Datasheet SST89V564-40-I-TQJ, SST89V564-40-I-TQI, SST89V564-40-I-PJ, SST89V564-40-I-PI, SST89V564-40-I-NJ Datasheet (Silicon Storage Technology)

...
Page 1
FEATURES:
FlashFlex51 MCU
SST89E564 / SST89V564 / SST89E554 / SST89V554
SST89E/V564 SST89E/VE554 FlashFlex51 MCU
Preliminary Specifications
• SST89E564/SST 89E 554 is 5V Operatio n
– 0 to 40 MHz Operation at 5V
• SST89V564/SST 89V 554 is 3V Operatio n
– 0 to 25 MHz Operation at 3V
• Fully Software and Developmen t To olset Compatible as well as Pin -For -Pin Packa ge Compatible with Stan dar d 8xC5x Micr ocont r oller s
• 1 KByte Register/Data RAM
• Dual Block SuperFlash EEPROM
– SST89E564/SST89V564: 64 KByte primary
block + 8 KByte secondary block (128-Byte sector size)
– SST89E554/SST89V554: 32 KByte primary
block + 8 KByte secondary block
(128-Byte sector size) – Individual Block Security Lock – Concurrent Operation during In-Application
Programming (IAP) – Block Address Re-mapping
• Support External Address Range up to 64 KByte of Program and Data Memory
• Three High-Current Drive Pins (16 mA each)
• Three 16-bit Timers/Counters
• Full-Duplex Enhanced UART
– Framing error detection – Automatic address recognition
• Eight Interrupt Sources at 4 Priority Levels
• Watchdog Timer (WDT)
• Four 8-bit I/O Ports (32 I/O Pins)
• Second DPTR register
• Reduce EMI Mode (I nhibi t ALE t hro ugh AUXR SFR )
• SPI Serial Interface
• TTL- and CMOS-Compatible Logic Levels
• Brown-out Detection
• Extended Power-Saving Modes
– Idle Mode – Power Down Mode with External Interrupt Wake-up – Standby (Stop Clock) Mode
• PDIP-40, PLCC-44 and TQFP-44 Packages
• Temperature Ranges:
– Commercial (0°C to +70°C) – Industrial (-40°C to +85°C)
PRODUCT DESCRIPTION
SST89E564, SST89V564, SST89E554, and SST89V554 are members of the FlashF le x51 f amily of 8-bit microcontr ol­lers. The FlashFlex51 is a family of microcontroller products designed and m anufactured on the state-of-t he-art Super­Flash CMOS semiconductor process technology. The device uses th e same powerful instruction se t and is pin-for­pin compatible with standard 8xC5x microcontroller devices.
The device comes with 72/40 KByte of on-chip flash EEPROM program memory using SST’s patented and pro­prietar y CMO S Super Flash E EPROM tech nolo gy with the SST’s field-enhancing, tunneling injector, split-gate mem­ory cells. The SuperFlash memory is partitioned into 2 independent program memory blocks. The primary Super­Flash Block 0 occupies 64 /32 KByte of internal program memory space and the secondary SuperFlash Block 1 occupies 8 KByte of i nt ernal program mem ory space. The 8-KByte second ary SuperFlash block ca n be mapped to the lowest location of the 64/32 KByte address space; it can also be hidden from the program counter and used as an independent EEPROM-like data memory. The flash memory blocks can be programmed via a standard 87C5x OTP EPR OM prog ramm er fitted with a specia l adapter and firmware for SST’s device. During the power-on reset, the
device can be configured as a slave to an external host for source code storage or as a master to an external host for In-Application Programming (IAP) o perati on. T he device is designed to be p rogrammed “In-System ” and “In-Applic a­tion” on the printed circuit board for maximum flexibility. The device is pre-programmed with an example of bootstrap loader in the memo ry, demonstrating the initial user pro­gram code loading or su bsequent user c ode updating v ia the “IAP” operatio n. An example of bootstrap loader is for the user’s reference and convenience only. SST does not guarantee the functionality or the usefulness of the sample bootstrap loader. Chip-Erase or Block-Erase operations will erase the pr e-pro gra mmed sa mple code .
In addition to 72/ 40 KByte of SuperFlash EEPROM pro­gram memory on-chip, the device can address up to 64 KByte of external prog r a m memo ry. In additio n t o 10 24 x 8 bits of on-chip RAM, up to 64 KBy te of exter nal RAM ca n be addressed.
SST’s highly reliable, patented SuperFlash technology and memory cell architecture have a number of important advantages for designing and manufacturing flash EEPROMs. These advantages translate into significant cost and reliability benefits for our customers.
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
1
FlashFlex, In-Application Programming, IAP, and SoftLock are trademarks of Silicon Storage Technology, Inc.
The SST logo and SuperFlash are registered trademarks of Silicon Storage Technology, Inc.
These specifications are subject to change without notice.
Page 2
FlashFlex51 MCU
SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
TABLE OF CONTENTS
PRODUCT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.0 FUNCTIONAL BLOCKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Functional Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.0 PIN ASSIGNMENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.0 MEMORY ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 Program Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Program Memory Block Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.1 Reset Configuration of Program Memory Block Switching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Data Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Dual Data Pointers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Special Function Registers (SFR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.0 FLASH MEMORY PROGRAMMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1 External Host Programming Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.1 Product Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.2 Arming Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.3 Detail Explanation of the External Host Mode Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.4 External Host Mode Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.5 Flash Operation Status Detection Via External Host Handshake . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.6 Step-by-step instructions to perform
External Host Mode commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.7 Flash Memory Programming Timing Diagrams with External Host Mode . . . . . . . . . . . . . . . . . . 28
4.2 In-Application Programming Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.1 In-Application Programming Mode Clock Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Memory Bank Selection for In-Application Programming Mode. . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.3 IAP Enable Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.4 In-Application Programming Mode Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.5 Polling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.6 Interrupt Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.0 TIMERS/COUNTERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.0 SERIAL I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.1 Enhanced Universal Aysnchronous Receiver/Transmitter (UART) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.1.1 Framing Error Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.1.2 Automatic Address Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2 Serial Peripheral Interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
2
Page 3
FlashFlex51 MCU SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
7.0 WATCHDOG TIMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.0 SECURITY LOCK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.1 Hard Lock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.2 SoftLock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.3 Security Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.0 RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.1 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.2 Software Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.3 Brown-out Detection Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.4 Interrupt Priority and Polling Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.5 Power-Saving Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.5.1 Idle Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.5.2 Power Down Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.5.3 Standby Mode (Stop Clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.6 Clock Input Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.7 Recommended Capacitor Values for Crystal Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10.0 ELECTRICAL SPECIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Absolute Maximum Stress Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.1 Operation Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.2 Reliability Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.3 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
10.4 AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.5 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
11.0 PRODUCT ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
11.1 Valid Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
12.0 PACKAGING DIAGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
3
Page 4
FlashFlex51 MCU
SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
LIST OF FIGURES
FIGURE2-1: Pin Assignments for 40-pin PDIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
FIGURE2-2: Pin Assignments for 44-lead TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
FIGURE2-3: Pin Assignments for 44-lead PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
FIGURE3-1: Program Memory Organization for SST89E564 and SST89V564 . . . . . . . . . . . . . . . . . . . . . 10
FIGURE3-2: Program Memory Organization for SST89E554 and SST89V554 . . . . . . . . . . . . . . . . . . . . . 11
FIGURE4-1: I/O Pin Assignments for External Host Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
FIGURE4-2: Read-ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
FIGURE4-3: Select-Block1 / Select-Block0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
FIGURE4-4: Chip-Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
FIGURE4-5: Block-Erase for SST89E564/SST89V564 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
FIGURE4-6: Block-Erase for SST89E554/SST89V554 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
FIGURE4-7: Sector-Erase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
FIGURE4-8: Byte-Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
FIGURE4-9: Prog-SB1 / Prog-SB2 / Prog-SB3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
FIGURE4-10: Prog-SC0 / Prog-SC1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
FIGURE4-11: Byte-Verify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
FIGURE6-1: SPI Master-slave Interconnection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
FIGURE6-2: SPI Transfer Format with CPHA = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
FIGURE6-3: SPI Transfer Format with CPHA = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
FIGURE7-1: Block Diagram of Programmable Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
FIGURE8-1: Security Lock Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
FIGURE9-1: Power-on Reset Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
FIGURE9-2: Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
FIGURE10-1: I FIGURE10-2: I FIGURE10-3: I FIGURE10-4: I
FIGURE10-5: AC Testing Input/Output, Float Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
FIGURE10-6: External Program Memory Read Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
FIGURE10-7: External Data Memory Read Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
FIGURE10-8: External Data Memory Write Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
FIGURE10-9: External Clock Drive Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
FIGURE10-10: Shift Register Mode Timing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Test Condition, Active Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
DD
Test Condition, Idle Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
DD
Test Condition, Power-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
DD
Test Condition, Standby (Stop Clock) Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
DD
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
4
Page 5
FlashFlex51 MCU SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
LIST OF TABLES
TABLE 2-1: Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
TABLE 3-1: SFCF Values for Program Memory Block Switching for SST89E564/SST89V564 . . . . . . . . 11
TABLE 3-2: SFCF Values for Program Memory Block Switching for SST89E554/SST89V554 . . . . . . . . 12
TABLE 3-3: SFCF Values Under Different Reset Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
TABLE 3-4: FlashFlex51 SFR Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
TABLE 3-5: CPU related SFRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
TABLE 3-6: Flash Memory Programming SFRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
TABLE 3-7: Watchdog Timer SFRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
TABLE 3-8: Timer/Counters SFRs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
TABLE 3-9: Interface SFRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
TABLE 4-1: External Host Mode Commands for SST89E564/SST89V564. . . . . . . . . . . . . . . . . . . . . . . . 24
TABLE 4-2: External Host Mode Commands for SST89E554/SST89V554. . . . . . . . . . . . . . . . . . . . . . . . 25
TABLE 4-3: Signature Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
TABLE 4-4: IAP Address Resolution for SST89E564/SST89V564 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
TABLE 4-5: In-Application Programming Mode Commands for SST89E564/SST89V564 . . . . . . . . . . . . 35
TABLE 4-6: In-Application Programming Mode Commands for SST89E554/SST89V554 . . . . . . . . . . . . 35
TABLE 4-7: Flash Memory Programming/Verification Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
TABLE 8-1: Security Lock Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
TABLE 8-2: Security Lock Access Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
TABLE 9-1: Interrupt Polling Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
TABLE 9-2: Power Saving Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
TABLE 10-1: Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
TABLE 10-2: Reliability Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
TABLE 10-3: DC Electrical Characteristics: 40MHz devices; 4.5-5.5V . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
TABLE 10-4: DC Electrical Characteristics: 25MHz devices; 2.7-3.6V . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
TABLE 10-5: AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
TABLE 10-6: External Clock Drive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
TABLE 10-7: Serial Port Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
5
Page 6
1.0 FUNCTIONAL BLOCKS
FUNCTIONAL BLOCK DIAGRAM
FlashFlex51 MCU
SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
Watchdog Timer
SuperFlash
EEPROM
Primary
Block
32K/64K x8
Secondary
Block 8K x8
Timer 0 (16-bits)
Timer 1 (16-bits)
Interrupt
Control
8051
CPU Core
1
Security
Lock
RAM
1K x8
I/O Port 0
88
I/O Port 1
8
I/O Port 2
8
I/O Port 3
SPI
8 Interrupts
I/O
I/O
I/O
I/O
Timer 2 (16-bits)
1. 64K x8 for SST89E564 and SST89V564 32K x8 for SST89E554 and SST89V554
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
8-bit
Enhanced
UART
384 ILL B1.4
6
Page 7
FlashFlex51 MCU SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
2.0 PIN ASSIGNMENTS
40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21
V
DD P0.0 (AD0) P0.1 (AD1) P0.2 (AD2) P0.3 (AD3) P0.4 (AD4) P0.5 (AD5) P0.6 (AD6) P0.7 (AD7) EA# ALE/PROG# PSEN# P2.7 (A15) P2.6 (A14) P2.5 (A13) P2.4 (A12) P2.3 (A11) P2.2 (A10) P2.1 (A9) P2.0 (A8)
(MOSI) P1.5 (MISO) P1.6
(SCK) P1.7
RST
(RXD) P3.0
Reserved
(TXD) P3.1 (INT0#) P3.2 (INT1#) P3.3
(T0) P3.4
(T1) P3.5
(T2) P1.0
(T2 Ex) P1.1
P1.2 P1.3
(SS#) P1.4 (MOSI) P1.5 (MISO) P1.6
(SCK) P1.7
RST
(RXD) P3.0
(TXD) P3.1 (INT0#) P3.2 (INT1#) P3.3
(T0) P3.4 (T1) P3.5
(WR#) P3.6
(RD#) P3.7
XTAL2 XTAL1
V
SS
1 2 3 4 5 6 7
40-pin PDIP
8
T op View
9 10 11 12 13 14 15 16 17 18 19 20
P1.4 (SS#)
P1.3
P1.2
P1.1 (T2 Ex)
P1.0 (T2)
Reserved
VDDP0.0 (AD0)
P0.1 (AD1)
44 43 42 41 40 39 38 37 36 35 34 1 2 3 4 5 6 7 8 9 10 11
44-lead TQFP
T op Vie w
12 13 14 15 16 17 18 19 20 21 22
SS
V
XTAL2
(RD#) P3.7
(WR#) P3.6
XTAL1
Reserved
(A8) P2.0
(A9) P2.1
(A10) P2.2
P0.2 (AD2)
P0.3 (AD3)
33 32 31 30 29 28 27 26 25 24 23
(A12) P2.4
(A11) P2.3
P0.4 (AD4) P0.5 (AD5) P0.6 (AD6) P0.7 (AD7) EA# Reserved ALE/PROG# PSEN# P2.7 (A15) P2.6 (A14) P2.5 (A13)
384 ILL F19.5
384 ILL F18.3
FIGURE 2-1: PIN ASSIGNMENTS FOR 40-PIN PDIP FIGURE 2-2: PIN ASSIGNMENTS FOR 44-LEAD TQFP
P1.4 (SS#)
P1.3
P1.2
P1.1 (T2 Ex)
P1.0 (T2)
Reserved
VDDP0.0 (AD0)
P0.1 (AD1)
P0.2 (AD2)
P0.3 (AD3)
6 5 4 3 2 1 44 43 42 41 40 7 8 9 10 11 12
44-lead PLCC
T op Vie w
13 14 15 16 17
18 19 20 21 22 23 24 25 26 27 28
SS
V
XTAL2
(RD#) P3.7
(WR#) P3.6
XTAL1
Reserved
(A8) P2.0
(A9) P2.1
(A10) P2.2
39 38 37 36 35 34 33 32 31 30 29
(A12) P2.4
(A11) P2.3
384 ILL F20.4
P0.4 (AD4) P0.5 (AD5) P0.6 (AD6) P0.7 (AD7) EA# Reserved ALE/PROG#
PSEN# P2.7 (A15) P2.6 (A14) P2.5 (A13)
FIGURE 2-3: P
(MOSI) P1.5 (MISO) P1.6
(SCK) P1.7
RST
(RXD) P3.0
Reserved
(TXD) P3.1 (INT0#) P3.2 (INT1#) P3.3
(T0) P3.4 (T1) P3.5
IN ASSIGNMENTS FOR 44-LEAD PLCC
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
7
Page 8
FlashFlex51 MCU
SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
2.1 Pin Descriptions
TABLE 2-1: PIN DESCRIPTIONS (1 OF 2)
pull-ups
pull-ups
pull-ups
1
Name and Functions
sink seve ral LS TTL inputs. Port 0 pins float that have “1”s written to them, and in this state can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external memory. In this application, it uses strong internal pull­ups when transitioning to V
. Port 0 also receives the code bytes during the external host
OH
mode programming, and outputs the code bytes during the external host mode verification. External pull-u ps are required during program verification.
