• Unregulated DC Input Can Withstand -20V Reverse Battery • SMPS Post-Regulator
• and +60V Positive Transients • Voltage Reference
• Direct Replacement For LM2940 Socket
PRODUCT DESCRIPTION
The SPX2940 is a low powered positive voltage regulator. The SPX2940 offers 1A output current with dropout voltage of only 0.5V
and over temperature dropout is up to 1V. The quiescent current is 30mA at differential output of 5V and output current of 1A. The
higher quiescent current can be exist when the device is in dropout mode (V
Other key additional features of this device includes higher output current, positive transient protection up to 60V (load dump), and
ability to survive an unregulated input voltage transient of -20V below ground (reverse battery). The regulator will automatically shut
down to protect both the internal circuits and the load. This device also features short circuit and thermal overload protection.
The SPX2940 is offered in a 3-pin TO-220 and TO-263 package compatible with other 5V regulators. This device offers a variety of
output voltages: 3.3V, 5V and 12V. SPX2940 is direct replacement to LM2940.
PIN CONNECTIONS
TO-220-3 (U)
SPX2940
123
APPLICATIONS
• Battery powered Systems
– V
IN
TO-263-3 (T)
SPX2940
1
2
OUT
3
< 3V).
)
V
GND
IN
Front View
GND
IN
Top View
V
OUT
V
V
OUT
Rev. 10/24/00
Page 2
SPX2940
ABSOLUTE MAXIMUM RATINGS
Power Dissipation (Note 1) ..................... Internally Limited Input Supply voltage...................................... -26V to +60V
Lead Temperature (Soldering, 5 seconds).................. 260°C
Storage Temperature Range ...................... -65°C to +150°C
Operating Junction Temperature Range.... -40°C to +125°C
over the entire operating temperature range of the indicated device.
Output Voltage (VO) 5V Units
Parameter
6.25V < VIN < 26V
Output Voltage 5 mA < IO < 1A 5.00
Line Regulation VO + 2V < VIN < 26V,
I
= 5 mA
O
Load Regulation 50 mA < IO < 1A
Output
Impedance
Quiescent
Current
V
Output Noise
Voltage
100 mADC and
20 mArms,
f
= 120 Hz
O
VO + 2V < VIN < 26V,
I
= 5 mA
O
= VO + 5V
IN
I
= 1A
O
10 Hz - 100 kHz,
I
= 5 mA
O
Ripple Rejection fO = 120 Hz, 1 V
I
= 100 ma
O
f
Long Term
= 1 kHz, 1 V
O
I
= 5 mA
O
Stability
Dropout Voltage IO = 1A 0.5
I
= 100 mA 110
O
Conditions
RMS
RMS
,
Operating Input Supply voltage .........................+2V to 12V
Shutdown Input Voltage ............................... -0.3V to +30V
Error Comparator Output Voltage................... -0.3 to +30V
VIN = VO + 5V, IO = 1A, CO = 22 µF, unless otherwise specified.
All other specifications apply for T
Typ
SPX2940
Limit
(Note 5)
4.85/
4.75
5.15/
5.25
SPX2940
(Note 6)
4.85/
5.15/
20 50
35
35
10
30
150
,
72
50/80
1000/
15/20
45/60 50/60
700/
60/54
A
Limit
4.75
5.25
40/50
50/
100
1000
15/20
700
60/50
20
0.8/
150/
0.7/
1.0
150/
200
1.0
200
Boldface applies
= TJ = 25°C.
V
V
mV
mV
mΩ
mA
mA
µV
RMS
dB
MIN
dB
MIN
mV/
1000 Hr
V
MAX
mV
MAX
Rev. 10/24/00
Page 3
SPX2940
ELECTRICAL CHARACTERISTICS
apply over the entire operating temperature range of the indicated device.
(Continued)
Output Voltage (VO) 5V Units
Parameter
6.25V < VIN < 26V
Short Circuit
Current
Maximum Line
Transient
Reverse Polarity
DC Input Voltage
Reverse Polarity
Transient Input
Voltage
(Note 7) 1.9 1.6
R
= 100Ω, T < 100 ms
O
R
= 100Ω, T < 20 ms
O
R
= 100Ω, T < 100 ms
O
Conditions
ELECTRICAL CHARACTERISTICS
apply over the entire operating temperature range of the indicated device.
