Datasheet SP706PCN, SP706REU, SP706SCN, SP706SCP, SP706SCU Datasheet (Sipex Corporation)

...
Page 1
®
SP706P/R/S/T, SP708R/S/T
+3.0V/+3.3V Low Power Microprocessor
Supervisory Circuits
Precision Low Voltage Monitor: SP706P/R and SP708R at +2.63V SP706S and SP708S at +2.93V SP706T and SP708T at +3.08V
RESET Pulse Width - 200ms
Timeout (SP706P/S/R/T)
40µA Maximum Supply Current
Debounced TTL/CMOS Manual-Reset Input
RESET Asserted Down to VCC = 1V
RESET Output:
SP706P Active-High SP706R/S/T Active-Low SP708R/S/T Both Active High + Active Low
WDI Can Be Left Floating, Disabling the Watchdog Function
DESCRIPTION
The SP706P/S/R/T, SP708R/S/T series is a family of microprocessor (µP) supervisory circuits that integrate myriad components involved in discrete solutions which monitor power-supply and battery, in µP, and digital systems. The SP706P/S/R/T, SP708R/S/T series will significantly improve system reliability and operational efficiency when compared to results obtained with discrete components. The features of the SP706P/S/R/T, SP708R/S/T series include a watchdog timer, a µP reset, a Power Fail Comparator, and a manual-reset input. The SP706P/ S/R/T, SP708R/S/T series is ideal for +3.0V or +3.3V applications in automotive systems, computers, controllers, and intelligent instruments. The SP706P/S/R/T, SP708R/S/T series is an ideal solution for systems in which critical monitoring of the power supply to the µP and related digital components is demanded.
rebmuNtraPevitcATESERdlohserhTTESERteseRlaunaMycaruccAIFPtupnIgodhctaW P607PS R607PS S607PS T607PS R807PS S807PS T807PS
HGIHV36.2SEY%4SEY WOLV36.2SEY%4SEY WOLV39.2SEY%4SEY WOLV80.3SEY%4SEY
HGIH/WOLV36.2SEY%4ON HGIH/WOLV39.2SEY%4ON HGIH/WOLV80.3SEY%4ON
Built-In Vcc Glitch Immunity
Available in 8-pin PDIP, NSOIC, and
µSOIC packages
Voltage Monitor for Power Failure or Low Battery Warning
Pin Compatible Enhancement to Industry Standards 706P/R/S/T and 708R/S/T
Rev. 10-17-00 SP706 +3.0/ +3.3 Low Power Microprocessor Circuits © Copyright 2000 Sipex Corporation
1
Page 2
ABSOLUTE MAXIMUM RATINGS
These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.
Terminal Voltage (with respect to GND):
VCC........................................................-0.3V to +6.0V
All Other Inputs (Note 1)..............-0.3V to (V
+3.0V)
CC
Input Current: V
.....................................................................20mA
CC
GND...................................................................20mA
Output Current (all outputs)...............................20mA
ESD Rating...........................................................2kV
Continuous Power Dissipation Plastic DIP (derate 9.09mW/ SO (derate 5.88mW/ Mini SO (derate 4.10mW/
Storage Temperature Range.............-65˚C to +160˚C
Lead Temperature (solding 10 sec)................+300˚C
SPECIFICATIONS
Vcc = 2.7V to 5.5V for SP70_P/R, VCC = 3.0 to 5.5V for SP70_S, VCC = 3.15V to 5.5V for SP70_T, TA= T typical at 25°C.