Port 1: Port 1 is an 8-bit bi-directional I/O port with internal pull-ups. The P ort 1 output buffers can drive LS TTL inputs. Port 1 pins are pulled high by the internal pull-ups when “1”s are written to them and can be used as inputs in this state. As inputs, Port 1 pins that are exter­nally pulled lo w will source cu rren t (I
, see Tables 10-3 and 10-4 ) beca use of t he inte rnal pull-
IL
ups. P1[5, 6, 7] have high current drive of 16 mA. Port 1 also receives the low-order address bytes during the external host mode p rogramming and verification.
Port 2: Port 2 is an 8-bit bi-directional I/O port with internal pull-ups. Port 2 pins are pulled high by the internal pull-ups when “1”s are written to them and can be used as inputs in this state. As inputs, Port 2 pins that are externally pulled low will source current (I
, see Tables
IL
10-3 and 10-4) because of the internal pull-ups. Port 2 sends the high-order address byte during fetches from exte rnal Program memory and during acce sses to e xternal Data Mem ory that use 16-bit address (MOVX@DPTR). In this application, it uses strong internal pull-ups when transitioning to V
. Port 2 also receives some control signals and a partial of high-
OH
order address bits during the external host mode programming and verification. Port 3: Port 3 is an 8-bit bidirection al I / O po rt with internal pul l-u ps. The Port 3 output buff e rs
can drive LS TTL inputs. Port 3 pins are pulled high by the internal pull-ups when “1”s are written to them and can be used as inputs in this state. As inputs, Port 3 pins that are exter­nally pulled lo w will source cu rren t (I
, see Tables 10-3 and 10-4 ) beca use of t he inte rnal pull-
IL
ups. P ort 3 also receives some control signals and a partial of high-order addre ss bits during the external host mode programming and verification.
device is executing from Internal Program Memory, PSEN# is inactive (V
). When the
OH
device is executing code from External Program Memory, PSEN# is activated twice each machine cycle, ex ce pt whe n acce ss to Exte rnal Data Memory while one PSEN# activation is skipped in each machine cycle. A forced high-to-low input transition on the PSEN# pin while the RST input is conti n ual ly hel d hi gh for more than ten machine cycles will ca us e the device to enter External Host mode for programming.
Symbol Type
P0[7:0] I/O Port 0: Port 0 is an 8-bit open drain bi-directional I/O port. As an output port each pin can
P1[7:0] I/O with internal
P1[0] I/O T2: External count input to Timer/Counter 2 or Clock-out from Timer/Counter 2 P1[1] I T2EX: Timer/Counter 2 capture/reload trigger and direction control P1[4] I/O SS#: Master Input or Slave Output for SPI P1[5] I/O MOSI: Master Output line, Slave Input line for SPI P1[6] I/O MISO: Master Input line, Slave Output line for SPI P1[7] I/O SCK: Master clock output, slave clock input line for SPI
P2[7:0] I/O with internal
P3[7:0] I/O with internal
P3[0] I RXD: Serial input line P3[1] O TXD: Serial output lin e P3[2] I INT0#: External Interrupt 0 Input P3[3] I INT1#: External Interrupt 1 Input P3[4] I T0: External count input to Timer/Counter 0 P3[5] I T1: External count input to Timer/Counter 1 P3[6] O WR#: External Data Memory Write strobe P3[7] O RD#: External Data Memory Read strobe
PSEN# I/O Program Store Enable: PSEN# is the Read strobe to External Program Store. When the
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
8
Page 9
FlashFlex51 MCU SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
TABLE 2-1: PIN DESCRIPTIONS (CONTINUED) (2 OF 2)
Symbol Type
RST I Reset: Whil e the oscill ator is running, a hi gh logic sta te on this pin for tw o machi ne cycles will
EA# I External Access Enable : EA# must be driven to V
ALE/PROG# I/O Address Latch Enable: ALE is the output signal for latching the low byte of the address dur-
XTAL1 XTAL2
V
DD
Vss I Ground: Circuit ground. (0V reference)
1. I = Input; O = Output
2. It is not necessary to receive a 12V programming supply voltage during flash programming.
1
Name and Functions
reset the device. After a reset, if the PSEN# pin is driven by a high-to-low input transition while the RST input pin is held high, the device will enter the External Host mode, otherwise the device will enter the Normal operation mode.
in order to enable the device to fetch
code from the External Program Memory. EA# must be driven to V
IL
for internal program exe-
IH
cution. However, Security lock level 4 will disable EA#, and program execution is only possi­ble from internal program memory. The EA# pin can tolerate a high voltage
2
of 12V
(see “Absolute Maximum Stress Ratings” on page 47).
ing acces s es to external memory. This pin is also the programming pulse input (PROG#) for the external host mode. ALE is activated twice each machine cycle, except when access to External Data Memory, one ALE activation is skipped in th e seco nd mac hine cy cle . Ho wever, if AO is set to 1, ALE is disabled. (see “Auxiliary Register (AUXR)” on page 20)
I
O
Oscillator: Input and output to the inverting oscillator amplifier. XTAL1 is input to internal clock generation circuits from an external clock source.
I Power Supp ly: Supply voltage during normal, Idle, Power Down, and Standby Mode opera-
tions.
T2-1.6 384
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
9
Page 10
3.0 MEMORY ORGANIZATION
FlashFlex51 MCU
SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
The device has separate addr e ss s pa ce s for program an d data memory.
3.1 Program Memory
There are two internal flash memor y blocks in the device. The primary flash memory block (Block 0) has 64/32 KByte. The secondary flash memory block (Block 1) has 8 KByte. Since the total program address space is limited to 64/32 KByte, the SFCF[1:0] bit are used to control Program
FFFFH
EA# = 0
FFFFH
SFCF[1:0] = 00
Bank Selectio n. Please re fer to Figure 3-1 and F igure 3-2 for the program memory configurations. Program Bank Select is described in the next section.
The 64K/32K x8 primary SuperFlash block is organized as 512/256 sectors, each sector consists of 128 Bytes.
The 8K x8 secondary SuperFlash block is organized as 64 sectors, each sector consists also of 128 Bytes.
For both blocks, the 7 least significant program address bits select the byte within the sector. The remainder of the pro­gram addr ess bi ts selec t the sect or with in the bloc k.
EA# = 1
EA# = 1
SFCF[1:0] = 01, 10, 11
FFFFH
56 KByte
Block 0
0000H
FIGURE 3-1: P
External
64 KByte
64 KByte
Block 0
2000H
1FFFH
8 KByte
Block 1
0000H
ROGRAM MEMORY ORGANIZATION FOR SST89E564 AND SST89V564
0000H
384 ILL F48.5
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
10
Page 11
FlashFlex51 MCU SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
FFFFH
0000H
EA# = 0
External
64 KByte
FFFFH
E000H
DFFFH
8000H
7FFFH
2000H
1FFFH
0000H
EA# = 1
SFCF[1:0] = 00
8 KByte
Block 1
External
24 KByte
24 KByte
Block 0
8 KByte
Block 1
FFFFH
E000H
DFFFH
8000H
7FFFH
0000H
EA# = 1
SFCF[1:0] = 01
8 KByte Block 1
External
24 KByte
32 KByte
Block 0
EA# = 1
SFCF[1:0] = 10, 11
FFFFH
External
32 KByte
8000H
7FFFH
32 KByte
Block 0
0000H
384 ILL F48b.3
FIGURE 3-2: PROGRAM MEMORY ORGANIZATION FOR SST89E554 AND SST89V 554
3.2 Program Memory Block Switching
The prog r am mem ory block switching feature of the device allows either Block 1 or the lowest 8 KByte of Block 0 to be used for the lowest 8 KByte of the program address space. SFCF[1:0] controls program memory block switching.
TABLE 3-1: SFCF VALUES FOR PROGRAM MEMORY BLOCK SWITCHING FOR SST89E564/SST89V 564
SFCF[1:0] Program Memory Block Switching
01, 10, 11 Block 1 is not visible to the PC;
Block 1 is reachable only via In-Application Programming from 000H - 1FFFH.
00 Block 1 is overlaid onto the low 8K of the program address space; occupying address locations 0000H - 1FFFH.
When the PC falls within 0000H - 1FFFH, the instruction will be fetched from Block 1 instead of Block 0. Outside of 0000H - 1FFFH, Block 0 is used. Locations 0000H - 1FFFH of Block 0 are reachable through In-Application Programming.
T3-1.0 384
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
11
Page 12
FlashFlex51 MCU
SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
TABLE 3-2: SFCF V
SFCF[1:0] Program Memory Block Switching
10, 11 Block 1 is not visible to the PC;
Block 1 is reachable only via In-Application Programming from E000H - FFFFH.
01 Both Block 0 and Block 1 are visible to the PC.
Block 0 is occupied from 0000H - 7FFFH. Block 1 is occupied from E000H - FFFFH.
00 Block 1 is overlaid onto the low 8K of the program address space; occupying address locations 0000H - 1FFFH.
When the PC falls within 0000H - 1FFFH, the instruction will be fetched from Block 1 instead of Block 0. Outside of 0000H - 1FFFH, Block 0 is used. Locations 0000H - 1FFFH of Block 0 are reachable through In-Application Programming.
3.2.1 Reset Configuration of Program Memory Block Switching
Program memory block switching is initialized after reset according to the state of the Start-up Configuration bit SC0. The SC0 bit is programmed via an External Host Mode command or an IAP Mode command. Se e Table 4-2 and Table 4-6.
Once out of reset, the SFCF[0] bit can be changed dynam­ically by the progr am f or desir ed eff ects . Changing SFCF[0] will not change the SC0 bit.
Caution must be taken when dynamically changing the SFCF[0] bit. Since this will cause different physical memory to be mapped to t he logical program address s pace. The user must avoid executing block switching instructions within the address range 0000H to 1FFFH.
ALUES FOR PROGRAM MEMORY BLOCK SWITCHING FOR SS T8 9E554/S ST89V 554
3.3 D ata Memory
The device has 1024 x 8 bits of on-chip RAM and can address up to 64 KByte of external data memory .
The device has f our sect ions of internal dat a memory:
1. The lower 128 Bytes of RAM (00H to 7FH) are directly and indirectly addressable.
2. The higher 128 Bytes of RAM (80H to FFH) are indirectly addressable.
3. The Special Function Registers (SFRs, 80H to FFH) are directly addressable only.
4. The expanded RAM of 768 Bytes (00H to 2FFH) is indirectly addressable by the move external instruction (MOVX) and clearing the EXTRAM bit. (See “Auxiliary Register (AUXR)” on page 20)
T3-2.2 384
TABLE 3-3: SFCF VALUES UNDER DIFFERENT
ESET CONDITIONS
R
State of SFCF[1:0] after:
WDT
Power-on
or
1
SC1
SC0
11 00
10 01 x1 11 0 1 10 10 10 0 0 11 11 11
1. SC1 only applies to SST89E554 and SST89V554.
External
Reset
(default)
Reset
or
Brown-out
Reset
x0 10
Software
Reset
T3-3.2 384
3.4 Dual Data Pointers
The device has two 16-bit data pointers. The DPTR Select (DPS) bit in AUXR1 determines which of the two data pointers is accessed. When DPS=0, DPTR0 is selected; when DPS=1, DPTR1 is selected. Quickly switching between the two data pointers can be accomplished by a single INC instruction on AUXR1.
3.5 Special Function Registers (SFR)
Most of the unique features of the Flash Flex51 microcon­troller family are contr o ll ed by bits in s pecial function r eg is­ters (SFRs) located in the SFR Memory Map shown in Table 3-4. Individual descriptions of each SFR are provided and Reset values indicated in T ables 3-5 to 3-9.
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
12
Page 13
FlashFlex51 MCU SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
TABLE 3-4: FLASHFLEX51 SFR MEMORY MAP
8 BYTES
F8H IPA F0H B E8H IEA E0H ACC D8H DFH D0H PSW C8H T2CON C0H WDTC B8H IP B0H P3 A8H IE A0H P2 98H SCON 90H P1 88H TCON 80H P0
