The SST39VF1601/1602 and SST39VF3201/3202 devices are 1M x16 and 2M
x16, respectively, CMOS Multi-Purpose Flash Plus (MPF+) manufactured with
SST's proprietary, high performance CMOS SuperFlash technology. The splitgate cell design and thick-oxide tunneling injector attain better reliability and manufacturability compared with alternate approaches. The SST39VF1601/1602/
3201/3202 write (Program or Erase) with a 2.7-3.6V power supply. These devices
conforms to JEDEC standard pinouts for x16 memories.
Features
Not recommended for new designs. Please use SST39VF1601C
and SST39VF3201B.
16 Mbit / 32 Mbit / (x16) Multi-Purpose Flash Plus
The SST39VF160x and SST39VF320x devices are 1M x16 and 2M x16, respectively, CMOS MultiPurpose Flash Plus (MPF+) manufactured with SST’s proprietary, high performance CMOS SuperFlash technology. The split-gate cell design and thick-oxide tunneling injector attain better reliability
and manufacturability compared with alternate approaches. The SST39VF160x/320x write (Program
or Erase) with a 2.7-3.6V power supply. These devices conform to JEDEC standard pinouts for x16
memories.
Featuring high performance Word-Program, the SST39VF160x/320x devices provide a typical WordProgram time of 7 µsec. These devices use Toggle Bit or Data# Polling to indicate the completion of
Program operation. To protect against inadvertent write, they have on-chip hardware and Software
Data Protection schemes. Designed, manufactured, and tested for a wide spectrum of applications,
these devices are offered with a guaranteed typical endurance of 100,000 cycles. Data retention is
rated at greater than 100 years.
The SST39VF160x/320x devices are suited for applications that require convenient and economical
updating of program, configuration, or data memory. For all system applications, they significantly
improve performance and reliability, while lowering power consumption. They inherently use less
energy during Erase and Program than alternative flash technologies. The total energy consumed is a
function of the applied voltage, current, and time of application. Since for any given voltage range, the
SuperFlash technology uses less current to program and has a shorter erase time, the total energy
consumed during any Erase or Program operation is less than alternative flash technologies. These
devices also improve flexibility while lowering the cost for program, data, and configuration storage
applications.
The SuperFlash technology provides fixed Erase and Program times, independent of the number of
Erase/Program cycles that have occurred. Therefore the system software or hardware does not have
to be modified or de-rated as is necessary with alternative flash technologies, whose Erase and Program times increase with accumulated Erase/Program cycles.
To meet high density, surface mount requirements, the SST39VF160x/320x are offered in 48-lead
TSOP and 48-ball TFBGA packages. See Figures 2 and 3 for pin assignments.
Commands are used to initiate the memory operation functions of the device. Commands are written
to the device using standard microprocessor write sequences. A command is written by asserting WE#
low while keeping CE# low. The address bus is latched on the falling edge of WE# or CE#, whichever
occurs last. The data bus is latched on the rising edge of WE# or CE#, whichever occurs first.
The SST39VF160x/320x also have the Auto Low Power mode which puts the device in a near
standby mode after data has been accessed with a valid Read operation. This reduces the IDDactive
read current from typically 9 mA to typically 3 µA. The Auto Low Power mode reduces the typical I
active read current to the range of 2 mA/MHz of Read cycle time. The device exits the Auto Low Power
mode with any address transition or control signal transition used to initiate another Read cycle, with
no access time penalty. Note that the device does not enter Auto-Low Power mode after power-up with
CE# held steadily low, until the first address transition or CE# is driven high.
Read
The Read operation of the SST39VF160x/320x is controlled by CE# and OE#, both have to be low for
the system to obtain data from the outputs. CE# is used for device selection. When CE# is high, the
chip is deselected and only standby power is consumed. OE# is the output control and is used to gate
data from the output pins. The data bus is in high impedance state when either CE# or OE# is high.
Refer to the Read cycle timing diagram for further details (Figure 4).
The SST39VF160x/320x are programmed on a word-by-word basis. Before programming, the sector
where the word exists must be fully erased. The Program operation is accomplished in three steps.