RETEMARAP.NIM.PYT.XAMSTINUSNOITIDNOC
V,egnaRegatloVgnitarepO
CC
0.15.5V
O
C above +70OC)..................727mW
O
C above +70OC)..................471mW
O
C above +70OC)..................330mW
to T
to T
MIN
, unless otherwise noted,
MAX
MAX
TESERegatloVtuptuO
I,tnerruCylppuS
YLPPUS
dlohserhTteseR55.2
5204
58.2
00.3
39.2
80.3
36.2
07.2
00.3
51.3
siseretsyHdlohserhTteseR02Vm2etoN
t,htdiWesluPteseR
SR
V
HO
V
LO
V
HO
V
LO
041002082sm2etoN
Vx8.0
CC
3.0
VCC5.1-
4.0
egatloVtuptuOTESER
V
HO
V
LO
V
HO
V
LO
t,htdiWesluPIDW
PW
VCC6.0-
3.0
VCC5.1-
4.0
t,doirePtuoemiTgodhctaW
DW
00.106.152.2sVCCV6.3<
05snVLIV,V4.0=
,dlohserhTtupnIIDW
V
LI
V
HI
V
LI
V
HI
Vx7.0
CC
5.3
6.0
8.0
tnerruCtupnIIDW1-20.01
µA
µA
V=RM
CC
gnitaolFIDW,gnitaolFro
R/P_07PS
V
S_07PS T_07PS
V
V
V
V
V
V
V
V
V V V
V<
)XAM(TSR
V<
)XAM(TSR
V<V5.4
CC
V<V5.4
CC
V<
)XAM(TSR
V<
)XAM(TSR
V<V5.4
CC
V<V5.4
CC
V<
)XAM(TSR
V<
TSR)XAM(
V0.5=
CC
V0.5=
CC
I,V6.3<
CC
I,V6.3<
CC
I,V5.5<
ECRUOS
I,V5.5<
KNIS
I,V6.3<
CC
I,V6.3<
CC
I,V5.5<
ECRUOS
I,V5.5<
ECRUOS
Vx8.0=
HI
V6.3<
CC
V6.3<
CC
Vro0=IDW
CC
KNIS
CC
ECRUOS
2.1=mA 008= µA Am2.3=
ECRUOS
ECRUOS
008= µA
005= µA
512= µA
Am2.1=
Am2.3=
Rev. 10-17-00 SP706 +3.0/ +3.3 Low Power Microprocessor Circuits © Copyright 2000 Sipex Corporation
2
Page 3
SPECIFICATIONS (continued)
Vcc = 2.7V to 5.5V for SP70_P/R, VCC = 3.0 to 5.5V for SP70_S, VCC = 3.15V to 5.5V for SP70_T, TA= T typical at 25°C.
RETEMARAP.NIM.PYT.XAMSTINUSNOITIDNOC
egatloVtuptuOODW
µA
V
V
V
RMV,V0=
V
sn
V
V
V
V
sn
V
CC
V
V
V
V
HO
V
LO
V
HO
V
LO
VCC5.1-
RMtnerruCpU-lluP52
RMt,htdiWesluP
RM
RMdlohserhTtupnI
V
LI
V
HI
V
LI
V
HI
RMt,yaleDtuOteseRot
DM
dlohserhTtupnIIFP
tnerruCtupnIIFP00.52-10.000.52An
OFPegatloVtuptuO
V
HO
V
LO
V
HO
V
LO
VCC5.1-
Vx8.0
CC
3.0
4.0
07
001
052
052
006
005
051
6.0
Vx7.0
CC
8.0
0.2 057
052
02.152.103.1V
Vx8.0
CC
3.0
4.0
to T
MIN
MAX
V<
)XAM(TSR
CC
V<
)XAM(TSR
CC
V<V5.4
CC
V<V5.4
CC
V<
)XAM(TSR
CC
V<V5.4
CC
V<
)XAM(TSR
CC
V<
)XAM(TSR
CC
V<V5.4
CC
V<V5.4
CC
V<
)XAM(TSR
CC
V<V5.4
CC
ehtrofV3.3 T/S_07PS gnillafIFP,
V<
)XAM(TSR
CC
V<
)XAM(TSR
CC
V<V5.4
CC
V<V5.4
CC
to T
, unless otherwise noted,
MAX
I,V6.3<
ECRUOS
I,V6.3<
KNIS
I,V5.5< I,V5.5<
KNIS
V<
)XAM(TSR
V<V5.4,V0=RM
CC
008= µA
ECRUOS
Am2.3=
V6.3<
CC
V5.5<
V6.3<
V5.5<
V6.3<
V6.3< V5.5< V5.5<
2ETON,V6.3<
2ETON,V5.5<
ehtrofV0.3= R/P_07PS V,CC=
I,V6.3<
ECRUOS
I,V6.3<
2.1=mA
KNIS
I,V5.5< I,V5.5<
KNIS
008= µA
ECRUOS
Am2.3=
005= µA
Am2.1=
005= µA
Rev. 10-17-00 SP706 +3.0/ +3.3 Low Power Microprocessor Circuits © Copyright 2000 Sipex Corporation
3
Page 4
MR
CC
V
GND
PFI
MR
CC
V
GND
PFI
DIP and SOIC
1
1 2
SP706P/R/S/T
3 4
1
1 2
SP708S/R/T
3 4
8
WDO
7
RESET / RESET*
6
WDI
5
PFO
8
RESET
7
RESET
6
N.C.
