The STB4395(A) is a fully integrated receivertransmitter designed for CT2applications,and incorporatesall the VCO’s, synthesizers,PLLs, and
channel select logic, to make a fully functional
”single chip” radio.
The receiver isof the doublesuperhetarchitecture
and operatesfrom anaerial input (via a SAWfilter)
to bitstreamoutput to CT2 format, whilstthetransmitter operates from I/Q inputs to +13dBm at the
final frequency. A single (external)frequency reference is all that is required to give full coverage
overtherangeof800to1000MHz.Theon-offslope
of theTransmitPAisgovernedinternallytogivethe
required switch-on ramp, whilst the output can be
swiched from low to high power by means of an
externaldigital controlsignal.
Thechannelselectiscontrolled fromadigital serial
input, and allows continuous channel control from
800 to1000MHz.
The STB4395 exists in two versions:
the STB4395, which has
input/outputs, is designed to operate with the
SGS-THOMSON baseband companion part, the
ST5095. TheSTB4395Ahas a 3 wireI/Q interface
and is compatiblewith commercially available I/Q
transmitdata basebandIC’s.
I/I,Q/Q
transmit data
TQFP64
(Plastic Package)
ORDER CODE : STB4395 or STB4395A
April 1996
This is advance informationon a newproduct now in development or undergoingevaluation. Detailsare subject to change without notice.
10PACKAGE MECHANICAL DATA .........................................16
2/16
Page 3
1 - PIN DESCRIPTION
1.1 - Pin Connections
STB4395
STB4395
STB4395A
NPRGEN
PRGCLK
PRGD
NTXEN
LOCK
NQ
EN
VNOSC
VRO
VCOO
NVCOO
FLTRO
VND
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
1
2
3
4
5
6
I
7
NI
8
9
Q
10
11
12
13
14
15
16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
VPO
VRD
DO
VPD
SLTC
NTXFLT
FSH
ADJPWR
SHAPE
TXFLT
TQFP64
(from above )
VRS
VPS1
FLTRS
RF
VPRF2
VCOS
NVCOS
NRF
VPS2
VPRF1
BRF3
VNPA
BRF1
VRRF
DISCI
NSAWI
SAWI
BRF2
DISCO
VNRF
VPI
48
VNIF
47
SAWO
46
NSAWO
45
VPIF
44
NIF2O
43
IF2O
42
DEC
41
IF2I
40
NIF2I
39
NDEC
38
VRIF
37
RSSISYNCLK
36
VRI
35
VCOI
34
NVCOI
33
FLTRI
4395-01.EPS
NPRGEN
PRGCLK
PRGD
NTXEN
LOCK
REFIQ
EN
VNOSC
VRO
VCOO
NVCOO
FLTRO
FN
VND
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
1
2
3
4
5
6
I
7
8
Q
9
10
11
12
13
14
15
16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
VPO
VRD
DO
VPD
SLTC
NTXFLT
FSH
ADJPWR
SHAPE
TXFLT
TQFP64
(from above )
VRS
VPS1
FLTRS
RF
VPRF2
VCOS
NVCOS
NRF
VPS2
VPRF1
BRF3
VNPA
BRF1
VRRF
DISCI
NSAWI
SAWI
BRF2
DISCO
VNRF
VPI
48
VNIF
47
SAWO
46
NSAWO
45
VPIF
44
NIF2O
43
IF2O
42
DEC
41
IF2I
40
NIF2I
39
NDEC
38
VRIF
37
RSSISYNCLK
36
VRI
35
VCOI
34
NVCOI
33
FLTRI
4395-02.EPS
3/16
Page 4
STB4395
1 - PIN DESCRIPTION(continued)
1.2 - Pin List
PinNameDescription
1NPRGENSerial DataEnable
2PRGCLKSerial DataClock
3PRGDSerial Data Input
4NTXENReceive-Transmit Switch
5LOCKVCO Lock Detect-all 3 PLL
6II - Transmit Quadrature Input
7NII - Transmit Quadrature InputSTB4395 only
8NQQ-Transmit Quadrature InputSTB4395 only
9QQ-Transmit QuadratureInputSTB4395 only
7REFIQIQ Reference QuadratureTransmit InputSTB4395A only
8QQ-Transmit QuadratureInputSTB4395A only
9FNForces Data Slicer Reference Time Constant To fastSTB4395A only
10ENPower Down all functions except buffer
11VNOSCNegative Power Supplyall VCO ’s
12SYNCLKSynthesizer Clock Inputf = 14.4MHz A.C. coupled
13VROPSU Regulated Negative Input for TX IF oscillator and pump circuit
14VCOOTX oscillatortank circuit
15NVCOOTX Oscillator Tank Circuit
16FLTROLoop Filterfor TX PLL
17VPOPositive Battery Supply for TX oscillator
18DOReceive Data Output
19SLTCSlicer Time Constant CapacitorC= 33nF