The first step is the three-byte load sequence for Software Data Protection. The second step is to load
word address and word data. During the Word-Program operation, the addresses are latched on the
falling edge of either CE# or WE#, whichever occurs last. The data is latched on the rising edge of
either CE# or WE#, whichever occurs first. The third step is the internal Program operation which is initiated after the rising edge of the fourth WE# or CE#, whichever occurs first. The Program operation,
once initiated, will be completed within 10 µs. See Figures 5 and 6 for WE# and CE# controlled Program operation timing diagrams and Figure 20 for flowcharts. During the Program operation, the only
valid reads are Data# Polling and Toggle Bit. During the internal Program operation, the host is free to
perform additional tasks. Any commands issued during the internal Program operation are ignored.
During the command sequence, WP# should be statically held high or low.
Sector/Block-Erase Operation
The Sector- (or Block-) Erase operation allows the system to erase the device on a sector-by-sector (or
block-by-block) basis. The SST39VF160x/320x offer both Sector-Erase and Block-Erase mode. The
sector architecture is based on uniform sector size of 2 KWord. The Block-Erase mode is based on
uniform block size of 32 KWord. The Sector-Erase operation is initiated by executing a six-byte command sequence with Sector-Erase command (30H) and sector address (SA) in the last bus cycle. The
Block-Erase operation is initiated by executing a six-byte command sequence with Block-Erase command (50H) and block address (BA) in the last bus cycle. The sector or block address is latched on the
falling edge of the sixth WE# pulse, while the command (30H or 50H) is latched on the rising edge of
the sixth WE# pulse. The internal Erase operation begins after the sixth WE# pulse. The End-of-Erase
operation can be determined using either Data# Polling or Toggle Bit methods. See Figures 10 and 11
for timing waveforms and Figure 24 for the flowchart. Any commands issued during the Sector- or
Block-Erase operation are ignored. When WP# is low, any attempt to Sector- (Block-) Erase the protected block will be ignored. During the command sequence, WP# should be statically held high or low.
Erase-Suspend/Erase-Resume Commands
The Erase-Suspend operation temporarily suspends a Sector- or Block-Erase operation thus allowing
data to be read from any memory location, or program data into any sector/block that is not suspended
for an Erase operation. The operation is executed by issuing one byte command sequence with EraseSuspend command (B0H). The device automatically enters read mode typically within 20 µs after the
Erase-Suspend command had been issued. Valid data can be read from any sector or block that is not
suspended from an Erase operation. Reading at address location within erase-suspended sectors/
blocks will output DQ2toggling and DQ6at “1”. While in Erase-Suspend mode, a Word-Program operation is allowed except for the sector or block selected for Erase-Suspend.
To resume Sector-Erase or Block-Erase operation which has been suspended the system must issue
Erase Resume command. The operation is executed by issuing one byte command sequence with
Erase Resume command (30H) at any address in the last Byte sequence.
The SST39VF160x/320x provide a Chip-Erase operation, which allows the user to erase the entire
memory array to the “1” state. This is useful when the entire device must be quickly erased.
The Chip-Erase operation is initiated by executing a six-byte command sequence with Chip-Erase
command (10H) at address 5555H in the last byte sequence. The Erase operation begins with the rising edge of the sixth WE# or CE#, whichever occurs first. During the Erase operation, the only valid
read is Toggle Bit or Data# Polling. See Table 6 for the command sequence, Figure 10 for timing diagram, and Figure 24 for the flowchart. Any commands issued during the Chip-Erase operation are
ignored. When WP# is low, any attempt to Chip-Erase will be ignored. During the command sequence,
WP# should be statically held high or low.
Write Operation Status Detection
The SST39VF160x/320x provide two software means to detect the completion of a Write (Program or
Erase) cycle, in order to optimize the system write cycle time. The software detection includes two status bits: Data# Polling (DQ7) and Toggle Bit (DQ6). The End-of-Write detection mode is enabled after
the rising edge of WE#, which initiates the internal Program or Erase operation.
The actual completion of the nonvolatile write is asynchronous with the system; therefore, either a
Data# Polling or Toggle Bit read may be simultaneous with the completion of the write cycle. If this
occurs, the system may possibly get an erroneous result, i.e., valid data may appear to conflict with
either DQ7or DQ6. In order to prevent spurious rejection, if an erroneous result occurs, the software
routine should include a loop to read the accessed location an additional two (2) times. If both reads
are valid, then the device has completed the Write cycle, otherwise the rejection is valid.