1. SFRs are bit addressable.
1
1
1
1
1
1
T2MOD RCAP2L RCAP2H TL2 TH2 CFH
1
1
1
1
1
1
1
SADEN BFH
SFCF SFCM SFAL SFAH SFDT SFST IPH B7H
SADDR SPSR AFH
AUXR1 A7H
1
SBUF 9FH
1
TMOD TL0 TL1 TH0 TH1 AUXR 8FH
SP DPL DPH WDTD SPDR PCON 87H
SPCR D7H
IPAH F7H
FFH
EFH E7H
C7H
97H
T3-4.3 384
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
13
Page 14
FlashFlex51 MCU
SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
TABLE 3-5: CPU RELATED SFRS
Bit Address, Symbol, or Alternative Port Function
Symbol Description
1
ACC
1
B PSW
Accumulator E0H ACC[7:0] 00H B Register F0H B[7:0] 00H
1
Program Status
Direct
Address
D0H CY AC F0 RS1 RS0 OV F1 P 00H
Word SP Stack Pointer 81H SP[7:0] 07H DPL Data Pointer
82H DPL[7:0] 00H
Low DPH Data Pointer
83H DPH[7:0] 00H
High
1
IE IEA
Interrupt Enable A8H EA - ET2 ES0 ET1 EX1 ET0 EX0 40H
1
Interrupt
E8H - - - - EBO - - - xxxx0xxxb
Enable A IP
1
Interrupt Priority
B8H - - PT2 PS PT1 PX1 PT0 PX0 xx000000b
Reg IPH Interrupt Priority
B7H - - PT2H PSH PT1H PX1H PT0H PX0H xx000000b
Reg High
1
IPA
Interrupt Priority
F8H - - - - PBO - - - xxxx0xxxb
Reg A IPAH Interrupt Priority
Reg A High
F7H - - - - PBO
H
- - - xxxx0xxxb
PCON Power Control 87H SMOD1 SMOD0 BOF POF GF1 GF0 PD IDL 00010000b AUXR Auxiliary Reg 8EH - - - - - - EXTRAM AO xxxxxxx00b AUXR1 Auxiliary Reg 1 A2H - - - - GF2 0 - DPS xxxx00x0b
1. Bit Addressable SFRs
RESET
ValueMSB LSB
T3-5.10 384
TABLE 3-6: FLASH MEMORY PROGRAMMING SFRS
Bit Address, Symbol, or Alternative Port Function
Symbol Description
SFST SuperFlash
Direct
Address
B6H SECD1 SECD2 SECD3 - - FLASH_BUSY - - xxxxx0xxb
Status
SFCF SuperFlash
B1H - IAPEN - - - - SWR BSEL x0xxxxxxb
Configuration
SFCM SuperFlash
B2H FIE FCM 00H
Command
SFDT SuperFlash
B5H SuperFlash Data Register 00H
Data
SFAL SuperFlash
B3H SuperFlash Low Order Byte Address Register - A
toA0 (SFAL) 00H
7
Address Low
SFAH SuperFlash
B4H SuperFlash High Order Byte Address Register - A
toA8 (SF AH) 00H
15
Address High
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
14
RESET
ValueMSB LSB
T3-6.6 384
Page 15
FlashFlex51 MCU SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
TABLE 3-7: WATCHDOG TIMER SFRS
Bit Address, Symbol, or Alternative Port Function
Symbol Description
1
WDTC
Watchdog Timer
Direct
Address
C0H - - - WDOUT WDRE WDTS WDT SWDT xxx00x00b
Control
WDTD Watchdog Timer
85H Watchdog Timer Data/Reload 00H
Data/Reload
1. Bit Addressable SFRs
TABLE 3-8: TIMER/COUNTERS SFRS
Direct
Symbol Description
TMOD Timer/Counter
Address
89H Timer 1 Timer 0 00H
Mode Control
1
TCON
Timer/Counter
88H TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 00H
Control TH0 Timer 0 MSB 8CH TH0[7:0] 00H TL0 Timer 0 LSB 8AH TL0[7:0] 00H TH1 Timer 1 MSB 8DH TH1[7:0] 00H TL1 Timer 1 LSB 8BH TL1[7:0] 00H
1
T2CON
Timer / Counter 2
C8H TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2# CP/RL2# 00H
Control T2MOD# Timer2
C9H---- --T2OEDCENxxxxxx00b
Mode Control TH2 Timer 2 MSB CDH TH2[7:0] 00H TL2 Timer 2 LSB CCH TL2[7:0] 00H RCAP2H Timer 2 Capture MSB CBH RCAP2H[7:0] 00H RCAP2L Timer 2 Capture LSB CAH RCAP2L[7:0] 00H
1. Bit Addressable SFRs
Bit Address, Symbol, or Alternative Port Function
GATE C/T# M1 M0 GATE C/T# M1 M0
RESET
ValueMSB LSB
RESET
ValueMSB LSB
T3-7.3 384
T3-8.3 384
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
15
Page 16
FlashFlex51 MCU
SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
TABLE 3-9: INTERFACE SFRS
Bit Address, Symbol, or Alternative Port Function
Symbol Description
Direct
Address
SBUF Serial Data Buffer 99H SBUF[7:0] Indete rminate
1
SCON
Serial Port Control 98H SM0/FE SM1 SM2 REN TB8 RB8 TI RI 00H SADDR Slave Address A9H SADDR#[7:0] 00H SADEN Slave Address
B9H SADEN#[7:0] 00H
Mask SPCR SPI Control
D5H SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 04H
Register SPSR SPI Status
AAH SPIF WCOL 00H
Register SPDR SPI Data Register 86H SPD7 SPD6 SPD5 SPD4 SPD3 SPD2 SPD1 SPD0 00H
1
P0 P1 P2 P3
Port 0 80H P0[7:0] FFH
1
Port 1 90H - - - - - - T2EX T2 FFH
1
Port 2 A0H P2[7:0] FFH
1
Port 3 B0H RD# WR# T1 T 0 INT1# INT0# TXD RXD FFH
1. Bit Addressable SFRs
RESET
ValueMSB LSB
T3-9.4 384
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
16
Page 17
FlashFlex51 MCU SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
SuperFlash Status Register (SFST) (Read Only Register)
Location76543 2 10Reset Value
0B6H SECD1 SECD2 SECD3 - -
FLASH_BUSY
Symbol Function
SECD1 Security bit 1. SECD2 Security bit 2. SECD3 Security bit 3.
Please refer to Table 4-6 for security lock options.
FLASH_BUSYFlash operation completion polling bit.
1: Device is busy with flash operation. 0: Device has fully completed the last command.
SuperFlash Configuration Register (SFCF)
Location76543210Reset Value
0B1H - IAPEN ----
Symbol Function
IAPEN Enable IAP operation
0: IAP commands are disabled 1: IAP commands are enabled
SWR Software Reset
See “9.2 Software Reset” on page 43
BSEL Program memory block switching bit
See Figures 3-1 and 3-2.
- - xxxxx0xxb
SWR BSEL
x0xxxxxxb
SuperFlash Command Register (SFCM)
Location76543210Reset Value
0B2H FIE FCM6 FCM5 FCM4 FCM3 FCM2 FCM1 FCM0 00000000b
Symbol Function
FIE Flash Interrupt Enable.
0: INT1# is not reassigned. 1: INT1# is re-assigned to signal IAP operation completion.
External INT1# interrupts are ignored.
FCM[6:0] Flas h ope ration com man d
000_1011b Sector-Erase 000_1101b Block-Erase 000_1100b Byte-Verify
1
000_1110b Byte-Program 000_1111b Prog-SB1 000_0011b Prog-SB2 000_0101b Prog-SB3 000_1001b Prog-SC0 All other combinations are not implemented, and reserved for future use.
1. Byte-Verify has a single machine cycle latency and will not generate any INT1# interrupt regardless of FIE.
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
17
Page 18
FlashFlex51 MCU
SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
SuperFlash Data Register (SFDT)
Location76543210Reset Value
0B5H SuperFlash Data Register 00000000b
Symbol Function
SFDT Mailbox register for interfacing with flash memory block. (Data register).
SuperFlash Address Registers (SFAL)
Location76543210Reset Value
0B3H SuperFlash Low Order Byte Address Register 00000000b
Symbol Function
SFAL Mailbox register for interfacing with flash memory block. (Low order address register).
SuperFlash Address Registers (SFAH)
Location76543210Reset Value
0B4H SuperFlash High Order Byte Address Register 00000000b
Symbol Function
SFAH Mailbox register for interfacing with flash memory block. (High order address register).
Interrupt Enable (IE)
Location76543210Reset Value
A8H EA - ET2 ES ET1 EX1 ET0 EX0 00H
Symbol Function
EA Global Interrupt Enable.
0 = Disable
1 = Enable ET2 Timer 2 Interrupt Enable. ES Serial Interrupt Enable. ET1 Timer 1 Interrupt Enable. EX1 Extern al 1 Int errupt Enable. ET0 Timer 0 Interrupt Enable. EX0 Extern al 0 Int errupt Enable.
Interrupt Enable A (IEA)
Location76543210Reset Value
E8H----EBO---xxxx0xxxb
Symbol Function
EBO Brown-out Interrupt Enable.
1 = Enable the interrupt
0 = Disable the interrupt
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
18
Page 19
FlashFlex51 MCU SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
Interrupt Priority (IP)
Location76543210Reset Value
B8H - - PT2 PS PT1 PX1 PT0 PX0 xx000000b
Symbol Function
PT2 Timer 2 interrupt priority bit. PS Serial Port interrupt priority bit. PT1 Timer 1 interrupt priority bit. PX1 External interrupt 1 priority bit. PT0 Timer 0 interrupt priority bit. PX0 External interrupt 0 priority bit.
Interrupt Priority High (I PH)
Location76543210Reset Value
B7H - - PT2H PSH PT1H PX1H PT0H PX0H xx000000b
Symbol Function
PT2H Timer 2 interrupt priority bit high. PSH Serial Port interrupt priority bit high. PT1H Timer 1 interrupt priority bit high. PX1H External interrupt 1 priority bit high. PT0H Timer 0 interrupt priority bit high. PX0H External interrupt 0 priority bit high.
Interrupt Priority A (IPA)
Location76543210Reset Value
F8H----PBO---xxxx0xxxb
Symbol Function
PBO Brown-out interrupt priority bit.
Interrupt Priority A High (IPAH)
Location76543210Reset Value
F7H----PBOH---xxxx0xxxb
Symbol Function
PBOH Brown-out Interrupt priority bit high.
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
19
Page 20
FlashFlex51 MCU
SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
Auxiliary Register (AUXR)
Location76543210Reset Value
8EH------EXTRAMAOxxxxxx00b
Symbol Function
EXTRAM 0: Internal Expanded RAM access. For details, refer to “Data Memory” on page 12.
1: External data memory access. AO 0: Normal ALE
1: ALE is normally o ff . ALE is activ e on ly during a M O VX or MO VC instructi on. Thi s will r educe
EMI.
Auxiliary Register 1 (AUXR1)
Location76543210Reset Value
A2H----GF20-DPSxxxx00x0b
Symbol Function
GF2 General purpose user-defined flag. DPS DPTR registers select bit.
0: DPTR0 is selected.
1: DPTR1 is selected.
Watchdog Timer Control Register (WDTC)
Location76543210Reset Value
0C0H---WDOUT
WDRE WDTS WDT SWDT xxx00x00b
Symbol Function
WDOUT Watchdog output enable.
0: Watchdog reset will not be exported on Reset pin.
1: Watchdog reset if enabled by WDRE, will assert Reset pin for 32 clocks. WDRE Watchdog timer reset enable.
0: Disable watchdog timer reset.
1: Enable watchdog timer reset. WDTS Watchdog timer reset flag.
0: External hardware reset clears the flag.
Flag can also be cleared by writing a 1. Flag survives if chip reset happened because of watchdog timer overflow.
1: Hardware sets the flag on watchdog overflow. WDT Watchdog timer refres h.
0: Hardware resets the bit when refresh is done.
1: Software sets the bit to force a watchdog timer refresh. SWDT Start watchdog timer.
0: Stop WDT.
1: Start WDT.
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
20
Page 21
FlashFlex51 MCU SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
Watchdog Timer Data/Reload Register (WDTD)
Location76543210Reset Value
085H Watchdog Timer Data/Reload 00000000b
Symbol Function
WDTD Initial/Reload value in Watchdog Timer. New value won’t be effective until WDT is set.
SPI Control Register (SPCR)
Location76543210Reset Value
D5H SPIE
Symbol Function
SPIE If both SPIE and ES are set to one, SPI interrupts are enabled. SPE SPI enable bit.
DORD Data Transmission Order.
MSTR Master/Slave select.
CPOL Clock Polarity
CPHA Clock Phase control bit.
SPR1, SPR0 SPI Clock Rate Select bits. These two bits control the SCK rate of the device configured
SPE DORD MSTR
CPOL CPHA SPR1 SPR0 00000100b
0: Disables SPI.
1: Enables SPI and conn ects SS#, MOSI, MISO , and SCK t o pins P1[4 ], P1[5] , P1[6], P1[7 ].
0: MSB first in data transmission.
1: LSB first in data transmission.
0: Selects Slave mode.
1: Selects Master mode.
0: SCK is low w hen idle (Active High).
1: SCK is high when idle (Active Low).
0: Shift triggered on the leading edge of the clock.
1: Shift triggered on the trailing edge of the clock.
as master. SPR1 and SPR0 have no effect on the slave. The relationship between SCK
and the oscillator frequency, f
, is as follows:
OSC
SPR1 SPR0 SCK = f
0 0 1 1
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
0 1 0 1
21
divided by
OSC
4 16 64
128
Page 22
FlashFlex51 MCU
SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
SPI Statu s Register ( SPSR)
Location76543210Reset Value
AAH SPIF
Symbol Function
SPIF Upon completion of data transfer, this bit is set to 1. If SPIE =1 and ES =1, an interrupt is
WCOL Set if the SPI data register is written to during data transfer. To clear, read SPSR and
SPI Data Register (SPDR)
Location76543210Reset Value
86H SPD7
Power Control Register (PCON)
Location76543210Reset Value
87H SMOD1
WCOL - -
----00xxxxxxb
then generated. To clear, read SPSR and then access SPDR.
then access SPD R.
SPD6 SPD5 SPD4
SMOD0 BOF POF
SPD3 SPD2 SPD1 SPD0 00H
GF1 GF0 PD IDL 00010000b
Symbol Function
SMOD1 Double Baud rate bit. If SMOD1 = 1, Timer 1 is used to generate the baud rate. SMOD0 FE/SM0 Selection bit.
0: SCON[7] = SM0 1: SCON[7] = FE,
BOF Brown-out detection status bit, this bit will not be affected by any other reset. BOF should
be cleared by software. Power-on reset will also clear the BOF bit. 0: No Brown-out. 1: Brown-out occurred
POF Power-on reset status bit, this bit will not be affected by any other reset. POF should be
cleared by software. 0: No Power-on reset.
1: Power-on reset occurred GF1 General-purpose flag bit. GF0 General-purpose flag bit. PD Power-down bit.
0: Power-down mode is not activated.
1: Activates Power-down mode. IDL Idle mode bit.
0: Idle mode is not activated.
1: Activates Idle mode.
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
22
Page 23
FlashFlex51 MCU SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
Serial Port Control Register (SCON)
Location76543210Reset Value
98H SM0/FE
Symbol Function
FE Set SMOD0 = 1 to access FE bit.
SM0 SMOD0 = 0 to access SM0 bit.
SM1 Serial Port Mode Bit 1
SM1 SM2 REN
TB8 RB8 TI RI 00000000b
0: No framing error
1: Framing Error. Set by receiver when an invalid stop bit is detected. This bit needs to
be cleared by software.
Serial Port Mode Bit 0
SM0 SM1 Mode Description Baud Rate
000Shift Registerf
0 1 1 8-bit UART Variable 1029-bit UARTf
1 1 3 9-bit UART Variable
1. f
= oscillator frequency
OSC
OSC
12 (12 clock mode)
OSC
mode) or f f
OSC
1
/6 (6 clock mode) or f
/32 or f /32 (12 clock mode)
/16 (6 clock
OSC
/64 or
OSC
OSC
/
SM2 Enables the Automatic Address Recognition feature in Modes 2 or 3. If SM2 = 1 then RI
will not be set unless the received 9th data bit (RB8) is 1, indicating an address, and the
received byte is a Given or broadcast Address. In Mode 1, if SM2 = 1 then RI will not be
activated unless a valid stop bit was received, and the received byte is a Given or
Broadcast Address. In Mode 0, SM2 should be 0. REN Enables serial reception.
0: to disable reception.
1: to enable reception. TB8 The 9th data bit that will be transmitted in Modes 2 and 3. Set or clear by software as
desired. RB8 In Modes 2 and 3, the 9th data bit that was received. In Mode 1, if SM2 - 0, RB8 is the
stop bit that was received. In Mode 0, RB8 is not used. TI Transmit interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or at the
beginning of the stop bit in the other modes, in any serial transmission, Must be cleared
by software. RI Receive interrupt flag. Set by hardware at the end of the8th bit time in Mode 0, or halfway
through the stop bit time in the other modes, in any serial reception (except see SM2).
Must be cleared by software.
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
23
Page 24
SST89E564 / SST89V564 / SST89E554 / SST89V554
4.0 FLASH MEMORY PROGRAMMING
FlashFlex51 MCU
Preliminary Specifications
The device internal fl ash memor y can be programmed or erased us ing the f o llowin g two m ethod s:
External Host Mode
In-Application Programming (IAP) Mode
logic high to a logic low while RST input is being held con­tinuously high. The device will stay in External Host Mode as long as RST = 1 and PSEN# = 0.
A Read-ID operation is necessary to “arm” the device in External Host Mode, and no other External Host Mode com-
4.1 External Host Programming Mode
External Ho st Programming Mod e allows the user to pr o­gram the flash memory directly without using the CPU. External Ho st Mode is entered by forcing PSEN# from a
mands can be enabled until a Read-ID is performed. In External Host Mode, the internal flash memory blocks are accessed through the re-assigned I/O port pins (see Figure 4-1 for details) b y an ex ternal host, such as a MCU program­mer, a PCB tester or a PC-controlled dev elopment board.