20FSHData Slicer Time Constant Setting
21FLTRSLoop Filter for channel PLL
22VRSRegulated Negative Supply for channel oscillator and pump circuit
23VPS1Positive Battery Input for channel oscillator and pump circuit
24NVCOSChannel Oscillator Tank Input650 to 850MHz
25VCOSChannel Oscillator Tank Input650 to 850MHz
26VPS2Positive Battery Supply Input for channel oscillator and pump circuit
27BRF3Bit Rate Filter3
28BRF1Bit Rate Filter1
29DISCIFM Discriminator Tank Circuit
30DISCOFM Discriminator Tank Circuit
31BRF2Bit Rate Filter 2
32VPIPositive Battery Supply for RXoscillator and pump circuit
33FLTRILoop Filterfor RX oscillator
34NVCOIRX Oscillator Tank Circuit
35VCOIRX OscillatorTank Circuit
36VRIRegulated Negative Supply for RX oscillator and pump circuit
37RSSIRSSI OUTPUT
38VRIFRegulated Negative Supply Output forRX sections
39NDECRX IF2 Decoupling
40NIF2IRX IF2 Filter Input
41IF2IRX IF2 Filter Input
42DECRX IF2 Decoupling
43IF2ORX IF2 Filter Output
44NIF2ORX IF2 Filter Output
45VPIFPositive Battery Supply Input for RX sections
Ext. Connectionand
Suppl. Information
4/16
Page 5
STB4395
1 - PIN DESCRIPTION(continued)
1.2 - Pin List (continued)
PinNameDescriptionExt. Connection and Suppl. Information
46NSAWORX FirstIF Amplifier Input
47SAWORX First IF AmplifierInput
48VNIFNegative Battery Supply Input for RX sections
49VNRFNegative Battery Supply Input for RF front end
50SAWIRX First Mixer Output
51NSAWIRX FirstMixer Output
52VRRFRegulated Negative Supply for RF front end
53VNPANegative Supply for power amplifier
54VPRF1Positive Battery Supply for RF front end
55NRFInput LNA/Output PA
56RFInput LNA/Ouput PA
57VPRF2Positive Battery Supply for RF front end
58ADJPWRTransmit Power AdjustR = 8.5kΩ to V
59SHAPETime Constant for PA on-off rampC = 560pF
60TXFLTBandpass Filter for TX RF
61NTXFLTBandpass Filterfor TX RF
62VPDPositive Battery Supply for digital circuitry
63VRDRegulated NegativeSupply for digital circuitry
64VNDNegative Battery Supply for digital circuitry
RRF
1.3 - Analog and Filter Pins
PinSymbolDescription
58ADJPWRTransmitter Output Power Adjust
28BRF1Bit RateFilter1
31BRF2Bit RateFilter2
27BRF3Bit RateFilter3
42, 39DEC, NDECRX IF2 Amplifier Decoupling
29DISCIFM Discriminator Tank Circuit
30DISCOFM Discriminator Tank Circuit
33FLTRILoop Filterfor RX PLL
16FLTROLoop Filterfor TX PLL
21FLTRSLoop Filterfor Channel PLL
6, 7I, NI(1)Transmit QuadratureInputs ((1)STB4395 only)
40, 41IF2I, NIF2IInputs from2nd IF Filter
43, 44IF2O, NIF2OOutputs to 2nd IF Filter
18DOReceive Data Output
20FSHData Slicer Time Constant Setting
9FNForces Data Slicer Reference Time Constant
5LOCKVCO lock detect-all 3 PLLhigh for LOCK (all three PLL’s)
3PRGDSerial Synthesizer Data Input, 16 bits wordhigh for logic 1. Input sequence:
1NPRGENSerial Synthesizer Data Enablelow to enable PRGD buffer
2PRGCLKSerial Data Clockheld high when no clocking,
10ENPower Down all functions except Enable Bufferhigh for power up, low for standby
4NTXENReceive-Transmit Switchhigh for receive, low for transmit
(Fast/Slow/Hold)
to fast(STB4395A only)
The time constantof the data slicer is set through the pins FSH and FN for the STB4395Aand through
FSH onlyfor the STB4395(FNinternally connected to High),as listedin the following table :
PIN
HighSlow, DO activeFast, DO active
FSH
TriStateFast, DO activeFast, DO active
LowHold, DO highFast, DO high
High: slow, tri-state: fast,
low: hold DO goes high on hold (see next table)
low: fast (overides FSH)
high: fast, slow or hold (set by FSH)
LO, D14, D13,...,D0. D14 is the MSB.
