E
G
=Gain Error: deviation between the last ideal
transition and the last actual one.
E
D
=Differential Linearity Error: maximum deviation
between actual steps and the ideal one.
E
L
=Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.
4095
4094
4093
5
4
3
2
1
0
7
6
1234567
4093 4094 4095 4096
(1)
(2)
E
T
E
D
E
L
(3)
V
DDA
V
SSA
ai14395b
V
REF+
4096
(or depending on package)]
V
DDA
4096
[1LSB
IDEAL =
Table 49. ADC accuracy
Symbol Parameter Test conditions Typ Max
ET Total unadjusted error
EO Offset error ±1.5 ±2.5
EG Gain error ±1.5 ±3
ED Differential linearity error ±1 ±2
(1) (2) (3)
f
= 56 MHz,
PCLK2
= 14 MHz, R
f
ADC
V
= 2.4 V to 3.6 V
DDA
< 10 kΩ,
AIN
Measurements made after ADC calibration
(4)
±2 ±5
EL Integral linearity error ±1.5 ±3
1. ADC DC accuracy values are measured after internal calibration.
2. Better performance could be achieved in restricted V
3. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non­robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I affect the ADC accuracy.
, frequency and temperature ranges.
DD
INJ(PIN)
and ΣI
in Section 5.3.12 does not
INJ(PIN)
4. Based on characterization, not tested in production.
Figure 34. ADC accuracy characteristics
Unit
LSB
Doc ID 15060 Rev 5 71/87
Page 72
Electrical characteristics STM32F103x4, STM32F103x6
ai14150c
STM32F103xx
V
DD
AINx
IL±1 µA
0.6 V
V
T
R
AIN
(1)
C
parasitic
V
AIN
0.6 V
V
T
R
ADC
(1)
12-bit
converter
C
ADC
(1)
Sample and hold ADC converter
6
2%&
SEENOTE
34-&XX
6
$$!
6
33!
&N&
&N&
AI
Figure 35. Typical connection diagram using the ADC
1. Refer to Tab l e 4 6 for the values of R
2. C
represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
parasitic
pad capacitance (roughly 7 pF). A high C this, f
should be reduced.
ADC
AIN
, R
parasitic
ADC
and C
ADC
.
value will downgrade conversion accuracy. To remedy
General PCB design guidelines
Power supply decoupling should be performed as shown inFigure 36 or Figure 37, depending on whether V ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 36. Power supply and reference decoupling (V
is connected to V
REF+
or not. The 10 nF capacitors should be
DDA
not connected to V
REF+
DDA
)
1. The V
input is available only on the TFBGA64 package.
REF+
72/87 Doc ID 15060 Rev 5
Page 73
STM32F103x4, STM32F103x6 Electrical characteristics
6
$$!62%&
SEENOTE
34-&X
&N&
6
33!
AI
Figure 37. Power supply and reference decoupling(V
1. The V
input is available only on the TFBGA64 package.
REF+

5.3.19 Temperature sensor characteristics

Table 50. TS characteristics
connected to V
REF+
DDA
)
Symbol Parameter Min Typ Max Unit
(1)
T
L
Avg_Slope
(1)
V
25
(2)
t
START
S_temp
(3)(2)
T
1. Based on characterization, not tested in production.
2. Guaranteed by design, not tested in production.
3. Shortest sampling time can be determined in the application by multiple iterations.
V
linearity with temperature
SENSE
(1)
Average slope 4.0 4.3 4.6 mV/°C
±1 ±2
Voltage at 25 °C 1.34 1.43 1.52 V
Startup time 4 10 µs
ADC sampling time when reading the temperature
17.1 µs
°C
Doc ID 15060 Rev 5 73/87
Page 74
Package characteristics STM32F103x4, STM32F103x6

6 Package characteristics

6.1 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK
®
packages, depending on their level of environmental compliance. ECOPACK®
®
is an ST trademark.
74/87 Doc ID 15060 Rev 5
Page 75
STM32F103x4, STM32F103x6 Package characteristics
Seating plane
ddd C
C
A3
A1
AA2
Pin # 1 ID R = 0.20
ZR_ME
E2
b
19
10
18
27
28
36
19
D2
E
D
e
L
0.30
6.30
0.50
1.00
4.30
4.30
4.80
4.80
4.10
4.10
1
28
9
19
ai14870b
36
27
18
10
0.75
Figure 38. VFQFPN36 6 x 6 mm, 0.5 mm pitch,
package outline
(1)
Figure 39. Recommended footprint
(dimensions in mm)
1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead solder joint life.