When the SST39VF160x/320x are in the internal Program operation, any attempt to read DQ7will produce the complement of the true data. Once the Program operation is completed, DQ7will produce
true data. Note that even though DQ7may have valid data immediately following the completion of an internal
Write operation, the remaining data outputs may still be invalid: valid data on the entire data bus will appear in
subsequent successive Read cycles after an interval of 1 µs. During internal Erase operation, any attempt
to read DQ7will produce a ‘0’. Once the internal Erase operation is completed, DQ7will produce a ‘1’.
The Data# Polling is valid after the rising edge of fourth WE# (or CE#) pulse for Program operation. For
Sector-, Block- or Chip-Erase, the Data# Polling is valid after the rising edge of sixth WE# (or CE#)
pulse. See Figure 7 for Data# Polling timing diagram and Figure 21 for a flowchart.
Toggle Bits (DQ6 and DQ2)
During the internal Program or Erase operation, any consecutive attempts to read DQ6will produce
alternating “1”s and “0”s, i.e., toggling between 1 and 0. When the internal Program or Erase operation
is completed, the DQ6bit will stop toggling. The device is then ready for the next operation. For Sector, Block-, or Chip-Erase, the toggle bit (DQ6) is valid after the rising edge of sixth WE# (or CE#) pulse.
DQ6will be set to “1” if a Read operation is attempted on an Erase-Suspended Sector/Block. If Program operation is initiated in a sector/block not selected in Erase-Suspend mode, DQ6will toggle.
An additional Toggle Bit is available on DQ2, which can be used in conjunction with DQ6to check
whether a particular sector is being actively erased or erase-suspended. Table 2 shows detailed status
bits information. The Toggle Bit (DQ2) is valid after the rising edge of the last WE# (or CE#) pulse of
Write operation. See Figure 8 for Toggle Bit timing diagram and Figure 21 for a flowchart.
Table 2: Write Operation Status
StatusDQ
Normal OperationStandard ProgramDQ7#ToggleNo Toggle
Standard Erase0ToggleToggle
Erase-Suspend ModeRead from Erase-Suspended Sector/Block11Toggle
Read from Non- Erase-Suspended Sector/BlockDataDataData
ProgramDQ7#ToggleN/A
Note: DQ7and DQ2require a valid address when reading status information.
Data Protection
The SST39VF160x/320x provide both hardware and software features to protect nonvolatile data from
inadvertent writes.
Hardware Data Protection
Noise/Glitch Protection: A WE# or CE# pulse of less than 5 ns will not initiate a write cycle.
7
DQ
6
DQ
2
T2.0 25028
VDDPower Up/Down Detection: The Write operation is inhibited when VDDis less than 1.5V.
Write Inhibit Mode: Forcing OE# low, CE# high, or WE# high will inhibit the Write operation. This prevents inadvertent writes during power-up or power-down.
The SST39VF1602/3202 support top hardware block protection, which protects the top 32 KWord
block of the device. The SST39VF1601/3201 support bottom hardware block protection, which protects the bottom 32 KWord block of the device. The Boot Block address ranges are described in Table
3. Program and Erase operations are prevented on the 32 KWord when WP# is low. If WP# is left floating, it is internally held high via a pull-up resistor, and the Boot Block is unprotected, enabling Program
and Erase operations on that block.
The RST# pin provides a hardware method of resetting the device to read array data. When the RST#
pin is held low for at least T
no internal Program/Erase operation is in progress, a minimum period of T
is driven high before a valid Read can take place (see Figure 16).
The Erase or Program operation that has been interrupted needs to be reinitiated after the device
resumes normal operation mode to ensure data integrity.
any in-progress operation will terminate and return to Read mode. When
RP,
Software Data Protection (SDP)
The SST39VF160x/320x provide the JEDEC approved Software Data Protection scheme for all data
alteration operations, i.e., Program and Erase. Any Program operation requires the inclusion of the
three-byte sequence. The three-byte load sequence is used to initiate the Program operation, providing optimal protection from inadvertent Write operations, e.g., during the system power-up or powerdown. Any Erase operation requires the inclusion of six-byte sequence. These devices are shipped
with the Software Data Protection permanently enabled. See Table 6 for the specific software command codes. During SDP command sequence, invalid commands will abort the device to read mode
within T
sequence.