LO: logic 1 is low transmit power.
clocks in data on positive edge
FN
HighLow
1.5 - Power SupplyPins
PinSymbolDescription
64VNDNegative supply for digital regulators, digital input and output buffers
48VNIFNegative supply for IF regulators, data output buffer
11VNOSCNegative supply for the oscillator regulators + substrate
49VNRFNegative supply RF regulators, quadrature input buffers
53VNPANegative supply for PA
62VPDPositive supply for digital circuitry
32VPIPositive supply for receive oscillator + charge pump
45VPIFPositive supply for RX IF + baseband sections
17VPOPositive supply for transmit oscillator + charge pump
54,57VPRF1 /VPRF2 Positive supplies for RF front end
23,26VPS1/VPS2Positive supplies for ch. select oscillator + charge pump
63VRDRegulated negative supply for digital circuitry
36VRIRegulated negative supply for receive oscillator + chargepump
38VRIFRegulated negative supply for RX IF + baseband sections
13VRORegulated negative supply for transmitoscillator + chargepump
Figure 1 is a simplified block diagramof the circuit.
It shows the key on-chip and off-chip functional
blocks and signal paths. For illustration purposes
frequencies have been added representing the
situationwhenreceivingortransmittinga particular
CT2 channel.
3.1 - Receiver
The receivesignalentersthe STB4395viaaninput
SAW filter(866 MHZ for CT2 in Europe).The RF
filter changes the input signal froma singleended
to a balancedsignal,afterwhich thesignal passes
through the LNA, firstmixer, and mixer buffer. The
mixeris drivenbythechannel VCO,whichis inturn
controlledby the synthesizer.
The signal path continues via the first IF SAW
(150.4MHz),IF amplifierto the second mixer. The
second mixer stage mixes down to 1.7MHz, and
via anexternalLC IF filter,ispassed to the second
IF amplifier, where the main system gain takes
place. The RSSI output is available from this
point.The signal is then demodulated and sliced
into adata streamwhich is the binarydigital output
availableto the base band chip.
The channelselectionisprovidedbythe two external filters:the first IF SAW and a secondIF 2-pole
LC filter.
3.2 - Transmitter
The chip accepts 72Kbits/s data in an I/Q format.
The I/Qinputs pass via the I/Q modulator to the
TX mixer. The TX mixer is driven by the same
channelVCO as the receive first mixer.
Theon-offrampofthetransmit PA.iscontrolledvia
an external capacitor to give minimum spurious
responseswhenswitchingon and off.
The PA output power can be switched from full
power to -3dBm bythe channel select control
signal(bit LOof the 16bits serial word PRGD, see
table,paragraph 1.4).
3.3 - Channel Select Control Logic
All channel phase locked loops and oscillatorsare
included on chip. The channel control synthesizer
is controlledexternallyvia a 3 wire interface.
The Reference clock input of 14.4 MHz is divided
using preset counters to set the phase detector
/charge pump loops for the synthesizer/channel
select VCO,the secondreceiverVCO,and theI/Q
transmit VCO. The phase detector inputs for the
fixedfrequency VCO’sareviapresetdividersalso.
Thechannelselectcontroland TransmitPAcontrol
is viaa 16bitserialword,whichisgeneratedbythe
system controller. 15 bits of this serial word are
used for the channelinformation,and 1 bit isused
to settheoutputpowerofthetransmitPA.Theword
length is sufficient to give full channel coverage
over the range from 800 to 1000MHz with integer
multiples of 50KHz. The section ”system clock
input” gives a detaileddescription.