Table 51. VFQFPN36 6 x 6 mm, 0.5 mm pitch, package mechanical data

millimeters inches
Symbol
Min Typ Max Min Typ Max
(1)(2)
(1)
A 0.800 0.900 1.000 0.0315 0.0354 0.0394
A1 0.020 0.050 0.0008 0.0020
A2 0.650 1.000 0.0256 0.0394
A3 0.250 0.0098
b 0.180 0.230 0.300 0.0071 0.0091 0.0118
D 5.875 6.000 6.125 0.2313 0.2362 0.2411
D2 1.750 3.700 4.250 0.0689 0.1457 0.1673
E 5.875 6.000 6.125 0.2313 0.2362 0.2411
E2 1.750 3.700 4.250 0.0689 0.1457 0.1673
e 0.450 0.500 0.550 0.0177 0.0197 0.0217
L 0.350 0.550 0.750 0.0138 0.0217 0.0295
ddd 0.080 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Doc ID 15060 Rev 5 75/87
Page 76
Package characteristics STM32F103x4, STM32F103x6
Seating
Plane
C
A3
A1
A2
A
ddd C
Pin no. 1 ID
R = 0.20
Bottom View
1
48
e
E
L
L
12
13
D2
b
24
25
b
E2
36
37
e
D
V0_ME
0.50
7.30
0.75
5.80
5.80
6.20
6.20
5.60
5.60
13
1
24
37
ai15799
12
48
36
25
0.55
0.30
0.20
Figure 40. VFQFPN48 7 x 7 mm, 0.5 mm pitch, package
outline
(1)
Figure 41. Recommended footprint
(dimensions in mm)
(1)(2)
1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead solder joint life.

Table 52. VFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data

millimeters inches
(1)
Symbol
Min Typ Max Min Typ Max
A 0.800 0.900 1.000 0.0315 0.0354 0.0394
A1 0.020 0.050 0.0008 0.0020
A2 0.650 1.000 0.0256 0.0394
A3 0.250 0.0098
b 0.180 0.230 0.300 0.0071 0.0091 0.0118
D 6.850 7.000 7.150 0.2697 0.2756 0.2815
D2 2.250 4.700 5.250 0.0886 0.1850 0.2067
E 6.850 7.000 7.150 0.2697 0.2756 0.2815
E2 2.250 4.700 5.250 0.0886 0.1850 0.2067
e 0.450 0.500 0.550 0.0177 0.0197 0.0217
L 0.300 0.400 0.500 0.0118 0.0157 0.0197
ddd 0.080 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
76/87 Doc ID 15060 Rev 5
Page 77
STM32F103x4, STM32F103x6 Package characteristics
A
A2
A1
c
L1
L
E
E1
D
D1
e
b
ai14398b
48
3249
64 17
116
1.2
0.3
33
10.3
12.7
10.3
0.5
7.8
12.7
ai14909
Figure 42. LQFP64, 10 x 10 mm, 64-pin low-profile quad
flat package outline
(1)
Figure 43. Recommended
footprint
(1)(2)
1. Drawing is not to scale.
2. Dimensions are in millimeters.