TABLE 4-1: EXTERNAL HOST MODE COMMANDS FOR SST89 E564/SST 89V 564
PROG#/
Operation RST PSEN#
Read-ID V Chip-Erase V Block-Erase V Sector-Erase V Byte-Program V Byte-Ver ify (Read) V Select-Block0 V Select-Block1 V Prog-SC0 V Prog-SB1 V Prog-SB2 V Prog-SB3 V
Note: Symbol signifies a negative pulse and the command is asserted during the low state of PROG#/ALE input. All other combinations of
the above input pins are invalid and may result in unexpected behaviors.
Note: V
= Input Low Voltage; VIH = Input High V oltage; V
IL
AH = Address high order byte; DI = Data Input; DO = Data Output
IH1 IH1 IH1 IH1 IH1 IH1 IH1 IH1 IH1 IH1 IH1 IH1
V
IL
V
IL
V
IL
V
IL
V
IL
V
IL
V
IL
V
IL
V
IL
V
IL
V
IL
V
IL
ALE EA# P3[7] P3[6] P2[7] P2[6] P0[7:0]
V
IH
V V V V
V
IH
V V V V V V
V
V
IH1
V
IH
V
IH
V
IH
V
IH
V
IH
V
IH
V
IH
V
IH
V
IH
V
IH
V
IH
V
IH
= Input High Voltage (XTAL, RST); X = Don’t care; AL = Address low order byte;
V
IL
V
IH
V
IH
V
IH
V
IH
V
IH
V
IH
V
IH
V
IH
V
IH
V
IL
V
IL
V
IL
V
IL
V
IH
V
IL
V
IH
V
IH
V
Il
V
Il
V
IL
V
IH
V
IL
V
IH
V
IL IL IL IH IH IL
Il
Il IL IH IH IL
IL
V
IL
V
IH
V
IH
V
IL
V
IL
V
IH
V
IH
V
IH
V
IH
V
IH
V
IH
DO AH AL
DI AH AL
DO AH AL
P3[5:4] P2[5:0] P1[7:0]
XX X XX X XAHAL
X55H X XA5H X X5AH X XX X XX X XX X
T4-1.4 384
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
24
Page 25
FlashFlex51 MCU SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
TABLE 4-2: EXTERNAL HOST MODE COMMANDS FOR SST89 E554/SST 89V 554
PROG#/
Operation RST PSEN#
Read-ID V Chip-Erase V Block-Erase V Sector-Erase V Byte-Program V Byte-Ver ify (Read) V Prog-SC0 V Prog-SC1 V Prog-SB1 V Prog-SB2 V Prog-SB3 V
Note: Symbol signifies a negative pulse and the command is asserted during the low state of PROG#/ALE input. All other combinations of
the above input pins are invalid and may result in unexpected behaviors.
Note: V
= Input Low Voltage; VIH = Input High V oltage; V
IL
AH = Address high order byte; DI = Data Input; DO = Data Output; A[15:13] = 0xxb for Block 0 and A[15:13] = 111b for Block 1
IH1 IH1 IH1 IH1 IH1 IH1 IH1 IH1 IH1 IH1 IH1
V
IL
V
IL
V
IL
V
IL
V
IL
V
IL
V
IL
V
IL
V
IL
V
IL
V
IL
ALE EA# P3[7] P3[6] P2[7] P2[6] P0[7:0]
V
IH
V V V V
V
IH
V V V V V
V
V
IH1
V
IH
V
IH
V
IH
V
IH
V
IH
V
IH
V
IH
V
IH
V
IH
V
IH
V
IH
= Input High Voltage (XTAL, RST); X = Don’t care; AL = Address low order byte;
V
IL
V
IH
V
IH
V
IH
V
IH
V
IH
V
IH
V
IH
V
IH
V
IL
V
IL
V
IL
V
IL
V
IH
V
IL
V
IH
V
IH
V
IL
V
IL
V
IH
V
IL
V
IH
V
IL IL IL IH IH IL IL IL IH IH IL
IL
V
IL
V
IH
V
IH
V
IL
V
IL
V
IH
V
IH
V
IH
V
IH
V
IH
DO AH AL
DI AH AL
DO AH AL
P3[5:4] P2[5:0] P1[7:0]
XX X X A[15:13] X XAHAL
X5AH X X AAH X XX X XX X XX X
T4-2.0 384
XTAL2
Ready/Busy#
Address Bus
A15-A14
Flash
Control Signals
XTAL1
A14 A15
V
V
SS
DD
Port 0
0 1
2 3
4 5
6 7
Port 2
Port 3
Port 1
EA# ALE /
PROG#
RST
PSEN#
0 6
7 0
1 2 3
4 5
6 7 0
6 7
Input/ Output Data Bus
Address Bus A13-A8
Flash Control Signals
Address Bus A7-A0
384 ILL F01.1
FIGURE 4-1: I/O PIN ASS IG NM ENT S FOR EXTERNAL HOST MODE
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
25
Page 26
FlashFlex51 MCU
SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
4.1.1 Product Identification
The Read-ID command accesses the Signature Bytes that identify the device and the m anufacturer as SST. External programmers primarily use these Signature Bytes in the selection of programming algorithms. The Read-ID com­mand is selected by the command c ode of 0H on P3[7:6 ] and P2[7:6]. See Figure 4-2 for timing waveforms.
TABLE 4-3: S
Manufacturer’s ID 30H BFH Device ID
SST89E564 31H 93H SST89V564 31H 92H SST89E554 31H 9BH SST89V554 31H 9AH
IGNATURE BYTES
Address Data
T4-3.4 384
4.1.2 Arming Command
An arming command sequence must take place before any External Host Mode sequence command is recog­nized by the device. This prevents accidental trigg ering of External Hos t Mode Comman ds due to nois e or pro gram­mer error. The arming command is as follows:
1. PSEN# goes low while RST is high. This will get the machine in External Host Mode, re-configuring the pins, and turning on the on-chip oscillator.
2. A Read-ID command is issued, and after 1 ms the External Host Mode commands can be issued.
After the above sequence, all other Exte rnal Host Mode commands are enabled. Before the Read-ID command is received, all other External Host Mode commands received are igno red.
4.1.3 Detail Explanation of the External Host Mode Commands
The External Host Mode commands are Read-I D, Chip­Erase, Block-Erase, Sector-Erase, Byte-Program, Byte­Verify, Prog-SB1, Prog-SB2, Prog-SB3, Prog-SC0, Prog­SC1, Select-Block0, Select-Block1. See T ables 4-1 and 4-2 for all signal logic assignments, Figure 4-1 for I/O pin assignments, and Table 4-7 for the timing parameters. The critical timing for all Erase and Program commands is gen­erated by an on-chip flas h me mo ry contro ller. The high-t o­low transition of the PROG # signal initiates the Erase or Program commands, which are synchronized internally. The Read comman ds are asynchronous read s, indepen­dent of the PROG# signal level.
Following is a detailed description of the External Host Mode commands:
The Select-Block0 com mand enables Block 0 to be pro­grammed in Exter nal Host Mode. Once this co mmand is ex e cu te d , al l subsequent External Host Commands wil l be directed at Block 0. S ee Figure 4-3 for timing waveforms. This command app lies to SS T8 9E56 4/SST 89V 564 on ly.
The Select-Block1 command enables Block 1 (8 KByte Block) to be programmed. Once this command is exe­cuted, all subsequ ent External Host Command s that are directed to the address range below 2000H will be directed at Block 1. The Sele ct-Block1 command only a ffects the lowest 8 KByte of the program address space. For addresses greater than or equal to 2000H, Block 0 is accessed by default. Upon entering External Host Mode, Block 1 is selected by default. Se e Figure 4-3 for timing waveforms. This command applies to SST89E564/ SST89V564 only.
The Chip-Erase, Block-Erase, and Sector-Erase com­mands are used for erasing all or part of the memory array. Erased data bytes in the memory array will be erased to FFH. Memory locations that are to be pro­grammed must be in the erase d state pr ior to program ­ming.
The Chip-Erase command erases all bytes in both memory blocks, regardless of any previous Select-Block0 or Select­Block1 commands. Chip-Erase ignores the Security Lock status and will erase the Security Lock, returning the device to its Unlocked state. The Chip-Erase command will also erase the SC0 bit. Upon c ompletion of Chip-Erase com­mand, Block 1 will be the selected block. See Figure 4-4 for timing waveforms.
The Block-Erase command erases all bytes in the selected memory blocks. This command will not be executed if the security lock is enabled. The selection of the memory block to be erased is d etermined by t he prior execution Selec t­Block0 or Select-Bl ock1 command. Se e Figur e 4-6 for the timing waveforms.
The Sector-Erase c ommand erases all of the bytes in a sector. The sector size for the fla sh memory is 128 B ytes. This command wi ll not be executed if the Sec urity lock is enabled. See Figure 4-7 for timing waveforms.
The Byte-Program command is used for programming new data into the memory array. Programming will not take place if any security locks are enabled. Se e Figure 4-8 for timing waveforms.
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
26
Page 27
FlashFlex51 MCU SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications The Byte-Verify command allows the user to verify that the
device correctly performed an Erase or Program com­mand. This comm an d wi ll b e d is a bled if any sec u r it y l ocks are enabled. See Figure 4-11 for timing waveforms.
The Prog-SB1, Prog-SB2, Prog-SB3 commands program the security bits, the functions of these bits are described in the Security Lock secti on an d al s o i n Table 8-1. Once pro­grammed, these bits can only be erased through a Chip­Erase command. See Figure 4-9 for timing waveforms.
Prog-SC0 comma nd pr ograms SC0 b it, whi ch de ter min es the state of SFCF[0] out of reset. Once programmed, SC0 can only be re stored to a n erased state v ia a Chip- Erase command. See Figure 4-10 for timing waveforms.
Prog-SC1 comma nd pr ograms SC1 b it, whi ch de ter min es the state of SFCF[1] out of reset. Once programmed, SC1 can only be re stored to a n erased state v ia a Chip- Erase command. See Figure 4-10 for timing waveforms. Prog­SC1 is for SST89E554/SST89V554 only .
4.1.4 Externa l Host Mode Clock Source
In External Host Mode, an internal oscillator will provide clocking for the device. The on-chip oscillator will be turned on as the device enters External Host Mode; i.e. when PSEN# goes low while RST is high. Dur ing Exter nal Host Mode, the CPU core is held in reset. Upon exit from Exter­nal Host Mode, the internal oscillator is turned off.
4.1.5 Flash Operation Status Detection Via External Host Handshake
The device provides two meth ods for an external host to detect the completi on of a flash me mory operatio n to opt i­mize the Program or Erase time. The e nd of a fla sh me m­ory operation cycle can be detected by:
1. monitoring the Ready/Busy# bit at P3[3];
2. monitoring the Data# Polling bit at P0[3].
4.1.5.2 Data# Polling (P0[3])
During a Program op eration, any attempts to read (Byt e­Verify), wh ile the device is busy, will receive the comple ­ment of the data of the last byte loaded (logic low, i.e. “ 0” for an erase) on P0[3] with the rest of the bits “0”. During a Pro­gram operation, the Byte-Verify command is reading the data of the last byte loade d, not the data at the addres s specified.
4.1.6 Step-by-step instructions to perform External Host Mode commands
To program data into the memory array, apply power supply voltage (V
) to VDD and RST pins, and per-
DD
form the following steps:
1. Maintain RST high and set PSEN# from logic high to low, in sequence according to the appropriate timing diagram.
2. Raise EA# Hig h (V
).
IH
3. Issue Read-ID command to enable the External Host Mode.
4. Verify that the memory blocks or sectors for pro­gramming is in the erased state, FFH. If they are not erased, then erase them using the appropriate Erase command.
5. Select the memory location using the address lines (P3[5:4], P2[5:0], P1[7:0]).
6. Present the data in on P0[7:0].
7. Pulse ALE/PROG#, observing minimum pulse width.
8. Wait for low to high transition on READY/BUSY# (P3[3]).
9. Repeat steps 5 - 8 until programming is finished.
10. Verify the flash memory contents.
4.1.5.1 Ready/Busy# (P3[3])
The progress of the flash memory programming can be monitored by the Ready/Busy# output signal. P3[3] is driven low, some time after ALE/PROG# goes low during a flash memory operation to indicate the Busy# status of the Flash Control Unit (FCU). P3[3] is driven high when the flash programming o peration is complet ed to indicate th e Ready status .
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
27
Page 28
SST89E564 / SST89V564 / SST89E554 / SST89V554
4.1.7 Flash Memory Programming Timing Diagrams with External Host Mode
T
SU
RST
T
PSEN#
ALE/PROG#
EA#
ES
FlashFlex51 MCU
Preliminary Specifications
T
P2[7:6] ,P3[7:6]
P3[5:4] ,P2[5:0] ,P1
FIGURE 4-2: R
P0
Device ID = 93H for SST89E564
92H for SST89V564 9BH for SST89E554 9AH for SST89V554
EAD-ID
RD
0000b
0030H
BFH
Reads chip signature and identification registers at the addressed location.
T
SU
RST
T
T
ES
ADS
T
PROG
PSEN#
ALE/PROG#
EA#
T
RD
0000b
0031H
Device ID
T
DH
384 ILL F02.3
P3[3]
T
PSB
P3[5:4], P2[5:0] A5H/55H
P3[7:6], P2[7:6]
FIGURE 4-3: S
ELECT-BLOCK1 / SELECT-BLOCK0
1001b
384 ILL F56.1
Enables the selection o f either of the flash memor y blocks prior to issuing a Byte-Verify, B lock-Erase, Sector­Erase, or Byte-Program. These commands apply to SST89E564/SST89V564 only .
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
28
Page 29
FlashFlex51 MCU SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
T
SU
RST
T
ES
PSEN#
T
ADS
ALE/PROG#
T
PROG
EA#
P3[3]
T
DH
T
CE
P3[7:6], P2[7:6]
0001b
FIGURE 4-4: CHIP-ERASE
Erases both flash memory blocks. Security lock is ignored and the security bits are erased too.
T
SU
RST
T
T
ES
ADS
T
PROG
T
DH
T
BE
PSEN#
ALE/PROG#
EA#
P3[3]
384 ILL F03.1
P3[7:6], P2[7:6] 1101b
384 ILL F04.2
FIGURE 4-5: B
LOCK-ERASE FOR SST89E56 4/SST89V 564
Erases one of the flash memory blocks, if the security lock is not activated on that flash memory block.
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
29
Page 30
RST
PSEN#
ALE/PROG#
EA#
P3[3]
FlashFlex51 MCU
SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
T
SU
T
ES
T
ADS
T
PROG
T
DH
T
BE
P3[7:6], P2[7:6]
P3[5:4], P2[5:0]
1101b
AH
FIGURE 4-6: BLOCK-ERASE FOR SS T 89E55 4/SST89V 554
Erases one of the flash memory blocks, if the security lock is not activated on that flash memory block.
T
SU
RST
T
T
ES
ADS
T
PROG
T
DH
PSEN#
ALE/PROG#
EA#
P3[3]
384 ILL F21.1
T
SE
P3[7:6], P2[7:6]
P3[5:4], P2[5:0]
P1
FIGURE 4-7: S
ECTOR-ERASE
1011b
AH
AL
384 ILL F05.1
Erases the addressed sector if the security lock is not activated on that flash memory block.