Not shown in the diagramare the voltageregulatorsforthe receiveLNA/firstmixer,TransmitPA,TX
mixerand the remainder of the circuit.Thereare 6
internal voltageregulators to ensure the minimum
of mutualinterference.
4 - ABSOLUTEMAXIMUM RATINGS
SymbolParameterValueUnit
Power Supply Voltage7.0V
Voltages on Input (except SYNCLK)5.9V
Voltage on Input (SYNCLK)3.0V
Voltages on Input7.0V
Voltages on Output7.0V
Voltages on Output7.0V
Voltage Out of RF or NRF in TX3.5V
Storage Temperature125
Operating Temperature40
V
8/16
V
P-VN
V
P-VIN
V
P-VIN
V
IN-VN
V
P-VOUT
N-VOUT
V
RFO
T
stg
T
oper
PP
o
C
o
C
Page 9
STB4395
5 - POWERSUPPLIES
5.1 - Supplies
The chip operates from a power supply of 3.0 to
5.5 Volts. All interface circuits to the baseband
chipsare operatedbetween these supplies.
Six on-chip regulators are included on-chip which
provide toallpartsof the circuitseparateregulated
voltagesupplies of -2.85±0.15 Voltsrelativetothe
top railfortheRFcircuitry, theIFcircuitry,thedigital
circuitry and forthe threeVCO’s.
The chipcanbe operatedin 3 modes,powerdown,
receiveandtransmit.Power down is activated taking the Pin EN to V
mode, NTXEN is takento V
. To transfer to the receive
N
.
P
The built-in regulators can be by-passed ,if so
required.
positivesupply, V
strongly recommended that the chip be mounted
on a boardwith a ground plane connected to V
Becausethe base band chip isspecifiedrelativeto
a negativeground, it is further recommendedthat
the board used is a 4 layer board with both a
positive,V
, and negative ground plane VN. This
P
has the additional advantage of providing good
high frequencydecoupling betweensupplies.
The questionas to whetherto call V
depends on which external equipment is connected. For testing the baseband section, this is
; for testing the radio chip, this is VP.Ina
V
N
product, this will dependon the application.
For clarity all voltages specified in this document
,at manypoints. Thereforeit is
P
or VNground
P
will be specified with respect to the supply, V
5.2 - Ground Plane Connections
The chiphasbeen designedto bedecoupledtothe
,that thevoltagenormallytracks with whenthe
V
N
supplyis varied.
6 - ELECTRICAL CHARACTERISTICS
SymbolParameterMin.Typ.Max.Unit
V
V
REG
IRXReceive Mode3240mA
ITXTransmit Mode6880mA
IQStandby/Power Down20µA
Power Supply Voltage (unregulated)-3-5.5V
N
Power Supply bypassing Internal Regulators (this is alsointerface supply)-2.7-3V
.
P
or
P
7 - TIMING INFORMATION
7.1 - Turn on-off Times
Timesare relative to theNTXEN transition(high to lowfor receiveto transmitand low tohigh for transmit
to receive).
SymbolParameterMin.Typ.Max.Unit
t
ON
t
RAMPON
t
TXRX
Turn-on Time From standby to receive10µs
PA Power Ramp up to reach -3dB of final power27.78µs
Switchover Time Transmit to Receive (LNA/first mixeractive)27.78µs
7.2 - Channel Select Timing
PRGCLKmust be high beforeNPRGENgoes low to programmethe synthesizer.
Figure 2 : Timingof Serial Programming Data
Order of NPRGEN &PRGD unimportant
NPRGEN
PRGCLK
PRGD
PROGRAM
CODE
Code cha nges on Rising Edge ofNPRGEN
Note thatalthoughanewprogramcodeisimplementedon the risingedgeofthe NPRGEN,thetransmitted
power level is delayeduntil at the start of thenext burst of transmission.In order to change transmitpower
during a conversation,the required power code must beseriallyloaded with the power change instruction.