Table 53. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package mechanical data

millimeters inches
(1)
Symbol
Min Typ Max Min Typ Max
A 1.60 0.0630
A1 0.05 0.15 0.0020 0.0059
A2 1.35 1.40 1.45 0.0531 0.0551 0.0571
b 0.17 0.22 0.27 0.0067 0.0087 0.0106
c 0.09 0.20 0.0035 0.0079
D 12.00 0.4724
D1 10.00 0.3937
E 12.00 0.4724
E1 10.00 0.3937
e 0.50 0.0197
θ 3.5° 3.5°
L 0.45 0.60 0.75 0.0177 0.0236 0.0295
L1 1.00 0.0394
Number of pins
N
64
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Doc ID 15060 Rev 5 77/87
Page 78
Package characteristics STM32F103x4, STM32F103x6
A3
A4
A2
A1
A
Seating plane
B
A
D
D1
e
F
F
E1 E
e
H
G
F
E
D
C
B
A
123 45678
A1 ball pad corner
Øb (64 balls)
Bottom view
C
ME_R8

Figure 44. TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package outline

1. Drawing is not to scale.
Table 54. TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package
mechanical data
millimeters inches
Symbol
Min Typ Max Min Typ Max
A 1.200 0.0472
A1 0.150 0.0059
A2 0.785 0.0309
A3 0.200 0.0079
A4 0.600 0.0236
b 0.250 0.300 0.350 0.0098 0.0118 0.0138
D 4.850 5.000 5.150 0.1909 0.1969 0.2028
D1 3.500 0.1378
E 4.850 5.000 5.150 0.1909 0.1969 0.2028
E1 3.500 0.1378
e 0.500 0.0197
F 0.750 0.0295
ddd 0.080 0.0031
eee 0.150 0.0059
fff 0.050 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
78/87 Doc ID 15060 Rev 5
(1)
Page 79
STM32F103x4, STM32F103x6 Package characteristics

Figure 45. Recommended PCB design rules for pads (0.5 mm pitch BGA)

Dpad
Dsm
1. Non solder mask defined (NSMD) pads are recommended
2. 4 to 6 mils solder paste screen printing process
Pitch
D pad 0.27 mm
Dsm
Solder paste
0.5 mm
0.35 mm typ (depends on the soldermask registration tolerance)
0.27 mm aperture diameter
ai15495
Doc ID 15060 Rev 5 79/87
Page 80
Package characteristics STM32F103x4, STM32F103x6
D
D1
D3
A1
L1
L
k
c
b
ccc
C
A1
A2A
C
Seating plane
0.25 mm
Gage plane
E3
E1
E
12
13
24
25
48
1
36
37
Pin 1 identification
5B_ME
9.70
5.80
7.30
12
24
0.20
7.30
1
37
36
1.20
5.80
9.70
0.30
25
1.20
0.50
ai14911b
1348
Figure 46. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat
package outline
(1)
Figure 47. Recommended
footprint
1. Drawing is not to scale.
2. Dimensions are in millimeters.

Table 55. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package mechanical data

millimeters inches
(1)
Symbol
Min Typ Max Min Typ Max
(1)(2)
A 1.600 0.0630
A1 0.050 0.150 0.0020 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 0.200 0.0035 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 5.500 0.2165
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 5.500 0.2165
e 0.500 0.0197
1. Values in inches are converted from mm and rounded to 4 decimal digits.
80/87 Doc ID 15060 Rev 5
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 1.000 0.0394
k 0°3.5°7° 0°3.5°7°
ccc 0.080 0.0031
Page 81
STM32F103x4, STM32F103x6 Package characteristics

6.2 Thermal characteristics

The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 9: General operating conditions on page 32.
The maximum chip-junction temperature, T
max, in degrees Celsius, may be calculated
J
using the following equation:
T
max = TA max + (PD max × ΘJA)
J
Where:
T
Θ
P
P
max is the maximum ambient temperature in °C,
A
is the package junction-to-ambient thermal resistance, in °C/W,
JA
max is the sum of P
D
max is the product of I
INT
max and P
INT
DD
max (PD max = P
I/O
INT
and VDD, expressed in Watts. This is the maximum chip
max + P
I/O
max),
internal power.
P
max represents the maximum power dissipation on output pins where:
I/O
P
max = Σ (VOL × IOL) + Σ((V
I/O
taking into account the actual V
OL
– VOH) × IOH),
DD
/ IOL and VOH / I
of the I/Os at low and high level in the
OH
application.