(Continued)
Output Voltage (VO) 12V Units
Parameter
13.6V < VIN < 26V
Output Voltage 5 mA < IO < 1A 12.00
Line Regulation VO + 2V < VIN < 26V,
I
= 5 mA
O
Load Regulation 50 mA < IO < 1A
Conditions
VIN = VO + 5V, IO = 1A, CO = 22 µF, unless otherwise specified.
All other specifications apply for T
Typ
75
-30
-75
VIN = VO + 5V, IO = 1A, CO = 22 µF, unless otherwise specified.
Typ
20 120
55
SPX2940
Limit
(Note 5)
60/60
-15/
-50/
SPX2940
(Note 5)
11.64/
12.36/
120/
-15
-50
All other specifications apply for T
Limit
11.40
12.60
200
SPX2940
Limit
(Note 6)
1.5/
1.3
-15/
-15
SPX2940/883
Limit
(Note 6)
11.64/
11.40
12.36/
12.60
75/
120
120/
190
Boldface limits
= TJ = 25°C.
A
A
V
V
V
Boldface limits
= TJ = 25°C.
A
V
V
mV
mV
Rev. 10/24/00
Page 4
SPX2940
ELECTRICAL CHARACTERISTICS
apply over the entire operating temperature range of the indicated device.
(Continued)
Output Voltage (VO) 12V Units
Parameter
13.6V < VIN < 26V
Output Impedance 100 mADC and
20 mArms,
f
= 120 Hz
O
Quiescent
Current
V
VO +2V < VIN < 26V,
I
= 5 mA
O
= VO + 5V, IO = 1A 30
IN
Output Noise Voltage 10 Hz - 100 kHz,
I
= 5 mA
O
Ripple Rejection fO = 120 Hz, 1 V
I
= 100 mA
O
f
Long Term
= 1 kHz, 1 V
O
I
= 5 mA
O
Stability
Dropout Voltage IO = 1A 0.5
I
Short Circuit
= 100 mA 110
O
(Note 7)
Current
Maximum Line
R
= 100Ω, T < 100 ms
O
Transient
Reverse Polarity
R
= 100Ω
O
DC Input Voltage
Reverse Polarity
R
= 100Ω, T < 20 ms
O
Transient Input
Voltage
Conditions
RMS
rms
VIN = VO + 5V, IO = 1A, CO = 22 µF, unless otherwise specified.
All other specifications apply for T
Typ
SPX2940
Limit
SPX2940/833
(Note 5)
80
10
1000/
15/20
45/60 50/60
360
,
,
66
54/48
1000/
48
0.8/
0.7/
1.0
150/
150/
200
1.9 1.6
75
-30
-75
60/60
-15/
-50/
-15
-50
Limit
(Note 6)
1000
15/20
1000
52/46
1.0
200
1.6/
1.3
-15/
-15
Boldface limits
= TJ = 25°C.
A
mΩ
mA
mA
µV
RMS
dB
dB
mV/
1000 Hr
V
mV
A
V
V
V
Rev. 10/24/00
Page 5
SPX2940
ELECTRICAL CHARACTERISTICS
0.9
TJ = 25 °C
0.8
0.7
0.6
0.5
0.4
0.3
INPUT-OUTPUT DIFFERENTIAL (V)
0.2
0.1
0
02004006008001000
Dropout Voltage
OUTPUT CURRENT (mA)
5.10
5.08
5.06
5.04
5.02
5.00
4.98
OUTPUT VOLTAGE (5V)
4.96
4.94
4.92
4.90
-4004080120160
Output Voltage vs. Temperature
TEMPERATURE (°C)
200
180
160
140
120
100
80
QUIESCENT CURRENT (mA)
60
40
20
0
0510152025
Quiescent Current
100 mA
1 A
VIN = VO + 5V, IO =1A, CO = 22 µF, unless otherwise specified.