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
30
Page 31
FlashFlex51 MCU SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
T
SU
RST
T
T
ES
ADS
T
PROG
PSEN#
ALE/PROG#
EA#
P3[3]
P3[5:4], P2[5:0]
AH
T
DH
T
PS
P1
P0
P3[7:6], P2[7:6]
AL
DI
1110b
384 ILL F06.2
FIGURE 4-8: BYTE-PROGRAM
Programs the addressed cod e byte if the byte location has be en successfully erased and not yet programmed . Byte-Program operation is only allowed when the security lock is not activated on that flash memory block.
T
SU
RST
T
T
ES
ADS
T
PROG
T
DH
PSEN#
ALE/PROG#
EA#
P3[3]
T
PS
P3[7:6], P2[7:6]
FIGURE 4-9: P
ROG-SB1 / PROG-SB2 / PROG-SB3
1111b / 0011b / 0101b
384 ILL F49.2
Programs the Security bits SB1, SB2 and SB3 respectively . Only a Chip-Erase will erase a programmed security bit.
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
31
Page 32
SST89E564 / SST89V564 / SST89E554 / SST89V554
T
SU
RST
T
T
ES
ADS
T
PROG
PSEN#
ALE/PROG#
EA#
P3[3]
P3[5:4], P2[5:0] 5AH / AAH
FlashFlex51 MCU
Preliminary Specifications
T
DH
T
PS
P3[7:6], P2[7:6]
1001b
384 ILL F52.5
FIGURE 4-10: PROG-SC0 / PROG-SC1
Programs the star t-up configuration bit SC0/SC1. O nly a Chip-Erase will erase a programmed SC0/SC1 bit. Prog-SC1 applies to SST89E554/SST89V554 only.
T
SU
RST
T
ES
PSEN#
ALE/PROG#
EA#
T
OA
P3[7:6], P2[7:6]
P0
P1
T
AHA
DO
AL
1100b
T
ALA
P3[5:4], P2[5:0]
FIGURE 4-11: B
YTE-VERIFY
AH
384 ILL F08.1
Reads the code byte from the addres sed flas h memory location if the secur ity lock is not act ivated on that flas h memory block.
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
32
Page 33
FlashFlex51 MCU SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
4.2 In-Application Programming Mode
The device offers either 72 or 40 KByte of In-Application Programmable flash memory. During In-Application Pro­gramming, the CPU of the microcontroller enters IAP Mode. The two blocks of flash me mory allow the CPU to execute user code from one block, while the other is being erased or reprogrammed concu rre ntly. The CPU may also fetch code from an external memory while all internal flash is being reprogrammed. The mailbox registers (SFST, SFCM, SFAL, SF AH, SFDT and SFCF) located in the Spe­cial Function Register (SFR), control and monitor the device’s erase and program process.
Table 4-6 outlines the commands and their associated mailbox re gister settings .
4.2.1 In-Application Programming Mode Clock Source
During IAP Mode, both the CPU core and the flash control­ler unit are dri ven off th e external clock. However, an inter­nal oscillator will provide timing references for Program and Erase operations. The inte rnal oscill ator is only tur ned on when required, and is turned off as soon as the flash oper­ation is compl eted.
4.2.2 Memory Bank Selection for In-Application Programming Mode
With the addressing ran ge limited to 16 bit, only 64 KByte of program address sp ace is “visible” at a ny one time. As shown in Ta bl e 4-4, Bank Selection (the c onfiguration of EA# and SFCF[1:0]), allows Block 1 memory to be overlaid on the lowest 8 KByte of Block 0 memory, making Block 1 reachable. The same c oncept is employed to allow both Block 0 and Block 1 flash to be acces sible to IAP opera­tions. C ode fr om a b lo c k th at is not vi sib le ma y not be u sed
as a source to program another address. However , a b loc k that is not “visible” m ay be programmed by code from th e other block through mailbox registers.
The device allows IAP code in one block of memory to pro­gram the other block of memory, but may not program any location in the sam e block. If an IAP operation origi nates physically from Block 0, the target of this operation is implic­itly defined to be in Blo ck 1. If the IAP op eratio n or igi nates physically from Block 1, then the target address is implicitly defined to be in Block 0. If the IAP operation originates from External program space, then, the target will depend on the address and the state of Bank Select.
4.2.3 IAP Enable Bit
The IAP Enable Bit, SFCF[6], e nables In-Application Pr o­gramming mode. Until this bi t is set all flash pr ogramming IAP commands will be ignored.
4.2.4 In-Application Programming Mode Commands
All of the following commands c an only be initiat ed in the IAP Mode. In all situations, wri ting the control byte to the SFCM register will initiate all of the operations. All com­mands will not be enabled if the security locks are enabled on the selected me mory bloc k.
The Program command is for programming new data int o the memory array. The portion of the memory array to be programmed should be in the erased state, FFH. If the memory is not erased, it should first be erased with an appropriate Erase command. Warning: Do not attempt to
write (program or erase) to a block that the code is cur­rently fetching from. This will cause unpredictable pro­gram behavior and may corrupt program data.
The Block-Erase command erase s all bytes in one of the two memory blocks. The s elect ion of the memory block to be erased is determined by the source of Block-Erase Command, as defined in T abl e 4-4.
TABLE 4-4: IAP A
EA# SFCF[1:0] Address of IAP Inst. Target Addres s Block Being Programmed
1 00 >= 2000H (Block 0) >= 2000H (Block 0) None 1 00 >= 2000H (Block 0) < 2000H (Block 1) Block 1 1 00 < 2000H (Block 1) Any (Block 0) Block 0 1 01, 10, 11 Any (Block 0) >= 2000H (Block 0) None 1 01, 10, 11 Any (Block 0) < 2000H (Block 1) Block 1 0 00 From external >= 2000H (Block 0) Block 0 0 00 From external < 2000H (Block 1) Block 1 0 01, 10, 11 From external Any (Block 0) Block 0
1. No operation is performed because code from one block may not program the same originating block
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
DDRESS RESOLUTION FOR SST89E564/SST89V564
1
1
T4-4.5 384
33
Page 34
FlashFlex51 MCU
SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
The Sector-Erase c ommand erases all of the bytes in a sector. The sector size for the flash memor y Blocks is 12 8 Bytes. The selection of the sector to be erased is deter­mined by the contents of SFAH and SF AL.
The Byte-Program comm and programs data into a s ingle byte. The address is deter m ined by the contents of SFAH and SFAL. The data byte is in SFDT .
The Byte-Verify command allows the user to verify that the device has correctly performed an Erase or Program com­mand.
Byte-Verify command returns th e data byte i n SFDT if the command is successful. The user is required to check that the previous flash operation has fully completed before issuing a Byte- Verify. By te-Verify comman d execution time is short enough that there is no need to poll for command completion and no interrupt is generated.
Prog-SB3, Prog-SB2, Prog-SB1 commands are used to program the Secur ity bits (see Table 8-1). Comp letion of any of these commands, the security options will be updated immediately.
Security bits previously in un-programmed state can be programmed by these commands. Prog-SB3, Prog-SB2 and Prog-SB1 commands should only reside in Block 1.
Prog-SC0 comman d is used to p rogram the SC0 bi t. This command only chang es the SC0 bit a nd has no effect on BSEL bit until after a reset cycle.
SC0 bit previously in un-programmed state can be pro­grammed by this command. The Prog-SC0 command should reside only in Bl ock 1.
.
Prog-SC1 comman d is used to p rogram the SC1 bi t. This command only chang es the SC1 bit a nd has no effect on BSEL bit until after a reset cycle.
SC1 bit previously in un-programmed state can be pro­grammed by this command. The Prog-SC1 command should reside only in Block 1.
There are no IAP counterparts for the External Host com­mands Select-Block0 and Select-Block1.
4.2.5 Polling
A command that uses the polling method to detect flash operation completi on s hould poll on the FLA SH_BUS Y bit (SFST[2]). When FLASH_BUSY de-asserts (logic 0), the device is ready for the next operation.
MOVC instruction may als o be used for verifi cation of th e Programming and Erase operation of the flash memory. MOVC instruction will fail if it is directed at a flash block that is still busy.
4.2.6 Interrupt Termination
If interrupt ter mination is selected, (SFCM[7] is set), the n an interrupt (INT1) will be generated to indicate flash opera­tion completion. Under this condition, the INT1 becomes an internal in terrupt s ource. The INT 1# pin can now be us ed as a general purp ose po rt pin and it ca nnot be the so urce of External Interrupt 1 during In-Application Programming.
In order to use an interrupt to signal flash operation termi­nation. EX1 and E A bi ts of IE r egi ster mus t be s et. The IT1 bit of TCON register must also be set for edge trigger detection.
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
34
Page 35
FlashFlex51 MCU SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
TABLE 4-5: IN-APPLICATION PROGRAMMING MODE COMMANDS1 FOR SST89 E564/S ST89V5 64
Operation SFCM [6:0]
Block-Erase Sector-Erase Byte-Program Byte-Ver ify (Read) Prog-SB1 Prog-SB2 Prog-SB3 Prog-SC0
1. SFCF[6]= 1 enables IAP commands; SFCF[6] =0 disables IAP commands.
2. Interrupt/Polling enable for flash operation completion
3. Refer to Table 4-4 for address resolution
4. X can be V
5. AH = Address high order byte
6. AL = Address low order byte
7. DI = Data Input
8. DO = Data Output
9. Instruction must be located in Block 1
3
3
3
3 9 9 9 9
SFCM[7] =1: Interrupt enable for flash operation completion
All other values are in hex
0: polling enable for flash operation completion
or VIH, but no other value.
IL
2
0DH 55H X 0BH X AH 0EH DI 0CH DO
SFDT [7:0] SFAH [7:0] SFAL [7:0]
4
5
7
8
AH AL
AH AL 0FH AAH X X 03H AAH X X 05H AAH X X 09H AAH 5AH X
AL
X
6
T4-5.8 384
.
TABLE 4-6: IN-APPLICATION PROGRAMMING MODE COMMANDS1 FOR SST89 E554/S ST89V5 54
Operation SFCM [6:0]
Block-Erase Sector-Erase Byte-Program Byte-Ver ify (Read) Prog-SB1 Prog-SB2 Prog-SB3 Prog-SC0 Prog-SC1
1. SFCF[6]= 1 enables IAP commands; SFCF[6] =0 disables IAP commands.
2. Interrupt/Polling enable for flash operation completion
3. Refer to Table 4-4 for address resolution
4. SFAH[7]=0: Selects Block 0; SFAH[7:5] = 111b selects Block 1
5. X can be VIL or VIH, but no other value.
6. AH = Address high order byte
7. AL = Address low order byte
8. DI = Data Input
9. DO = Data Output
10. Instruction must be located in Block 1
3
3
3
3 10 10 10 10 10
SFCM[7] =1: Interrupt enable for flash operation completion
0: polling enable for flash operation completion
All other values are in hex
2
0DH 55H AH 0BH X AH 0EH DI 0CH DO
SFDT [7:0] SFAH [7:0] SFAL [7:0]
4 6
8
9
AH AL
AH AL 0FH AAH X X 03H AAH X X 05H AAH X X 09H AAH 5AH X 09H AAH AAH X
X
AL
5
7
T4-6.0 384
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
35
Page 36
FlashFlex51 MCU
SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
TABLE 4-7: F
Parameter
Reset Setup Time T Read-ID Command Width T PSEN# Setup Time T Address, Command, Data Setu p Time T Chip-Erase Time T Block-Erase Time T Sector-Erase Time T Program Setup Time T Address, Command, Data Hold T Byte-Program Time Select-Block Program Time T Security bit Program Time T Verify Command Delay Time T Verify High Order Address Delay Time T V eri fy Lo w Ord er Addres s Delay Time T
1. Program and Erase times will scale inversely proportional to programming clock frequency.
2. All timing measurements are from the 50% of the input to 50% of the output.
3. Each byte must be erased before programming.
LASH MEMORY PROGRAMMING/VERIF IC A TION PARAMETERS
1,2
3
Symbol Min Max Units
SU RD
ES
ADS
CE
BE SE
PROG
DH
T
PB
PSB
PS
OA AHA ALA
s 1 µs
1.125 µs 0ns
1.2 µs 0ns
125 ms
100 ms
30 ms
50 µs
500 ns
80 µs 50 ns 50 ns 50 ns
T4-7.5 384
5.0 TIMERS/COUNTERS
The device has three 16 -bit regist ers that c an be used as either timers or event counters. The three Timers/Counters are denoted Timer 0 (T0), Timer 1 (T1) , and Time r 2 (T2). Each is design ated a pair of 8-bit regi sters in the SFRs. The pair consists of a most significant (high) byte and least significant (low) byte. The respective registers are TL0, TH0, TL1, TH1, TL2, and TH2.
6.0 SERIAL I/O
6.1 Enhanced Universal Aysnchronous Receiver/Transmitter (UART)
The device Serial I/O port is a full duplex port that allows data to be transmitted and received simultaneously in hardware by the transmit and receive registers, respec­tively, while the software is performing other tasks. The transmit and receive registers are both located in the Serial Data Buffer ( SBUF) special function register. Writ­ing to the SBUF register loads the transmit register, and reading from the SBUF register obtains the cont ents of the receive regi ster.
The UART has four modes of operation which are selected by the Serial Port Mode Specifier (SM0 and SM1) bits of the Serial Port Control (SCON) special function register. In all four modes, transmis sion is initiated by any instructio n
that uses the SBUF register as a destination register. Reception is initiated in mode 0 when the Receive Interrupt (RI) flag bit of the Serial Port Control (SCON) SFR is cleared and the Reception Enable/ Disable (REN) bit of the SCON register is set. Reception is initiated in the other modes by the incoming start bit if the REN bit of the SCON register is set.
6.1.1 Framing Error Detection
Framing Error Detection allows the se ria l por t to au to­matically check for valid stop bits in Mo des 1, 2 or 3. If a stop bit is missing the Framing Error bit (F E) will be set. The software can then check this bit after a recep­tion to detect communication errors. The FE bit must be cleared by software.
The FE bit is loc ated in SCON and sh ares the same bit address as SM0. The SMOD0 bit located in the PCON reg­ister determines which of these two bits is accessed. When SMOD0 = 0, SCON[7] will act as SM0. When SMOD0 = 1, SCON[7] will act as FE.
6.1.2 Automatic Address Recognition
Automatic Address Re cognition (AAR) reduces the CP U time required to ser vice th e seri al por t in a multi processor environment. When using AAR, the serial port hardware will only generate an interrupt when it receives its own address, thus eliminating the software overhead required to compare addresses.
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
36
Page 37
FlashFlex51 MCU SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications AAR is only available when using the serial port in either
mode 2 or 3. Setting the SM2 bit in SCON enables AAR. Each slave must have its SM2 bit set when waiting for an address (9th bi t = 1) . The R eceiv e Inte rrupt (R I) fla g will only be set when the recei ved byte matche s eithe r the G iven or Broadcast Address. The slave then clears its SM2 bit to enable reception of data bytes (9th bit = 0) from the master.
The master can selectively communicate with groups of slaves by sending the Given Address. Addressing all slaves is also possible by sending the Broadcas t address. The SADDR and SADEN special function registers define these addresses for each slave.