Table 56. Package thermal characteristics

Symbol Parameter Value Unit
Thermal resistance junction-ambient
TFBGA64 - 5 × 5 mm / 0.5 mm pitch
Thermal resistance junction-ambient
LQFP64 - 10 × 10 mm / 0.5 mm pitch
65
45
Θ
Thermal resistance junction-ambient
JA
LQFP48 - 7 × 7 mm / 0.5 mm pitch
Thermal resistance junction-ambient
VFQFPN 48 -7 × 7 mm / 0.5 mm pitch
Thermal resistance junction-ambient
VFQFPN 36 - 6 × 6 mm / 0.5 mm pitch

6.2.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.
55
16
18
°C/W
Doc ID 15060 Rev 5 81/87
Page 82
Package characteristics STM32F103x4, STM32F103x6

6.2.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in Table 57: Ordering information scheme.
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.
As applications do not commonly use the STM32F103xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.
The following examples show how to calculate the temperature range needed for a given application.
Example 1: High-performance application
Assuming the following application conditions:
Maximum ambient temperature T I
= 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low
DDmax
level with I at low level with I
P
INTmax =
P
IOmax =
This gives: P
P
Dmax =
Thus: P
Dmax
= 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output
OL
= 20 mA, VOL= 1.3 V
OL
50 mA × 3.5 V= 175 mW
20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW
= 175 mW and P
INTmax
175 + 272 = 447 mW
= 447 mW
Using the values obtained in Tab le 5 6 T
For LQFP64, 45 °C/W
T
= 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.115 °C = 102.115 °C
Jmax
This is within the range of the suffix 6 version parts (–40 < T
In this case, parts must be ordered at least with the temperature range suffix 6 (see
Table 57: Ordering information scheme).
= 82 °C (measured according to JESD51-2),
Amax
= 272 mW:
IOmax
is calculated as follows:
Jmax
< 105 °C).
J
Example 2: High-temperature application
Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature T specified range.
Assuming the following application conditions:
Maximum ambient temperature T I
= 20 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low
DDmax
level with I
P
INTmax =
P
IOmax =
This gives: P
P
Dmax = 70 +
Thus: P
82/87 Doc ID 15060 Rev 5
Dmax
= 8 mA, VOL= 0.4 V
OL
20 mA × 3.5 V= 70 mW
20 × 8 mA × 0.4 V = 64 mW
= 70 mW and P
INTmax
64 = 134 mW
= 134 mW
= 115 °C (measured according to JESD51-2),
Amax
= 64 mW:
IOmax
remains within the
J
Page 83
STM32F103x4, STM32F103x6 Package characteristics
0
100
200
300
400
500
600
700
65 75 85 95 105 115 125 135
TA (°C)
P
D
(mW)
Suffix 6
Suffix 7
Using the values obtained in Tab le 5 6 T
is calculated as follows:
Jmax
For LQFP64, 45 °C/W
T
= 115 °C + (45 °C/W × 134 mW) = 115 °C + 6.03 °C = 121.03 °C
Jmax
This is within the range of the suffix 7 version parts (–40 < T
< 125 °C).
J
In this case, parts must be ordered at least with the temperature range suffix 7 (see
Table 57: Ordering information scheme).
Figure 48. LQFP64 P
max vs. T
D
A
Doc ID 15060 Rev 5 83/87
Page 84
Ordering information scheme STM32F103x4, STM32F103x6

7 Ordering information scheme

Table 57. Ordering information scheme

Example: STM32 F 103 C 4 T 7 A xxx
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = general-purpose
Device subfamily
103 = performance line
Pin count
T = 36 pins C = 48 pins R = 64 pins
Flash memory size
4 = 16 Kbytes of Flash memory 6 = 32 Kbytes of Flash memory
Package
H = BGA T = LQFP U = VFQFPN
Temperature range
6 = Industrial temperature range, –40 to 85 °C. 7 = Industrial temperature range, –40 to 105 °C.
Internal code
“A” or blank
Options
xxx = programmed parts TR = tape and real
1. For STM32F103x6 devices with a blank Internal code, please refer to the STM32F103x8/B datasheet available from the ST website: www.st.com.
(1)
For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.
84/87 Doc ID 15060 Rev 5
Page 85
STM32F103x4, STM32F103x6 Revision history