The contents of DQ15-DQ8can be VILor VIH, but no other value, during any SDP command
RC.
Common Flash Memory Interface (CFI)
The SST39VF160x/320x also contain the CFI information to describe the characteristics of the device.
In order to enter the CFI Query mode, the system must write three-byte sequence, same as product ID
entry command with 98H (CFI Query command) to address 5555H in the last byte sequence. Once the
device enters the CFI Query mode, the system can read CFI data at the addresses given in Tables 7
through 10. The system must write the CFI Exit command to return to Read mode from the CFI Query
mode.
The Product Identification mode identifies the devices as the SST39VF1601, SST39VF1602,
SST39VF3201, or SST39VF3202, and manufacturer as SST. This mode may be accessed software
operations. Users may use the Software Product Identification operation to identify the part (i.e., using
the device ID) when using multiple manufacturers in the same socket. For details, see Table 6 for software operation, Figure 12 for the Software ID Entry and Read timing diagram and Figure 22 for the
Software ID Entry command sequence flowchart.
In order to return to the standard Read mode, the Software Product Identification mode must be exited.
Exit is accomplished by issuing the Software ID Exit command sequence, which returns the device to
the Read mode. This command may also be used to reset the device to the Read mode after any inadvertent transient condition that apparently causes the device to behave abnormally, e.g., not read correctly. Please note that the Software ID Exit/CFI Exit command is ignored during an internal Program
or Erase operation. See Table 6 for software command codes, Figure 14 for timing waveform, and Figures 22 and 23 for flowcharts.
Security ID
The SST39VF160x/320x devices offer a 256-bit Security ID space. The Secure ID space is divided into
two 128-bit segments - one factory programmed segment and one user programmed segment. The
first segment is programmed and locked at SST with a random 128-bit number. The user segment is
left un-programmed for the customer to program as desired.
To program the user segment of the Security ID, the user must use the Security ID Word-Program
command. To detect end-of-write for the SEC ID, read the toggle bits. Do not use Data# Polling. Once
this is complete, the Sec ID should be locked using the User Sec ID Program Lock-Out. This disables
any future corruption of this space. Note that regardless of whether or not the Sec ID is locked, neither
Sec ID segment can be erased.
The Secure ID space can be queried by executing a three-byte command sequence with Enter Sec ID
command (88H) at address 5555H in the last byte sequence. To exit this mode, the Exit Sec ID command should be executed. Refer to Table 6 for more details.
Addresses A15-A19can be VILor VIH, but no other value, for Command sequence for SST39VF1601/1602,
Addresses A15-A20can be VILor VIH, but no other value, for Command sequence for SST39VF3201/3202,
2. DQ15-DQ8can be VILor VIH, but no other value, for Command sequence
3. WA = Program Word address
4. SAXfor Sector-Erase; uses AMS-A11address lines
BAX, for Block-Erase; uses AMS-A15address lines
AMS= Most significant address
AMS=A19for SST39VF1601/1602 and A20for SST39VF3201/3202
5. With AMS-A4= 0; Sec ID is read with A3-A0,
Lock Status is read with A7-A0= 0000FFH. Unlocked: DQ3= 1 / Locked: DQ3=0.
6. Valid Word-Addresses for Sec ID are from 000000H-000007H and 000010H-000017H.
7. The device does not remain in Software Product ID Mode if powered down.
8. With AMS-A1=0; SST Manufacturer ID = 00BFH, is read with A0=0,
AMS= Most significant address
AMS=A19for SST39VF1601/1602 and A20for SST39VF3201/3202
9. Both Software ID Exit operations are equivalent
10. If users never lock after programming, Sec ID can be programmed over the previously unprogrammed bits (data=1)
using the Sec ID mode again (the programmed “0” bits cannot be reversed to “1”). Valid Word-Addresses for Sec ID are
from 000000H-000007H and 000010H-000017H.
SST ID is read with A3= 0 (Address range = 000000H to 000007H),
User ID is read with A3= 1 (Address range = 000010H to 000017H).