SADDR specifies a slaves indivi dua l ad dr es s and SADEN is a mask byte that defines don’t-care bits to form the Given address when com bi ned wi th S AD DR. The following is a n exampl e:
UART Slave 1
SADDR = 1111 0001
SADEN = 1111 1010
GIVEN = 1111 0x0x
UART Slave 2
SADDR = 1111 0011
SADEN = 1111 1001
GIVEN = 1111 0xx1
In this example Slave 1 can be distinguished from Slave 2 by using bits 0 and 1. Slave 1 will not respond to an address that ha s bi t 1 s et to 1 wh ile Slave 2 will. S imila r ly,
Slave 2 will not respond to an address that has bit 0 set to 0 while Slave 1 will. Both slaves will respond to an address of 1111 0x01b so this is t he Broa dcast Addre ss. The Broa d­cast Addresses is formed by the logical OR of SADDR and SADEN with 0s treated as don’t-care bits.
6.2 Serial Peripheral Interface (SPI)
The device SPI allows for high-speed ful l-duplex synchro­nous data transfer between the device and o ther compat i­ble SPI devices.
Figure 6-1 shows the correspondence between master and slave SPI devices. The SCK pin is the clock output and input for the master and slave modes, respectively . The SPI clock generator will start following a write to the master devices SPI data register. The written d ata is then shi fted out of the MOSI pin on the master device into the MOSI pin of the slave device. Following a complete transmission of one byte of data, the SPI clock generator i s stopped and the SPIF flag is set. An SPI interrupt request will be gener­ated if the SPI interrupt enable bit (SPIE) and the serial port interrupt enable bit (ES) are both set.
An external master dr ives the Slave Select inpu t pin, S S#/ P1[4], low to select the SPI module as a slave. If SS#/P1[4] has not been driven low, then the slave SPI unit is not active and the MOSI/P1[5] port can also be used as an input port pin.
CPHA and CPOL control the phase and polarity of the SPI clock. Figures 6-2 and 6-3 show the four possible combina­tions of these two bits.
MSB MASTER LSB
MISO MISO
8-bit Shift Register
MOSI MOSI
SPI
Clock Generator
FIGURE 6-1: SPI M
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
ASTER-SLAVE INTERCONNECTION
SCK SCK
SS# SS#
V
IH
37
MSB SLAVE LSB
8-bit Shift Register
384 ILL F53.1
Page 38
FlashFlex51 MCU
SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
SCK Cycle #
(for reference)
SCK (CPOL=0) SCK (CPOL=1)
MOSI
(from Master)
MISO
(from Slave)
SS# (to Slave)
* Not defined, but normally MSB of next received byte
12345678
MSB
MSB
6
654321LSB
5
FIGURE 6-2: SPI TRANSFER FORMAT WITH CPHA = 0
SCK Cycle #
(for reference)
SCK (CPOL=0)
12345678
4 3 2 1 LSB
*
384 ILL F54.1
SCK (CPOL=1)
(from Master)
MOSI
MISO
(from Slave)
SS# (to Slave)
* Not defined but normally LSB of previously transmitted character
MSB
MSB
*
6
654321 LSB
5
FIGURE 6-3: SPI TRANSFER FORMAT WITH CPHA = 1
4 3 2 1 LSB
384 ILL F55.1
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
38
Page 39
FlashFlex51 MCU SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
7.0 WATCHDOG TIMER
The devic e off ers a pro gram mable Wa tchdog Ti mer (WDT ) for fail safe protection against software dea dlock an d aut o­matic recovery.
To protect th e system a gainst sof tware deadlo ck, the user software must refresh the W DT w ithin a us er-d efine d tim e period. If the software fails to do this perio dical refresh , an internal hardware reset will be initiated if enabled (WDRE=
1). The software can be designed such that the WDT times out if the program does not work properly .
The WDT in the device uses the syst em cl ock (XTAL1) as its time base. So strictly speaking, it is a watchdog counter rather than a watchdog timer. The WDT registe r will i ncre­ment every 344064 cr ys tal clocks. The u pper 8- bits of th e time base register (WDTD) are used as the reload register of the WDT.
344064
clks
WDT Upper Byte
Ext. RST
CLK (XTAL1)
Counter
The WDTS flag bit is set by WDT overflow and is not changed by WDT reset. User software can clear WDTS by writing “1” to it.
Figure 7-1 provides a block diagram of the WDT . Two SFRs (WDTC and WDTD) control watchdog timer operation. During idle mode, WDT operation is temporarily sus­pended, and resumes upon an interrupt exit from idle.
The time-out period of the WDT is calculated as follows:
Period = (255 - WDT) * 344064 * 1/f
OSC
where WDT is the value loaded in to the WDT regi s ter and
is the oscillator frequency.
f
OSC
WDT Reset
Internal Reset
FIGURE 7-1: B
WDTC
WDTD
LOCK DIAGRAM OF PROGRAMMA BLE WATCHDOG TIMER
384 ILL F10.2
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
39
Page 40
FlashFlex51 MCU
SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
8.0 SECURITY LOCK
The Security Lock protects against software piracy and prevents the contents of the flash from being read by unau­thorized parties. It also protects against code corruption resulting from acc idental erasing and pro gramming to the internal flash memory. There are two different types of security locks i n the d evic e security loc k system: Hard Loc k and SoftLock.
8.1 Hard Lock
When Hard Lock is activated, MOVC or IAP instructio ns executed from an unlocked or SoftLocked program address space, are disabled from reading code bytes in Hard Locked memory blocks (See Table 8-2). Hard Lock can either lock both flash memory blocks or just lock the 8 KByte flash memory block (Block 1). All External Host an d IAP commands except for Chip-Erase are ignored for memory blocks that are Hard Locked.
8.2 SoftLock
SoftLoc k allow s flash cont ents to be alt ered unde r a secure environment. This lock option allows the user to update program code in the SoftLocked memory block through In­Application Programming Mode under a predetermined secure environmen t. For example, if Block 1 ( 8K) m em or y block is locked (Hard Locked or SoftLocked), and Block 0 (64K for SST89E564/SS T89V564) memor y block is Soft­Locke d, code residing in Bloc k 1 can prog ra m Bloc k 0. The following IAP mode commands issued through the com-
mand mailbox register, SFCM, executed from a Locked (Hard Locked or SoftLocked) block, can be operated on a SoftLocked block: Block-Erase, Sector-Erase, Byte-Pro­gram and B yte-Verify.
In External Host Mode, SoftLock behaves the sam e as a Hard Lock.
8.3 Security Lock Status
The three bits that indicate the device security lock status are located in S FST [7: 5]. A s shown in Fig ur e 8­1 and Table 8-1, the three s ec urity lock bits control th e lock status of the primary and secondary blocks of memory. There are four distinct levels of security lock status. In the first level, none of the secur ity lock bits are programmed and both blocks are unlo cked. In the second level, although both blocks are now locked and cannot be programmed, they are available for read operation via Byte-Verify. In t he t hir d level, three differ­ent options are available: Block 1 Hard Lock / Block 0 SoftLock, SoftLock on both blocks, and Hard Lock on both blocks. Locking both blocks is the same as Level 2 except read operation isn’t available. The fourth level of security is the most secure level. It doesn’t allow read/program of internal memory or boot from external memory. Please note that for unused combinations of the security lock bits, the chip will default to Level 4 status. For details on how to program the security lock bits refer to the External Host Mode and In-Application Programming Section.
Level 1
Level 2
UPU/SS
UUU/NN
PUU/SS
UUP/LS
Level 3
UPP/LL PPU/LS
FIGURE 8-1: S
Notes: P = Programmed (Cell logic state = 0), U = Unprogrammed (Cell logic state = 1), N = Not Locked, L = Hard Locked, S = SoftLocked.
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
ECURITY LOCK LEVELS
PUP/LL UPP/LL
PPP/LL
40
Level 4
384 ILL F38.2
Page 41
FlashFlex51 MCU SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
TABLE 8-1: SECURITY LOCK OPTIONS
Security Lock Bits
Level
1 000 U U U Unlock Unlock No Security Features are Enabled. 2 100 P U U SoftLock SoftLock MOVC instructions executed from
3 011
101
U P
010 U P U SoftLock SoftLock Level 2 plus Verify disabled. Code in
110 001
P U
4 111 P P P Hard Lock Hard Lock Same as Level 3 Hardlock/Hardlock,
1. P = Programmed (Cell logic state = 0), U = Unprogrammed (Cell logic state = 1).
2. SFST[7:5 ] = Security Lock Decoding Bits (SECD)
1,2 1
SB3
1
Security Status of:
Block 1 Block 0
Security TypeSFST[7:5] SB1 SB2
external program memory are dis­abled from fetching code bytes from internal memory, EA# is sampled and latched on Reset, and further pro­gramming of the flash is disabled.
P U
P
Hard Lock Hard Lock Level 2 plus Verify disabled, both
P
blocks locked.
Block 1 ma y prog ram Blo ck 0 an d vice versa.
P U
U
Hard Lock SoftLock Level 2 plus Verify disabled. Code in
P
Block 1 may program Block 0.
but MCU will start code execution from the internal memory regardless of EA#.
T8-1.7 384
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
41
Page 42
SST89E564 / SST89V564 / SST89E554 / SST89V554
TABLE 8-2: SECURITY LOCK ACCESS TABLE
Source
Level SFST[7:5]
4
(Hard Lock on both blocks)
111b
011b/101b
(Hard Lock on both blocks)
001b/110b
(Block 0 = SoftLock, Block 1 = Hard Lock)
3
010b
(SoftLock on both blocks)
2
(SoftLock on both blocks)
1
1. Location of MOVC instruction
2. External Host Byte-Verify access does not depend on a source address.
100b
000b
(Unlock)
Address
Block 0/1
External
Block 0/1
External
Block 0
Block 1
External
Block 0
Block 1
External
Block 0
Block 1
External
Block 0
Block 1
External
FlashFlex51 MCU
Preliminary Specifications
External Host
Target
Address
Byte-Verify
1
Allowed
2
Block 0/1 N N Y Y
External N/A N N N
Block 0/1 N N N N
External N/A N N N
Block 0/1 N N Y Y
External N N N Y
Block 0/1 N N N N
External N/A N Y Y
Block 0 N N Y Y Block 1 N N N N
External N/A N N Y
Block 0 N Y Y Y Block 1 N N Y Y
External N/A N N Y
Block 0/1 N N N N
External N/A N Y Y
Block 0 N N Y Y Block 1 N Y Y Y
External N/A N N Y
Block 0 N Y Y Y Block 1 N N Y Y
External N/A N N Y
Block 0/1 N N N N
External N/A N Y Y
Block 0 Y N Y Y Block 1 Y Y Y Y
External N/A N N Y
Block 0 Y Y Y Y Block 1 Y N Y Y
External N/A N N Y
Block 0/1 Y N N N
External N/A N Y Y
Block 0 Y N Y Y Block 1 Y Y Y Y
External N/A N N Y
Block 0 Y Y Y Y Block 1 Y N Y Y
External N/A N N Y
Block 0/1 Y Y N Y
External N/A N Y Y
IAP
Byte-Verify
Allowed
MOVC
Allowed
on 564
MOVC
Allowed
on 554
T8-2.1 384
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
42
Page 43
FlashFlex51 MCU SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
9.0 RESET
A system reset initializes the MCU and begins program execution at program memor y location 0000H. The r eset input for the device is the RST pin. In order to reset the device, a logic level high must be applied to the RST pin for at least two machine cycle s (24 clo cks), after the oscil lator becomes stable. ALE, PSE N# are weakly pulled hi gh dur ­ing reset. During reset, ALE and PSEN# output a high level in order to perform a prop er reset. This level must not be affected by external element. A system reset will not affect the 1 KByte of on-chip RAM while the device is running, however, the contents of the on-chip RAM during power up are indeterminate. Following reset, all Special Function Registers (SFR) return to their reset values outlined in Tables 3-5 to 3-9.
9.1 Power-On Reset
At initial power up, the port pins will be in a random state until the oscill ator has star ted and the internal reset algo­rithm has weakly pulled all pins high. Powering up the
device without a valid reset could cause the MCU to start executing instructions from an indeterminate location. Such undefined states may inadvertently cor­rupt the code in the flash.
When power is applied to the device, the RST pin must be held high long enoug h for the oscilla tor to st art up (usual ly sev eral milliseco nds f or a lo w freq uency crystal), i n addition to two machine cycles for a valid Power-On Reset. An example of a method to extend the RST signal is to imple­ment a RC circuit by connecting the RST pin to V through a 10 µF capac itor and to VSS through an 8.2K resistor as shown in Figure 9-1. Note that if an RC circuit is being used, provi sion s s hou ld b e m ade to ensure th e V rise time does not exceed 1 mil lisecond and the osci llator start-up time doe s not e x ceed 10 millis econd s.
For a low frequency oscillator wit h slow start-up tim e the reset signal must be extended in order to a ccount for the slow start-up ti me. This method maintains the necessar y relationship between V
and RST to avoid programming
DD
at an indeterm inate locati on, which may cause corr uption in the code of the fl ash. For more information on sy stem level design techniques, please r ev iew Design Consider­ations for the SST FlashFlex51 Family Microcontroller Application Note.
DD
DD
V
DD
10µF
8.2K
FIGURE 9-1: P
+
-
C
2
C
1
OWER-ON RESET CIRCUIT
RST
SST89E5x4/V5x4
XTAL2
XTAL1
V
DD
384 ILL F31.2
9.2 Software Reset
The software reset is executed by changing SFCF[1] (SWR) from “0” to “1”. A software reset will reset the pro­gram counter to address 0000H. All SFR registers will be set to their reset values, except SFCF[1] (SWR), WDTC[2] (WDTS), and RAM data will not be altered.
9.3 Brown-out Detection Reset
The device includes a Brown-out detection circuit to protect the system from severe V
fluctuations. For Brown-out
DD
voltage parameters, please refer to Tables 10-3 and 10-4. Brown-out interr upt ca n be ena bled by setting th e EBO bi t
in IEA register (address E8H, bit 3). If EBO bit is set and a Brown-out conditi on occurs, a Brown-out interr upt will be generated to execute the program at location 0 04BH. It is required that the EB O bit be cleare d by software after the Brown-out interrupt is serviced. Clearing EBO bit when the Brown-out condition is active will properly reset the device.
If Brown-out interrupt is not enabled, a Brown-out conditi on will reset the program to resume execution at location 0000H.
9.4 Interrupt Priority and Polling Sequence
The device suppor ts eight interrupt so urces under a four level priority scheme. Table 9-1 summarizes the polling sequence of the supported interrupts. Note that the SPI serial interface and the UART share the same interrupt vector.
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
43
Page 44
FlashFlex51 MCU
SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
TABLE 9-1: I
Description Interrupt Flag
Ext. Int0 IE0 0003H EX0 PX0/H 1(highest) yes Brown-out BOF 004BH EBO PBO/H 2 no T0 TF0 000BH ET0 PT0/H 3 no Ext. Int1 IE1 0013H EX1 PX1/H 4 yes T1 TF1 001BH ET1 PT1/H 5 no UART/SPI TI/RI/SPIF 0023H ES PS/H 6 no T2 TF2, EXF2 002BH ET2 PT2/H 7 no
9.5 Power-Saving Modes
The device provides three power saving modes of opera­tion for applications where p ower consumption is c ritical. The three power saving modes are: Idle, Power Down and Standby (Stop Clock).