5
PFO
RESET / RESET*
WDO
MR
CC
V
RESET RESET
MR
V
CC
1
1 2
SP706P/R/S/T
3 4
1
1 2
3 4
µSOIC
SP708S/R/T
8
WDI
7
PFO
6
PFI
5
GND
8
N.C.
7
PFO
6
PFI
5
GND
Figure 1. Pinouts
*SP706P only
*SP706P only
Rev. 10-17-00 SP706 +3.0/ +3.3 Low Power Microprocessor Circuits © Copyright 2000 Sipex Corporation
4
Page 5
NOITPIRCSEDNIP
EMANNOITCNUF
P607PST/S/R607PST/S/R807PS
/PID
µCIOS
CIOS
/PID
CIOS
µCIOS
/PID
µCIOS
CIOS
eslupteserasreggirttupnisihT-teseRlaunaM
tupniWOL-evitcasihT.V8.0wolebdellupnehw
RM
07lanretninasah µ ebnactI.tnerrucpu-llupA
13 13 13
detrohsroenilcigolSOMCroLTTamorfnevird
hctiwsahtiwdnuorgot
V
CC
.tupniegatloV242424
DNGslangisllarofecnereferdnuorG353535
tupnirotinomegatlovsihtnehW-tupnIliaF-rewoP
IFP
Vrodnuorgot
CC
OFP
.V52.1nahtsselsi
.esunitonnehw
IFPtcennoC.WOLseogOFP,V52.1nahtsselsi
464646
IFPlitnuHGIHsituptuosihT-tuptuOliaF-rewoP
575757
roHGIHsniamertupnisihtfI-tupnIgodhctaW
semitremitgodhctawlanretnieht,s6.1rofWOL
roIDWgnitaolF.WOLseogODWdnatuo
IDW
etats-irtecnadepmi-hgihaotIDWgnitcennoc
6868- -
lanretniehT.erutaefgodhctawehtselbasidreffub
siTESERrevenehwsraelcremitgodhctaw
seesIDWrevenehwro,detats-irtsiIDW,detressa
.egdegnillafrognisira
.C.N.tcennoCoN----68
sesluptuptuosihT-tuptuOTESERWOL-evitcA
WOLsyatsdnadereggirtnehwsm002rofWOL
Vrevenehw
TESER
CC
Vretfasm002rofWOLsniamer
cc
tI.dlohserhtteserehtwolebsi
ehtevobasesir
--7171
.HGIHotWOLmorfseogRMrodlohserhtteser
sselnuTESERreggirttonlliwtuoemitgodhctawA
.RMotdetcennocsiODW
nehwWOLslluptuptuosihT-tuptuOgodhctaW
tnuocs6.1stisehsinifremitgodhctawlanretnieht sigodhctawehtlitnuniagaHGIHogtonseoddna
enil-wolgnirudWOLseogoslaODW.deraelc
ODW
VrevenehW.snoitidnoc
CC
teserehtwolebsi
8282- -
ekilnu,revewoH.WOLsyatsODW,dlohserht
eslupmuminimaevahtonseodODW,TESER
VsanoossA.htdiw
CC
teserehtevobasi
.yaledonhtiwHGIHseogODW,dlohserht
ehtsituptuosihT-tuptuOTESERHGIH-evitcA
TESER
siTESERrevenehW.TESERfotnemelpmoc
71--82
ehtetoN.asrevecivdna,WOLsiTESER,HGIH
T/S/R807PS .ylnotuptuoteserasah
Table 1. Device Pin Description
Rev. 10-17-00 SP706 +3.0/ +3.3 Low Power Microprocessor Circuits © Copyright 2000 Sipex Corporation
5
Page 6
WDI
MR
V
WATCHDOG TRANSITION
DETECTOR
V
CC
70µA
CC
WATCHDOG
TIMER
TIMEBASE FOR
RESET AND WATCHDOG
RESET
GENERATOR
WDO
RESET/RESET*
2.63V for the
2.93V for the
3.08V for the