4395-04.EPS
9/16
Page 10
STB4395
8 - TRANSCEIVERSECTION
SymbolDescriptionMin.Typ.Max.Unit
f
OP
P
OUTTX
8.1 - Receiver-InputSpecification
LNA, firstmixer and buffer
SymbolParameterMin.Typ.Max.Unit
Frequency Range8001000MHz
Channel Frequency Accuracy-101kHz
Modulation Deviation (synchronised with72 Kbits/s data rate)18kHz
Output Power (300Ω balanced)high power mode13dBm
Sensitivity (source 300Ωbalanced) for1E-3 BER-103-105dBm
Signal max. for1E-3 BER0dBm
Conversion voltage gain33.7 ± 1.5dB
Available conversion powergain21.5 ± 1.5dB
Input impedance300Ω //3pFOutput impedance5kΩ // 3pFSource impedance300Ω //-3pFLoad impedance5kΩ // -3pFNoise figure3.5dB
1dB compression point(input)-24dBm
Third order intercept (input)-14dBm
First IFamplifier, second mixer and buffer
SymbolParameterMin.Typ.Max.Units
Conversion Voltage Gain22.0 ± 1.5dB
Available Conversion PowerGain16.3 ± 1.5dB
Input Impedance700Ω // 2pFOutput Impedance2kΩ // 2pFSource Impedance700Ω // -2pFLoad Impedance2.8kΩ // -2pFNoise Figure6dB
1dB Compression Point (input)-32dBm
Third Order Intercept (input)-22dBm
Second IF amplifier
SymbolParameterMin.Typ.Max.Unit
Conversion Voltage Gain82 ± 3dB
Available Power Gain (to DISCO)86 ± 3dB
Bandwith (3dB)3MHz
Input Impedance10kΩ //pFOutput Impedance (to DISCO)1.1kΩ // 2FSource Impedance2.2kΩ // -2pFLoad Impedance (at DISCO)see App. Diag.
Noise Figure6dB
1dB Compression Point (input)-108dBm
10/16
Page 11
STB4395
8 - TRANSCEIVERSECTION (continued)
Dataslicertime constants
SymbolParameterMin.Typ.Max.Unit
Slow3*ms
Fast130*µs
Hold Drift Rate60mV < signal< 100mV1mV/ms
For 33nF capacitorat SLTC
8.2 - Transmitter-Output Specification
SymbolParameterMin.Typ.Max.Unit
P
OUT
TXFLT/NTXFLT output
SymbolParameterMin.Typ.Max.Units
Output Power into300Ω balanced, high powermode13dBm
LO Rejection25dBC
Output Control Switch14dB
Output Impedance2kΩ
Load Impedance (external)1.2kΩ
Voltage Out (channel frequency,application circuit of this D/S)200mV
Voltage Out (channel frequency-300.8MHz, app. cct of this D/S)80mV
PP
PP
8.3 - Synthesizer/Modulator/ChannelSelect Loop
8.3.1 - SynthesizerPhase Noise and Spurious
Phasenoise and spuriousare measuredat the RF outputs RF / NRF in transmitmode, no RF SAWfilter.
Phase Noise (Average)
Offset Frequency from carrierMin.Typ.Max.Unit
±100kHz-106dBc/Hz
±500kHz-121dBc/Hz
±1MHz-127dBc/Hz
±10MHz-145dBc/Hz
Spurious
Offset Frequency from carrierMin.Typ.Max.Unit
±50kHz-55dBc
±100kHz-63dBc
±200kHz-70dBc
±200kHz to ±10MHz-75dBc
±10MHz to ±100MHz-40dBc
8.3.2 - ChannelSelect Loop
SymbolParameterMin.Typ.Max.Unit
Frequencychannel - 150.4MHz
Frequency Steps50kHz
11/16
Page 12
STB4395
8 - TRANSCEIVERSECTION (continued)
8.3.3 - ChannelFrequency Setting
8.3.3.1 - GeneralCase
Using, from the divider ratios :andfrom the mixers :
F
=CH*FX/288F
CH
FRX= RX *FX/16F
F
= 0.5 *F
IFTX
FTX=TX*F
SYN
TX
/18
the RFfrequencyis related to the other frequenciesby :
F
RF
=FCH+F
=F
CH+FRX-FIF2
IFTX
=CH*F
=CH*F
Hence the channelselect input(15 of the 16 digits, see pin table, paragraph 1.4) serialdata stream :
CH = (F
RF
- TX*F
/18*0.5 ) * 288/F
SYN
where :
F
is the channelPLLsynthesizer frequency
CH
is the firstif frequency(receive)
F
IF1
is the secondif frequency(receive)
F
IF2
F
is thetransmitif frequency
IFTX
is the desiredrf frequency
F
RF
is thereceiveoffset PLL frequency
F
RX
isthe referenceinput frequency(on SYNCLK)
F
SYN
is thetransmitoffset PLLfrequency
F
TX
RX isthe fixed receive divide ratio of 169
TX is the fixed transmit divide ratioof 376
CH isthe channel synthesizerdivide ratiodefinedby the binary channel number,
e.g. D14,D13,...........D0
The channel synthesizer provides integral division for all numbers between 3968 and 32764 (binary
000111110000000to 1111111 11111100).Binary numbers outside this range will cause division ratios not
directly related to binarycode.