9.5.1 Idle Mode
Idle mode is entered setting the IDL bit in the PCON regis­ter. In Idle mode, the program counter (PC) is stopped. The
NTERRUPT POLLING SEQUENCE
Vector
Address
Interrupt
Enable
The device exits Power Down mode through either an enabled external level sensitive interrupt or a hardware reset. The star t of the int errup t clears the PD bit a nd exits Power Do wn. Holding the external interrupt pin low restarts the oscillator, the signal must hol d low at least 1024 c lock cycles before bringing back high to complete the exit. After exit the interrupt service routine program execution resumes beginning at the instruction immediately following the instruction which invoked Power Down mode. A hard­ware reset starts the device similar to power-on reset.
Interrupt
Priority
Arbitration
Ranking
Wake-Up
Power Down
system clock continues to run and all interrupts and periph­erals remain active. The on-chip RAM and the special func­tion registers hold their data during this mode.
To exit properly out of Power Down, the reset or external interrupt should not be executed before the V restored to its normal operating voltage. Be sure to hold
The device exits Idle mo de through either a s ystem inter­rupt or a hardware reset. Exiting Idle mode via system interrupt, the start of the interrupt clears the IDL bit and
voltage long enough at its normal operating level for
V
DD
the oscillator to restart and stabilize (normally less than 10 ms).
exits Idle mode. After exit the Interrupt Service Routine, the interrupted program resumes execution beginning at the instruction immediately following the instruction which invoked the Idle mode. A ha rdware r ese t starts the device similar to a power-on reset.
9.5.2 Power Down Mode
The Power Down mode is entered by setting the PD bit in the PCON register. In the Power Down mode, the clock is stopped and external interrupts are active for level sensitive interrupts only. T o retain the on-chip RAM and all of the spe­cial function registers’ values, the minim um V
level is 2.0V.
DD
9.5.3 Standby Mode (Stop Clock)
Standby mode is similar to Power Down mode, except that Power Down mode is initiated by a software command and Standby mode is in itiated by extern al hardware gating off the external clock to the device.The on-chip SRAM and SFR data are maintained in Standby mode. The device resumes oper a tio n at t he n ext instruction when the clo ck is reapplied to the part.
T a ble 9- 2 outlines t he diff erent po wer-sa ving mo des, incl ud­ing entry and exit procedures and MCU functionality .
T9-1.2 384
line is
DD
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
44
Page 45
FlashFlex51 MCU SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
TABLE 9-2: POWER SAVING MODES
Mode Initiated by State of MCU Exited by
Idle Mode Software
(Set IDL bit in
PCON)
Power Down
Mode
Standby (Stop
Clock) Mode
External hardware gates OFF the external clock input to the MCU. This gating should be synchronized with an input clock transition (low-to-high or high-to-low).
Software
(Set PD bit in
PCON)
CLK is running. Interrupts, serial port and tim­ers/counters are active. Pro­gram Counter is stopped. ALE and PSEN# signals at a HIGH level during Idle. All registers remain unchanged.
CLK is stopped. On-chip SRAM and SFR data is main­tained. ALE and PSEN# sig­nals at a LOW level during Power Down. External Inter­rupts are only active for level sensitive interrupts , if enabled.
CLK is frozen. On-chip SRAM and SFR data is maintained. ALE and PSEN# are main­tained at the levels prior to the clock being frozen.
Enabled interrupt or hardware reset. Start of interrupt clears IDL bit and exits Idle mode, after the ISR RETI instruc tion, program r esumes execu­tion beginning at the instruction follow­ing the one that invoked Idle mode. A user could consider placing two or three NOP instructions after the instruction that invokes idle mode to eliminate any problems. A hardware reset restarts t he device similar t o a power-on rese t.
Enabled external level sensitive inter­rupt or hardware reset. Start of inter­rupt clears PD bit and exits Power Down mode, after the ISR RETI instruction program resumes execution beginning at the instruction following the one that invoked Power Down mode. A user could consider placing two or three NOP instructions after th e instruction that invokes Power Down mode to eliminate any problems. A hardware reset restarts the de vice s im­ilar to a power-on reset.
Gate ON external clock. Program exe­cution resumes at the instruction fol­lowing the one during which the clock was gated off.
T9-2.6 384
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
45
Page 46
FlashFlex51 MCU
SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
9.6 C lock Input Options
Shown in Figure 9-2 are the input and output of an internal inverting ampli fier (XTAL1, XTA L2), which can be config­ured for use as an on-chip oscillator.
When driving the device from an external clock source, XTAL2 sho uld be left disconnect ed and XTAL1 should be driven.
At star t-up, the external oscillat or may encoun ter a high er capacitive load at XTAL1 due to interaction between the amplifier and its feedback capacitance. However, the capacitance will not exceed 15 pF once the external signal meets the V
and VIH specifications.
IL
9.7 Recommended Capacitor Values for Crystal Oscillator
Crystal manufacturer, supply voltage, and other factors may cause circuit perfor mance to differ from one applica­tion to another. C1 and C2 shou ld be adjusted appropr i­ately for each design. The table be low, sh ows the typical values for C1 and C2 at a given fr equen cy. If following the satisfactory selection of all external components, the circuit is still over driven, a series resistor, Rs, may be added.
RECOMMENDED VALUES FOR CRYSTAL OSCILLATOR
Frequency C1 and C2 RS (Optional)
< 8MHz 90-110pF 100
8-12MHz 18-22pF 200
>12MHz 18-22pF 200
More specific information about on-chip oscillator design can be found in FlashFlex 51 Oscillator Circuit Design Con- siderations Application Note.
Using the On-Chip Oscillator
FIGURE 9-2: O
R
S
C
2
C
1
SCILLATOR CHARACTERISTICS
XTAL2
XTAL1 Vss
EXTERNAL
OSCILLATOR
SIGNAL
External Clock Drive
NC
XTAL2
XTAL1
Vss
384 ILL F12.0
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
46
Page 47
FlashFlex51 MCU SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
10.0 ELECTRICAL SPECIFICATION
Absolute Maximum Stress Ratings (Applied conditions greater than those listed under “Absolute Maximum
Stress Ratings” may cause pe r manent dama ge to the device. This is a stres s rating only and funct ional operatio n of the device at these conditions or conditions greater tha n those defined in the ope rational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.)
Ambient Temperature Under Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55°C to +125°C
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-65°C to + 150°C
Voltage on EA# Pin to V Transient Voltage (<20ns) on Any Other Pin to V Maximum I Maximum I
per I/O Pins P1.5, P1.6, P1.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20mA
OL
per I/O for All Other Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15mA
OL
Package Power Dissipation Capability (T
Through Hole Lead Soldering Temperature (10 Seconds). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300°C
Surface Mount Lead Soldering Temperature (3 Seconds). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240°C
Output Short Circ uit Curr ent
1. Outputs shorted for no more than one second. No more than one output shorted at a time. (Based on package heat transfer limitations, not device power consumption.
Note: This specification contains preliminary information on new products in production.
The specifications are subject to change without notice.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to +14.0V
SS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1.0V to +6.5V
SS
= 25°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5W
a
1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA
10.1 Operation Range
TABLE 10-1: OPERATING RANGE
Symbol Description Min. Max Unit
T
a
V f
OSC
DD
Ambient Temperature Under Bias
Standard 0 +70 Industrial -40 +85 °C
Supply Voltage 2.7 5.5 V Oscillator Frequency
For In-Application Programming
040MHz
0.25 40 MHz
10.2 Reliability Characteristics
TABLE 10-2: RELIABILITY CHARACTERISTICS
Symbol Parameter Minimum Specification Units Test Method
1
N
END
1
T
DR
1
I
LTH
1. This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.
Endurance 10,000 Cycles JEDEC Standard A117 Data Retention 100 Years JEDEC Standard A103 Latch Up 100 + I
DD
mA JEDEC Standard 78
°C
T10-1.1 384
T10-2.0 384
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
47
Page 48
FlashFlex51 MCU
SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
10.3 DC Electrical Characteristics
TABLE 10-3: DC ELECTRICAL CHARACTERISTICS
T
= 0°C TO +70°C OR -40°C TO +85°C, 40MHZ DEVICES; 4.5-5.5V; V
amb
Symbol Parameter Test Conditions Min Max Units
V
IL
V
IH
V
IH1
V
OL
V
OL
V
OL1
V
OH
Input Low Voltage 4.5 < VDD < 5.5 -0.5 0.2VDD - 0.1 V Input High Voltage 4.5 < VDD < 5.5 0.2VDD + 0.9 VDD + 0.5 V Input High Voltage (XTAL1, RST) 4.5 < VDD < 5.5 0.7V Output Low Voltage (Ports 1.5, 1.6, 1.7) VDD = 4.5V
= 16mA 1.0 V
I
Output Low Voltage (Ports 1, 2, 3)
Output Low Voltage (Port 0, ALE, PSEN#)
1
1,3
Output High Voltage (Ports 1, 2, 3, ALE, PSEN#)
4
OL
VDD = 4.5V
= 100µA
I
OL
= 1.6mA
I
OL
IOL = 3.5mA
2 2 2
VDD = 4.5V
= 200µA
I
OL
IOL = 3.2mA
2 2
VDD = 4.5V
= -10µA VDD - 0.3 V
I
OH
= -30µA VDD - 0.7 V
I
OH
IOH = -60µA VDD - 1.5 V
V
OH1
Output Hi gh Voltage (Port 0 in External Bus Mode)
4
VDD = 4.5V
= -200µA VDD - 0.3 V
I
OH
IOH = -3.2mA VDD - 0.7 V V I I I R C I
BOD IL TL LI
RST
IO DD
Brown-out Detection Vo ltage 3.85 4.15 V Logical 0 Input Current (Ports 1, 2, 3) VIN = 0.4V -1 -75 µA Logical 1-to-0 Transition Current (Ports 1, 2, 3)
5
VIN = 2V -650 µA Input Leakage Current (Port 0) 0.45 < VIN < VDD-0.3 ±10 µA RST Pulldown Resistor 40 225 k Pin Capacitance Power Supply Current
6
7
@ 1 MHz, 25°C 15 pF
In-Application Mode
@ 20 MHz 70 mA @ 40 MHz 88 mA
Active Mode
@ 20 MHz 25 mA @ 40 MHz 45 mA
Idle Mode
@ 20 MHz 9.5 mA @ 40 MHz 20 mA
Standby (Stop Clock) Mode T
= 0°C to +70°C 100 µA
amb
T
= -40°C to +85°C 125 µA
amb
Power Down Mode Minimum VDD = 2V
= 0°C to +70°C 40 µA
T
amb
T
= -40°C to +85°C 50 µA
amb
SS
DD
= 0V
VDD + 0.5 V
0.3 V
0.45 V
1.0 V
0.3 V
0.45 V
T10-3.4 384
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
48
Page 49
FlashFlex51 MCU SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
TABLE 10-4: DC ELECTRICAL CHARACTERISTICS
T
= 0°C TO +70°C OR -40°C TO +85°C, 25MHZ DEVICES; 2.7-3.6V; V
amb
Symbol Parameter Test Conditi ons Min Max Units
V
IL
V
IH
V
IH1
V
OL
V
OL
V
OL1
V
OH
Input Low Voltage 2.7 < VDD < 3.3 -0.5 0.7 V Input High Voltage 2.7 < VDD < 3.3 0.2VDD + 0.9 VDD + 0.5 V Input High Voltage (XTAL1, RST) 2.7 < VDD < 3.3 0.7V Output Low Voltage (Ports 1.5, 1.6, 1.7) VDD = 2.7V
= 16mA 1.0 V
I
Output Low Voltage (Ports 1, 2, 3)
Output Low Voltage (Port 0, ALE, PSEN#)
1
1,3
Output High Voltage (Ports 1, 2, 3, ALE, PSEN#)
4
OL
VDD = 2.7V
I
= 100µA
OL
= 1.6mA
I
OL
= 3.5mA
I
OL
VDD = 2.7V
= 200µA
I
OL
= 3.2mA
I
OL
VDD = 2.7V
2 2 2
2 2
IOH = -10µA VDD - 0.3 V
= -30µA VDD - 0.7 V
I
OH
= -60µA VDD - 1.5 V
I
OH
VDD = 2.7V
= -200µA VDD - 0.3 V
I
OH
= -3.2mA VDD - 0.7 V
I
OH
VIN = 2V -650 µA
@ 1 MHz, 25°C 15 pF
V
V I I I R C I
OH1
IL TL LI
DD
BOD
RST IO
Output High Voltage (Port 0 in External Bus Mode)
4
Brown-out Detection Voltage 2.25 2.55 V Logical 0 Input Current (Ports 1, 2, 3) VIN = 0.4V -1 -75 µA Logical 1-to-0 Transition Current (Ports 1, 2, 3)
5
Input Leakage Current (Port 0) 0.45 < VIN < VDD-0.3 ±10 µA RST Pulldown Resistor 225 k Pin Capacitance Power Supply Current
6
7
In-Application Mode 70 mA Active Mode 22 mA Idle Mode 6.5 mA Standby (Stop Clock) Mode T
= 0°C to +70°C 70 µA
amb
T
= -40°C to +85°C 88 µA
amb
Power Down Mode Minimum VDD = 2V
= 0°C to +70°C 40 µA
T
amb
T
= -40°C to +85°C 50 µA
amb
1. Under steady state (non-transient) conditions, IOL must be externally limited as follows: Maximum I Maximum I Maximum I
exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to sink current greater than the
If I
OL
listed test conditions.
2. Capacitive loading on Ports 0 & 2 may cause spurious noise to be superimposed on the V to external bus capacitance discharging into the Port 0 & 2 pins when the pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100pF), the noise pulse on the ALE pin may exceed 0.8V. In such cases, it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.
3. Load capacitance for Port 0, ALE & PSEN#= 100pF, load capacitance for all other outputs = 80pF.
per port pin: 15mA
OL
per 8-bit port: 26mA
OL
total for all outputs:71mA
OL
s of ALE and Ports 1 & 3. The noise due
OL
SS
= 0V
DD
VDD + 0.5 V
0.3 V
0.45 V
1.0 V
0.3 V
0.45 V
T10-4.4 384
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
49
Page 50
FlashFlex51 MCU
SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
4. Capacitive loading on Ports 0 & 2 may cause the V
on ALE and PSEN# to momentarily fall below the VDD - 0.7 specification when
OH
the address bits are stabilizing.
5. Pins of Ports 1, 2 & 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its maximum value when Vin is approximately 2V.
6. Pin capacitance is characterized but not tested. EA# is 25pF (max).
7. See Figures 10-1, 10-2, 10-3 and 10-4 for test conditions. Minimum V
V
DD
I
DD
V
DD
384 ILL F26.2
V
DD
CLOCK SIGNAL
All other pins disconnected
(NC)
XTAL2 XTAL1
V
SS
89x564
V
DD
P0
EA#RST
for Power Down is 2.0V.