Dropout Voltage
1 A
500 mA
100 mA
TEMPERATURE (°C)
Quiescent Current vs. Temperature
VIN = VO +5V
1 A
TEMPERATURE (°C)
Quiescent Current
V
= 14V
IN
V
= 5V
O
= 25 °C
T
J
500 mA
500 mA
3035
1.0
0.9
0.8
0.7
0.6
0.5
0.4
DROPOUT VOLTAGE (V)
0.3
0.2
0.1
0
-4004080120160
50
40
30
20
QUIESCENT CURRENT (mA)
10
0
-4004080120160
50
40
30
20
QUIESCENT CURRENT (mA)
10
0
00.20.40.60.81.0
10 mA
Rev. 10/24/00
Page 6
SPX2940
Θ
JA
= 50 °C/W
Θ
JA
~
~
= 73 °C/W
ELECTRICAL CHARACTERISTICS
30
20
10
0
-10
-20
OUTPUT VOLTAGE DEVIATION (mV)
-30
~
~
3V
Quiescent Current
INPUT VOLTAGE CHANGE (V)
0V
-100 10203040
95
VIN = 10V
= 22 µF
C
OUT
= 10 mA
T
J
85
V
= 5V
O
75
65
55
RIPPLE REJECTION (dB)
45
35
1101001k10k100k1M
µµµµ
TIME (
s)
Ripple Rejection
FREQUENCY (Hz)
Maximum Power Dissipation (TO-220)
22
20
18
16
14
12
10
8
POWER DISSIPATION (W)
6
4
2
00
INFINITE HEAT SINK
10 °C/W HEAT SINK
NO HEAT SINK
AMBIENT TEMPERATURE ( °C)
VIN = VO + 5V, IO =1A, CO = 22 µF, unless otherwise specified.
Load Transient Response
VIN = 10V
= 22 µF
C
OUT
= 25 °C
T
J
= 5V
V
O
µµµµ
TIME (
s)
Output Impedance
FREQUENCY (Hz)
Maximum Power Dissipation (TO-263) (See Note 3)
= 32 °C/W
4
Θ
JA
3
= 37 °C/W
Θ
JA
2
POWER DISSIPATION (W)
1
0
0 10203040 50607080 90100
AMBIENT TEMPERATURE ( °C)
~
~
5060
Maximum Power Dissipation (TO-3)
22
INFINITE HEAT SINK
20
18
16
14
12
10
8
POWER DISSIPATION (W)
6
4
2
0 10203040 50607080 901000102030605080709040100
0.5
0.4
0.3
0.2
0.1
0
-0.1
-0.2
-0.3
-0.4
-0.5
~
1.0
~
LOAD CURRENT (A)OUTPUT VOLTAGE DEVIATION (V)
0.5
0
-100 10203040
10.00
VIN = 10V
C
T
5.00
J
V
2.00
)
1.00
Ω
ΩΩ
Ω
0.50
0.20
0.10
OUTPUT IMPEDANCE (
0.05
0.02
0.01
1101001k10k100k1M
10 °C/W HEAT SINK
NO HEAT SINK
AMBIENT TEMPERATURE ( °C/W)
= 22 µF
OUT
= 50 mA
= 5V
O
Rev. 10/24/00
Page 7
SPX2940
ELECTRICAL CHARACTERISTICS
5.0
I
= 1A
O
= 25 °C
T
J
V
O
4.0
3.0
Low Voltage Behavior
= 5V
OUTPUT VOLTAGE (V)
2.0
1.0
18
I
= 1A
O
= 25 °C
T
J
V
= 10V
O
15
12
9
6
OUTPUT VOLTAGE (V)
3
0
Output at Voltage Extremes
12
Ω
= 100
R
L
10
VO = 5V
8
6
4
2
OUTPUT VOLTAGE (V)
0
-2
Output at Voltage Extremes
25
Ω
= 100
R
L
20
VO = 10V
15
10
5
0
OUTPUT VOLTAGE (V)
-5
)
Ω
ΩΩ
Ω
INPUT VOLTAGE (V)
Low Voltage Behavior
INPUT VOLTAGE (V)
INPUT VOLTAGE (V)
INPUT VOLTAGE (V)
100
10
12918630
15
20100-10-20-30
30 40
30 40
20100-10-20-30
Output Capacitor ESR
C
= 22 µF
OUT
= 5V
V
O
1
STABLE
REGION
0.1
EQUIVALENT SERIES RESISTANCE (
0.01
OUTPUT CURRENT (mA)
VIN = VO + 5V, IO =1A, CO = 22 µF, unless otherwise specified.