8 Revision history

Table 58. Document revision history
Date Revision Changes
22-Sep-2008 1 Initial release.
“96-bit unique ID” feature added and I/O information clarified on page 1. Timers specified on page 1 (Motor control capability mentioned).
Table 4: Timer feature comparison added.
PB4, PB13, PB14, PB15, PB3/TRACESWO moved from Default column to Remap column, plus small additional changes in Ta b le 5 :
Low-density STM32F103xx pin definitions. Figure 8: Memory map modified.
REF-
removed:
max values
HSI
30-Mar-2009 2
References to V – Figure 1: STM32F103xx performance line block diagram modified, – Figure 11: Power supply scheme modified – Figure 34: ADC accuracy characteristics modified – Note modified in Table 49: ADC accuracy.
Table 20: High-speed external user clock characteristics and Ta bl e 2 1 : Low-speed external user clock characteristics modified.
Note modified in Table 13: Maximum current consumption in Run
mode, code with data processing running from Flash and Table 15: Maximum current consumption in Sleep mode, code running from Flash or RAM.
Figure 17 shows a typical curve (title modified). ACC
modified in Table 24: HSI oscillator characteristics. TFBGA64 package added (see Ta bl e 5 4 and Tab le 4 4 ). Small text changes.
Doc ID 15060 Rev 5 85/87
Page 86
Revision history STM32F103x4, STM32F103x6
Table 58. Document revision history (continued)
Date Revision Changes
Note 5 updated and Note 4 added in Table 5: Low-density STM32F103xx pin definitions.
24-Sep-2009 3
20-May-2010 4
19-Apr-2011 5
V
voltage. Typical I maximum current consumptions in Stop and Standby modes. Figure 15: Typical current consumption on VBAT with RTC on versus temperature at different VBAT values added.
f
HSE_ext
characteristics.
C
characteristics and Table 23: LSE oscillator characteristics (fLSE =
32.768 kHz), notes modified and moved below the tables. Tab le 2 4: HS I oscillator characteristics modified. Conditions removed from Ta b le 2 6 : Low-power mode wakeup timings.
Note 1 modified below Figure 21: Typical application with an 8 MHz crystal.
Figure 28: Recommended NRST pin protection modified.
Jitter added to Table 27: PLL characteristics on page 51. IEC 1000 standard updated to IEC 61000 and SAE J1752/3 updated to
IEC 61967-2 in Section 5.3.10: EMC characteristics on page 52. C
R Small text changes.
Added VFQFPN48 package. Updated note 2 below Table 40: I2C characteristics Updated Figure 29: I2C bus AC waveforms and measurement circuit Updated Figure 28: Recommended NRST pin protection Updated Section 5.3.12: I/O current injection characteristics
Updated footnotes below Table 6: Voltage characteristics on page 31 and Table 7: Current characteristics on page 32
Updated tw min in Table 20: High-speed external user clock
characteristics on page 45
Updated startup time in Table 23: LSE oscillator characteristics (fLSE =
32.768 kHz) on page 48
Added Section 5.3.12: I/O current injection characteristics Updated Section 5.3.13: I/O port characteristics
RERINT
and T
added to Table 12: Embedded internal reference
Coeff
DD_VBAT
value added in Table 16: Typical and
min modified in Table 20: High-speed external user clock
and CL2 replaced by C in Table 22: HSE 4-16 MHz oscillator
L1
and R
ADC
max values modified in Table 47: RAIN max for fADC = 14 MHz.
AIN
parameters modified in Table 46: ADC characteristics.
AIN
86/87 Doc ID 15060 Rev 5
Page 87
STM32F103x4, STM32F103x6
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 15060 Rev 5 87/87
Loading...