DD
(NC)
All other pins disconnected
V
XTAL2 XTAL1
V
SS
DD = 2V
89x564
V
DD
I
V
DD
P0
EA#RST
DD
V
DD
384 ILL F25.2
FIGURE 10-1: IDD TEST CONDITION,
CTIVE MODE
A
V
DD
I
DD
CLOCK SIGNAL
All other pins disconnected
(NC)
XTAL2 XTAL1
V
SS
89x564
V
DD
P0
EA#RST
FIGURE 10-2: IDD TEST CONDITION,
DLE MODE
I
V
DD
384 ILL F24.2
FIGURE 10-3: IDD TEST CONDITION,
OWER-DOWN M OD E
P
V
DD
I
V
DD
P0
EA#RST
DD
(NC)
All other pins disconnected
XTAL2 XTAL1
V
SS
V
DD = 5V
89x564
FIGURE 10-4: IDD TEST CONDITION,
TANDBY (STOP CLOCK) MODE
S
V
DD
384 ILL F33.2
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
50
Page 51
FlashFlex51 MCU SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
10.4 AC Electrical Characteristics
AC Characteristics: (Over Operating Conditions: Load Capacitance for Port 0, ALE#, and PSEN# = 100pF; Load
Capacitance for All Other Outputs = 80pF)
TABLE 10-5: AC E
T
amb
Symbol Parameter
1/T T
LHLL
T
AVLL
T
LLAX
T
LLIV
T
LLPL
T
PLPH
T
PLIV
T
PXIX
T
PXIZ
T
AVIV
T
PLAZ
T
RLRH
T
WLWH
T
RLDV
T
RHDX
T
RHDZ
T
LLDV
T
AVDV
T
LLWL
T
AVWL
T
QVWX
T
WHQX
CLCL
Oscillator Frequency ALE Pulse Width Address Valid to ALE Low
Address Hold After ALE Low
ALE Low to Valid Instr In
ALE Low to PSEN# Low
PSEN# Pulse Width PSEN# Low to Valid Instr In
Input Instr Hold After PSEN# Input Instr Float After PSEN#
Address to Valid Instr In
PSEN# Low to Address Float RD# Pulse Width
Write Pulse Width (WE#) RD# Low to Valid Data In
Data Hold After RD# Data Float After RD#
ALE Low to Valid Data In
Address to Valid Data In
ALE Low to RD# or WR# Low Address to RD# or WR# Low
Data Valid to WR# High to Low Transition
Data Hold After WR#
LECTRICAL CHARACTERISTICS (1 OF 2)
= 0°C TO +70°C OR -40°C TO +85°C, VDD = 2.7-3.6 @25MHZ, 4.5-5.5 @ 40MHZ, VSS = 0
Oscillator
25MHz 40MHz Variable
Min Max Min Max Min Max
040MHz 65 35 2T 15 T
10 T
15 T
10 T
95 4T
55 4T
15 T
10 T
95
60
3T 3T
65 3T
25 3T
- 15 ns
CLCL
- 25 (3V) ns
CLCL
- 15 (5V) ns
CLCL
- 25 (3V) ns
CLCL
- 15 (5V) ns
CLCL
- 65 (3V) ns
CLCL
- 45 (5V) ns
CLCL
- 25 (3V) ns
CLCL
- 15 (5V) ns
CLCL
- 25 (3V)
CLCL
- 15 (5V)
CLCL
- 55 (3V) ns
CLCL
- 50 (5V) ns
CLCL
0ns
35 T
10 T
120 5T
65 5T
- 5 (3V) ns
CLCL
- 15 (5V) ns
CLCL
- 80 (3V) ns
CLCL
- 60 (5V) ns
CLCL
10 10 10 ns
200
120
200
120
110 5T
75 5T
6T 6T
6T 6T
CLCL CLCL
CLCL CLCL
- 40 (3V)
- 30 (5V)
- 40 (3V)
- 30 (5V)
- 90 (3V) ns
CLCL
- 50 (5V) ns
CLCL
00 0 ns
55 2T
38 2T
230 8T
150 8T
270 9T
150 9T
95 145
60 90
85 4T
70 4T
3T
- 25 (3V)
CLCL
3T
- 15 (5V)
CLCL
- 75 (3V) ns
CLCL
- 30 (5V) ns
CLCL
- 25 (3V) ns
CLCL
- 12 (5V) ns
CLCL
- 90 (3V) ns
CLCL
- 50 (5V) ns
CLCL
- 90 (3V) ns
CLCL
- 75 (5V) ns
CLCL
+ 25 (3V)
3T
CLCL
3T
+ 15 (5V)
CLCL
00 0 ns
13 T
5T
- 27 (3V) ns
CLCL
- 20 (5V) ns
CLCL
Units
ns
ns
ns
ns
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
51
Page 52
FlashFlex51 MCU
SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
TABLE 10-5: AC ELECTRICAL CHARACTERISTICS (CONTINUED) (2 OF 2)
= 0°C TO +70°C OR -40°C TO +85°C, VDD = 2.7-3.6 @25MHZ, 4.5-5.5 @ 40MHZ, VSS = 0
T
amb
Oscillator
25MHz 40MHz Variable
Symbol Parameter
T
QVWH
T
RLAZ
T
WHLH
Data Valid to WR# High
RD# Low to Address Float 0 0 0 ns
RD# to WR# High to ALE High 43 123 T
Min Max Min Max Min Max
433 7T
125 7T
10 40 T
- 70 (3V) ns
CLCL
- 50 (5V) ns
CLCL
- 25 (3V) T
CLCL
- 15 (5V) T
CLCL
+ 25 (3V) ns
CLCL
+ 15 (5V) ns
CLCL
10.5 AC Characteristics
Explanation of Symbols Each timing symbol has 5 characters. The first character is always a ‘T’ (stands for
time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.
A: Address Q: Output data C: Clock R: RD# signal D: Input data T: Time H: Logic level HIGH V: Valid I: Instruction (program memory contents) W: WR# signal L: Logic level LOW or ALE X: No longer a valid logic level P: PSEN# Z: High Impedance (Float)
Units
T10-5.5 384
For example:
T
= Time from Address Valid to ALE Low
AVLL
= Time from ALE Low to PSEN# Low
T
LLPL
V
IHT
V
ILT
AC Inputs during testing are driven at V V
(0.45V) for a Logic "0". Measurement reference points for inputs and
ILT
outputs are at V
HT
FIGURE 10-5: AC T
V
HT
V
LT
(VDD -0.5V) for Logic "1" and
IHT
(0.2VDD + 0.9) and VLT (0.2VDD - 0.1)
Note: VHT- V VLT- V V
IHT-VINPUT
V
ILT
ESTING INPUT/OUTPUT, FLOAT WAVEFORM
- V
HIGH LOW
INPUT
Test
Test
HIGH Test LOW Test
V
+0.1V
LOAD
V
LOAD
V
-0.1V
LOAD
For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs, and begins to float when a 100 mV change from the loaded VOH/VOL level occurs. IOL/I
Timing Reference
Points
384 ILL F28b.0384 ILL F28a.2
V
V
OH
-0.1V
OH
+0.1V
OL
= ± 20mA.
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
52
Page 53
FlashFlex51 MCU SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
T
LHLL
ALE
T
PLAZ
T
LLIV
T
PLIV
T
PXIZ
T
PXIX
INSTR IN
T
AVLL
T
LLPL
PSEN#
T
LLAX
PORT 0
PORT 2
A7 - A0
T
AVIV
A15 - A8
FIGURE 10-6: EXTERNAL PROGRAM MEMORY READ CYCLE
T
PLPH
A7 - A0
A15 - A8
384 ILL F13.0
T
LHLL
ALE
PSEN#
RD#
PORT 0
PORT 2
T
AVLL
A7-A0 FROM RI or DPL
T
AVWL
P2[7:0] or A15-A8 FROM DPH
T
T
T
AVDV
LLWL
LLAX
T
RLAZ
T
LLDV
T
FIGURE 10-7: EXTERNAL DATA MEMORY READ CYCLE
RLRH
T
RLDV
DATA IN
T
WHLH
T
RHDZ
T
RHDX A7-A0 FROM PCL
A15-A8 FROM PCH
INSTR IN
384 ILL F14.0
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
53
Page 54
ALE
PSEN#
T
LHLL
FlashFlex51 MCU
SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
T
WHLH
T
LLWL
WR#
PORT 0
PORT 2
T
AVLL
A7-A0 FROM RI or DPL
T
LLAX
T
QVWX
T
AVWL
P2[7:0] or A15-A8 FROM DPH
FIGURE 10-8: EXTERNAL DATA MEMORY WRITE CYCLE
TABLE 10-6: EXTERNAL CLOCK DRIVE
25MHz 40MHz Variable
Symbol Parameter
1/T T
CHCX
T
CLCX
T
CLCH
T
CHCL
CLCL
Oscillator F requency 0 40 MHz High Time 0.35T Low Time 0.35T Rise Time 20 10 ns Fall Time 20 10 ns
MinMaxMinMax Min Max
T
WLWH
T
QVWH
DATA OUT
T
WHQX
A7-A0 FROM PCL
Oscillator
INSTR IN
A15-A8 FROM PCH
384 ILL F15.0
CLCL CLCL
0.65T
0.65T
CLCL CLCL
Units
ns ns
T10-6.2 384
V
DD = -0.5
0.45 V
0.7 V
DD
0.2 VDD -0.1
T
CHCL
T
CLCX
T
CLCL
T
CHCX
T
CLCH
384 ILL F30.0
FIGURE 10-9: EXTERNAL CLOCK DRIVE WAVEFORM
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
54
Page 55
FlashFlex51 MCU SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
TABLE 10-7: SERIAL PORT TIMING
25MHz 40MHz Variable
Symbol Parameter
T
XLXL
T
QVXH
T
XHQX
T
XHDX
T
XHDV
Serial Port Clock Cycle Time 0 0.36 12T Output Data Setup to Clock Rising Edge 700 117 10T Output Data Hold After Clock Rising Edge 5 0 2T
Input Data Hold After Clock Rising Edge 0 0 0 ns Clock Rising Edge to Input Data Valid 700 117 10T
Min Max Min Max Min Max
02T
Oscillator
CLCL
CLCL
CLCL
CLCL
- 133 ns
- 117 ns
- 50 ns
- 133 ns
CLCL
T10-7.2 384
Units
ms
INSTRUCTION
ALE
0
1 2 3 4 5 6 7 8
T
XLXL
CLOCK
T
T
XHDV
XHQX
T
XHDX
OUTPUT DATA
WRITE TO SBUF
INPUT DATA
CLEAR RI
T
QVXH
01 234 567
VALID VALID VALID VALID VALID VALID VALID VALID
FIGURE 10-10: SHIFT REGIST ER MODE TIMING WAVEFORMS
SET TI
SET R I
384 ILL F29.0
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
55
Page 56
SST89E564 / SST89V564 / SST89E554 / SST89V554
11.0 PRODUCT ORDERING INFORMATION
Device Speed Suffix1 Suffix2
FlashFlex51 MCU
Preliminary Specifications
SST89
x5x4 -XX -X-X X
Package Modifier
I = 40 pins J = 44 pins
Package Type
P = PDIP N = PLCC TQ = TQFP
Operation Temperature
C = Commercial = 0°C to +70°C I = Industrial = -40°C to +85°C
Operating Frequency
25 = 0-25MHz 40 = 0-40MHz
Feature Set and Flash Memory Size
564 = C52 feature set + 64(72)* KByte 554 = C52 feature set + 32(40)* KByte * = 8K additional flash can be enabled
Voltage Range
E = 4.5-5.5V V = 2.7-3.6V
Device Family
89 = C51 Core
11.1 Valid Combinations
Valid combinations for SST89E564
SST89E564-40-C-PI SST89E564-40-C-NJ SST89E564-40-C-TQJ SST89E564-40-I-PI SST89E564-40-I-NJ SST89E564-40-I-TQJ
Valid combinations for SST89V564
SST89V564-25-C-PI SST89V564-25-C-NJ SST89V564-25-C-TQJ SST89V564-25-I-PI SST89V564-25-I-NJ SST89V564-25-I-TQJ
Valid combinations for SST89E554
SST89E554-40-C-PI SST89E554-40-C-NJ SST89E554-40-C-TQJ SST89E554-40-I-PI SST89E554-40-I-NJ SST89E554-40-I-TQJ
Valid combinations for SST89V554
SST89V554-25-C-PI SST89V554-25-C-NJ SST89V554-25-C-TQJ SST89V554-25-I-PI SST89V554-25-I-NJ SST89V554-25-I-TQJ
Note: Valid combination s are those prod ucts in mass product ion or w il l be in mass pro ducti on.
Consult your SST sales repre sent ati v e to confirm availability of valid combinations an d to det ermine availability of new combinations.
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
56
Page 57
FlashFlex51 MCU SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
12.0 PACKAGING DIAGRAMS
40
C
L
Pin #1 Identifier
.065 .075
1
2.020
2.070
12˚
4 places
.600 .625
.530 .557
Base Plane
Seating Plane
.015 Min.
.063 .090
Note: 1. Complies with JEDEC publication 95 MS-011 AC dimensions (except as noted), although some dimensions may be more stringent.
† = JEDEC min is .115; SST min is less stringent
2. All linear dimensions are in inches (min/max).
3. Dimensions do not include mold flash. Maximum allowable mold flash is .010 inches.
.045 .055
40-PIN PLASTIC DUAL IN-LINE PINS (PDIP)
ACKAGE CODE: PI
SST P
TOP VIEW SIDE VIEW BOTTOM VIEW
.685
Optional
Pin #1 Identifier
.685 .695
.042 .048
.646 .656
.042 .048
.695 .646 .656
144
.015 .022
.020 R. MAX.
.026 .032
.042 .056
.100 BSC
x45˚
.147 .158
.013 .021
.025 .045
.100 † .200
.500 REF.
.220 Max.
R.
.590 .630
.008 .012
.600 BSC
40.pdipPI-ILL.7
15˚
.050 BSC.
.020 Min.
.165 .180
.100 .112
.026 .032
44.PLCC.NJ-ILL.7
.050 BSC.
Note: 1. Complies with JEDEC publication 95 MS-018 AC dimensions (except as noted), although some dimensions may be more stringent.
44-
LEAD PLASTIC LEA D CHIP CARRIER (PLCC)
ACKAGE CODE: NJ
SST P
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
† = JEDEC min is .650; SST min is less stringent
2. All linear dimensions are in inches (min/max).
3. Dimensions do not include mold flash. Maximum allowable mold flash is .008 inches.
4. Coplanarity: 4 mils.
57
Page 58
FlashFlex51 MCU
SST89E564 / SST89V564 / SST89E554 / SST89V554
Preliminary Specifications
22
34
33
10.00 BSC
23
12.00 BSC
.09 .20
.30 .45
.80 BSC
.95
1.05
Pin #1 Identifier
1.2
max.
Note: 1. Complies with JEDEC publication 95 MS-026 ACB dimensions, although some dimensions may be more stringent.
44
1
11
12
2. All linear dimensions are in millimeters (min/max).
3. Coplanarity: 0.1 (±0.05) mm.
4. Package body dimensions do not include mold flash. Maximum allowable mold flash is .25mm.
10.00 BSC
12.00 BSC
44-LEAD THIN QUAD FLAT PACK (TQFP)
ACKAGE CODE: TQJ
SST P
.05 .15
1.00 ref
44.tqfp-TQJ-ILL.6
.45 .75
0˚- 7˚
Silicon Storage Technolog y, Inc. • 1171 Sonora Court • Sunnyvale , CA 940 86 • Telephone 408-735-9110 • Fax 408-735 -90 36
www.SuperFlash.com or www.ssti.com
©2001 Silicon Storage Technology, Inc. S71181-03-000 9/01 384
58
Loading...