SST39VF1601 Device ID = 234BH, is read with A0=1,
SST39VF1602 Device ID = 234AH, is read with A0=1,
SST39VF3201 Device ID = 235BH, is read with A
SST39VF3202 Device ID = 235AH, is read with A
Absolute Maximum Stress Ratings (Applied conditions greater than those listed under “Absolute
Maximum Stress Ratings” may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these conditions or conditions greater than those defined in the
operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.)
Temperature Under Bias ............................................. -55°C to +125°C
Storage Temperature ................................................ -65°C to +150°C
D. C. Voltage on Any Pin to Ground Potential ............................-0.5V to VDD+0.5V
Transient Voltage (<20 ns) on Any Pin to Ground Potential ..................-2.0V to VDD+2.0V
Voltage on A9Pin to Ground Potential .....................................-0.5V to 13.2V
Package Power Dissipation Capability (TA= 25°C) .................................. 1.0W
Surface Mount Solder Reflow Temperature1...........................260°C for 10 seconds
Output Short Circuit Current2.................................................. 50mA
1. Excluding certain with-Pb 32-PLCC units, all packages are 260°C capable in both non-Pb and with-Pb solder versions.
Certain with-Pb 32-PLCC package types are capable of 240°C for 10 seconds; please consult the factory for the latest
information.
2. Outputs shorted for no more than one second. No more than one output shorted at a time.
Output High VoltageVDD-0.2VIOH=-100 µA, VDD=VDDMin
1. Typical conditions for the Active Current shown on the front page of the data sheet are average values at 25°C
(room temperature), and VDD= 3V. Not 100% tested.
2. See Figure 18
3. The IDDcurrent listed is typically less than 2mA/MHz, with OE# at V
10µAWP#=GND to VDDor RST#=GND to
V
DD
=GND to VDD,VDD=VDDMax
OUT
VVDD=VDDMax
Typical VDDis 3V.
IH.
ILT/VIHT
DD,
2
, at f=5 MHz,
IH
Max
Max
WE#=V
IHC
T13.8 25028
Table 14:Recommended System Power-up Timings
SymbolParameterMinimumUnits
T
PU-READ
T
PU-WRITE
Table 15:Capacitance (T
1
1
1. This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.
Power-up to Read Operation100µs
Power-up to Program/Erase Operation100µs
= 25°C, f=1 MHz, other pins open)
A
ParameterDescriptionTest ConditionMaximum
1
C
I/O
1
C
IN
1. This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.
•Corrected Pin 15 from A20 to NC for SST39VF160x in Figure 2 on
page 4
•Changed data sheet title
•2004 Data Book
•Updated the B3K and B1K package diagrams
•Added non-Pb MPNs and removed footnote. (See page 31)
•Added RoHS compliance information on page 1 and in the “Product
Ordering Information” on page 30
•Corrected the solder temperature profile in “Absolute Maximum Stress
Ratings” on page 15
•Changed product status from “Preliminary Specifications” to “Data
Sheet”
•Removed 90 ns Read Access Time globally
•EOLed all lead (Pb) valid combinations. See S71223(02)
•EOLed SST39VF6401 and SST39VF6402. See S71223(03)
A
•Changed document status to “Not Recommended for New Designs”
•Applied new document format
•Released document under letter revision system
•Updated Spec number from S71223 to DS25028
Mar 2003
Apr 2003
Jun 2003
Nov 2003
Nov 2005
June 2008
Aug 2011
ISBN:978-1-61341-355-5
2011 Silicon Storage Technology, Inc–a Microchip Technology Company. All rights reserved.
SST, Silicon Storage Technology, the SST logo, SuperFlash, MTP, and FlashFlex are registered trademarks of Silicon Storage Technology, Inc. MPF, SQI, Serial Quad I/O, and Z-Scale are trademarks of Silicon Storage Technology, Inc. All other trademarks and
registered trademarks mentioned herein are the property of their respective owners.
Specifications are subject to change without notice. Refer to www.microchip.com for the most recent documentation. For the most current
package drawings, please see the Packaging Specification located at http://www.microchip.com/packaging.
Memory sizes denote raw storage capacity; actual usable capacity may be less.
SST makes no warranty for the use of its products other than those expressly contained in the Standard Terms and Conditions of
Sale.
For sales office locations and information, please see www.microchip.com.