IF2=FRX-FIF1
IF1=FRF-FCH
FRF=FCH+F
/288 + TX * F
SYN
/288 + RX* F
SYN
=288* FRF/F
SYN
IFTX
SYN
SYN
SYN
/18 * 0.5
/16 -F
IF2
-3008 and CH = 288 (FRF+F
IF2
)/F
SYN
-3042
8.3.3.2 - ParticularCase. withF
F
= 152.1MHz
RX
=300.8MHz
F
TX
F
= 150.4MHz
IFTX
=150.4MHz
F
IF1
=1.7MHz
F
IF2
Then CH= 20 * F
RF
- 3008
Example: desiredRF frequency,F
= 14.4MHz :
SYN
=866.05MHz
RF
Then substitutingin : CH = 20*866.05-3008= 14313 (binary 011011111101001)
12/16
Page 13
STB4395
8 - TRANSCEIVERSECTION (continued)
8.4 - System Clock Input
SymbolDescriptionMin.Typ.Max.Unit
(*1)Reference Frequency14.4MHz
f
REF
V
S
I
IH
I
IL
(*1) limits according to ETSI specification
Input Voltage Swing, AC Coupled, referenced to V
P
Input Current-High (with respect to VN)-40µA
Input Current-low (with respect to VN)40µA
8.5 - RF/NRFReceive/TransmitPins
SymbolDescriptionMin.Typ.Max.Unit
Z
IN
Input Impedance (balanced, RX)300Ω // 3.5pF-
VSWRVSWR1.5:1-
V
IN DC Max.
P
IN AC Max.
Z
OUT
DC Input Voltage0V
AC Input Power0dBm
Output Impedance (balanced, TX)300Ω //3pF-
8.6 - Digital Input Buffers NTXEN, PRGD, NPRGEN, PRGCLK, FN
SymbolDescriptionMin.Typ.Max.Unit
V
IH
V
IL
I
IH
I
IL
TtInput Edge Transition0.11µs/V
Upper Level Input VoltageVP-1VP+0.4V
Lower Level Input VoltageVN-0.4VN+1V
Input Current High-10µA
Input Current Low40µA
VN+1V
Rise Time (load of 5pF)0.3µs/V
Fall Time (load of 5pF)0.4µs/V
8.8 - Receiver - FSHTri State Input
SymbolDescriptionMin.Typ.Max.Units
V
IH
V
IL
I
TR
I
IH
II
L
T
Upper Level Input VoltageVP-0.3VP+0.4V
Lower Level Input VoltageVN-0.4VN+1V
Tri State Current-1010µA
Input Current High-100µA
Input Current Low100µA
Input Edge Transition0.11µs/V
t
V
13/16
Page 14
STB4395
8 - TRANSCEIVERSECTION (continued)
8.9 - Receiver-RSSIOutput
The receiver output swingsbetweenV
connectedto V
SymbolDescriptionMin.Typ.Max.Unit
P
MIN
P
MAX
R
OUT
V
MIN
V
MAX
CFconversion factor-200mV/decade
. The output has to besmoothed externallywith a capacitorto VN.
N
Min RF Input Power Registered-90dBm
Max RF Input Power Registered-44dBm
Output Resistance (internallyconnected to VN)50kΩ
Voltage for P
Voltage for P
MIN
MAX
8.10 - PowerDown Buffer, EN
SymbolDescriptionMin.Typ.Max.Unit
V
IH
V
IL
I
IH
I
IL
t
ON
tO
FF
(1) assumes application circuit with 100nF on each regulator.