Low Voltage Behavior
14
I
= 1A
O
= 25 °C
T
J
12
= 8V
V
O
10
8
6
4
OUTPUT VOLTAGE (V)
2
0
6.05.04.03.02.01.0
14
12
10
OUTPUT VOLTAGE (V)
20
16
12
OUTPUT VOLTAGE (V)
-4
20
16
12
OUTPUT VOLTAGE (V)
-4
10008006004000200
INPUT VOLTAGE (V)
Low Voltage Behavior
= 1A
I
O
= 25 °C
T
J
V
= 12V
O
8
6
4
2
0
INPUT VOLTAGE (V)
Output at Voltage Extremes
Ω
= 100
R
L
VO = 8V
8
4
0
INPUT VOLTAGE (V)
Output at Voltage Extremes
Ω
R
= 100
L
VO = 12V
8
4
0
INPUT VOLTAGE (V)
OUTPUT CURRENT (A)
3.0
2.0
1.0
0
-4004080120160
1086420
12 14
1086420
12 14
20100-10-20-30
30 40
20100-10-20-30
30 40
18
15
12
9
6
OUTPUT VOLTAGE (V)
3
0
18
15
12
9
6
OUTPUT VOLTAGE (V)
3
0
20
16
12
8
4
0
OUTPUT VOLTAGE (V)
-4
25
20
15
10
5
0
OUTPUT VOLTAGE (V)
-5
Peak Output Current
TEMPERATURE ( °C)
Low Voltage Behavior
I
= 1A
O
= 25 °C
T
J
= 9V
V
O
INPUT VOLTAGE (V)
Low Voltage Behavior
I
= 1A
O
= 25 °C
T
J
V
= 15V
O
INPUT VOLTAGE (V)
Output at Voltage Extremes
Ω
= 100
R
L
VO = 9V
INPUT VOLTAGE (V)
Output at Voltage Extremes
Ω
R
= 100
L
VO = 15V
INPUT VOLTAGE (V)
V
= 14V
IN
12918630
15
12918630
15
20100-10-20-30
30 40
20100-10-20-30
30 40
Rev. 10/24/00
Page 8
SPX2940
APPLICATION HINTS
External Capacitors
A minimum capacitance of 22µF and conditions on ESR (Equivalent Series Resistance) must be met. The minimum value for the capacitance is
22µF and can be increased without limit. However the ESR may cause loop instability if it is too high or too low. The following graph shows the
acceptable range for the ESR.
100
)
Ω
ΩΩ
Ω
10
1
0.1
EQUIVALENT SERIES RESISTANCE (
0.01
If the capacitor does not meet these requirements oscillation can result.
ESR is specified only at room temperature. Therefore the designer must ensure the proper behavior of the ESR over the temperature range. ESR, for
electrolytic capacitor, will increase by about 30X as the temperature is reduced from 25°C to -40°C. Aluminum electrolytic capacitors are not well
suited for low temperature operation.
Solid tantalum capacitors’ ESR are more stable over temperature, but expensive. A cost-effective approach is then to put in parallel a solid tantalum
and a aluminum electrolytic capacitors in the ratio25/75%.
Thermal Consideration
Although the SPX2940 offers some limiting circuitry for overload conditions, it is necessary not to exceed the maximum junction temperature, and
therefore to be careful about thermal resistance. The heat flow will follow the lowest resistance path, which is the Junction-to-case thermal
resistance. In order to insure the best
thermal flow of the component, a proper mounting is required. Note that the case of the device is electrically connected to the output. In case the
case has to be electrically isolated, a thermally conductive spacer can be used. However do not forget to consider its contribution to thermal
resistance.
Formulas for calculating the power dissipated in the regulator are the following:
I
= IL + IG
IN
P
= (VIN + V
D
) * IL + VIN * IG
OUT
Where I
is the input current, IL is the load current, IG is the ground current, PD is the power dissipated, VIN is the input voltage and V
22 Linnell Circle
Billerica, MA 01821
TEL: (978) 667-8700
FAX: (978) 670-9001
e-mail: sales@sipex.com
233 South Hillview Drive
Milpitas, CA 95035
TEL: (408) 935-7600
FAX: (408) 934-7500
Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described
hereing; neither does it convey any license under its patent rights nor the rights of others.
Rev. 10/24/00
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.