Upper Level Input VoltageVP-0.3VP+0.4V
Lower Level Input VoltageVN-0.4VN+0.3V
Input Current High-350µA
Input Current Low10µA
Buffer Delay to LOCK HI (1)10ms
Buffer Delay to min Supply Current (1)10ms
andVN.The bufferoutputsupplies acurrent to an on-chipresistor
P
VN+1.25VN+2V
V
VN+0.25V
N
8.11- Transmitter-DataInputs
8.11.1- I,Q,REFIQ(STB4395A)
SymbolDescriptionMin.Typ.Max.Units
R
EXT
R
INT
R
IM
V
DC
V
DC match
V
S
V
S match
External Input Resistance6.56.87kΩ
Internal Input Resistance324050kΩ
R
Matching Error1%
INT
DC Bias to R
EXT
VDCMatching Error to R
Peak Voltage Swing to R
VSMatching Error to R
EXT
EXT
EXT
0.96VHS1.04VHSV
5mV
0.450.50.56V
0.5dB
Phase(I-Q)88.59091.5degrees
VHS = (VP+VN)/2
8.11.2- I,Q,NI,NQ (STB4395)
VHS = (V
SymbolDescriptionMin.Typ.Max.Unit
R
EXT
R
INT
R
IM
V
DC
V
DC match
V
S
V
S match
)/2 - VHR = (VP+VRD)/2
P+VN
External Input Resistance2kΩ
Internal Input Resistance324050kΩ
R
Matching Error1%
INT
DC bias to R
EXT
VDCMatching Error to R
Peak Voltage Swing to R
VSMatching Error to R
EXT
EXT
EXT
VHS-0.7VHR+0.7V
12mV
0.70.750.85V
20mV
Phase (I/Ibar and Q/Qbar)88.59091.5degrees
Phase I to Ibaror Q to Qbar0degrees
14/16
Page 15
9 - APPLICATIONS
9.1 - TypicalDC connectionschemes
9.1.1 - InternalRegulator
The STB4395has built-ininternalregulatorswhich
allows 15mAto be used for externalcircuitry.The
output ofthisregulatoris -2.85Vwithrespectto the
positivesupply rail.
9.1.2 - ExternalRegulator
The STB4395will always generate its own supply
voltage(-2.85V with respect to V
), but the I/O
P
interfaces allow the STB4395 to swing its output
levelsto thesupplyrails(V
toVN).Thesystemand
P
baseband controller can therefore be connected
from the same -unregulated- supply and be individuallyregulated, if required .
9.2 - ApplicationCircuits
9.2.1 - Introduction
The STB4395makes use of some unusual circuit
Figure3
STB4395
configurations:
- The STB4395operatesfrom positiveground.The
decoupling of the supply lines should take into
account that the a.c. groundconnectionswill be
reversed with respect to the baseband circuit
and/or the microcontroller. The use of multilayer
PCB is recommended.
- The filters have been adapted for the best performance of the IC, although standardconfigurations are also considered.
9.2.2 - FullyConfigured Applications Example
Figure 3 is a typical application circuit for a complete system. It shows the typical external components to the circuit. As the reactance of the
componentsis criticalin many locations,the use of
surfacemountedcomponentsis essential.Atypical
component list is also attached.It also showsthe
typicalvalues for the thevarious VCO circuits.The
valuesare very dependenton layout.
NVBAT
NPRGE N
PRGCLK
PRGD
NTXEN
LOCK
REFIQ
RSSI
VRD
FSH
50Ω
SAW
866MHz
300
Ω
R18
R15 2kΩ
VP
C3
C6
100nFC9100 nF
10µF
L1 330 µH
C1
56pFC456pFC756p F
R1 2k
Ω
R2 2k
Ω
R4 2k
I
R3 0Ω
Q
FN
EN
DO
R6 0Ω
R5 0Ω
R9 6.8 kΩ
C8
C5
C2
0pF
SYNCLK
0pF
0pF
51Ω
C16, C15, C19, C21 ,C 23, C41, C45
provision for conn ection to grou nda lso
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronicsassumes no responsibility
for the consequences of use of such information nor for any infringement of patents or otherrights of third parties which may result
from its use. Nolicence is granted by implication or otherwise underany patent or patentrights of SGS-THOMSON Microelectronics.
Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all
information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life
support devices or systems without express written approval of SGS-THOMSON Microelectronics.
PMTQFP64.EPS
TQFP64.TBL
16/16
1996 SGS-THOMSON Microelectronics - All RightsReserved
Purchase of I2C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips
2
I
C Patent. Rights to use these components in a I2C system, is granted provided that the system conformsto
2
the I
C Standard Specifications as defined by Philips.
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - China- France - Germany - Hong Kong - Italy - Japan- Korea - Malaysia - Malta - Morocco
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.