SP706P/R SP706S SP706T
PFI
1.25V
GND
Figure 2. Internal Block Diagram for the SP706P/R/S/T
V
CC
250µA
MR
V
CC
SP706P/R/S/T
RESET
GENERATOR
PFO
* For the SP706P only
RESET
RESET
2.63V for the SP708R
2.93V for the SP708S
3.08V for the SP708T
PFI
PFO
1.25V
SP708R/S/T
GND
Rev. 10-17-00 SP706 +3.0/ +3.3 Low Power Microprocessor Circuits © Copyright 2000 Sipex Corporation
6
Page 7
+3.3V
1.2V
0V
1.4V PFI
Figure 4A. Power-Fail Comparator De-assertion Response Time.
1.4V
3V
PFI
1.2V
PFO 0V
3V PFO
V
CC
= +3.3V
T
A
= +25 C
PFI
+1.25V
PFO
30pF
Figure 4B. Circuit for the Power-Fail Comparator De-assertion Response Time.
+3.3V
V
CC
= +3.3V
T
A
= +25 C
1K
PFI
PFO
+1.25V
30pF
1K
Figure 5A. Power-Fail Comparator Assertion Response Time.
Figure 5B. Circuit for the Power-Fail Comparator Assertion Response Time.
VCC
TA = +25oC
3.6V V
CC
V
CC
2K
0V
RESET
RESET
RESET
330pF
GND
Figure 6A. SP706 RESET Output Voltage vs. Supply Voltage.
Rev. 10-17-00 SP706 +3.0/ +3.3 Low Power Microprocessor Circuits © Copyright 2000 Sipex Corporation
Figure 6B. Circuit for the SP706 RESET Output Voltage vs. Supply Voltage.
7
Page 8
V
CC
TA = +25oC
V
CC
10K
RESET
RESET
330pF
GND
Figure 7A. SP706 RESET Response Time Figure 7B. Circuit for the SP706 RESET Response
3.2V RESET
0V
3.2V
RESET 0V
Figure 8. SP708 RESET and RESET Assertion Figure 9. SP708 RESET and RESET De-Assertion
Time
0V
2.8V RESET
0V
2.8V
RESET
V
CC
TA = +25oC
CC
V
10K
RESET
330pF
RESET
330pF
GND
10K
Figure 10. Circuit for the SP708 RESET and RESET Assertion and De-Assertion
Rev. 10-17-00 SP706 +3.0/ +3.3 Low Power Microprocessor Circuits © Copyright 2000 Sipex Corporation
8
Page 9
3.6V V
CC
0V
RESET
0V
Figure 11. SP708 RESET Output Voltage vs. Supply
Figure 12. SP708 RESET Response Time
Voltage
V
CC
V
CC
RESET
330pF
10K
GND
Figure 13. Circuit for the SP708 RESET Output Voltage vs. Supply Voltage and the RESET Response Time Figures
Rev. 10-17-00 SP706 +3.0/ +3.3 Low Power Microprocessor Circuits © Copyright 2000 Sipex Corporation
9
Page 10
FEATURES
The SP706P/R/S/T-SP708R/S/T series provides four key functions:
1. A reset output during power-up, power-down and brownout conditions.
2. An independent watchdog output that goes LOW if the watchdog input has not been toggled within 1.6 sec.
3. A 1.25V threshold detector for power-fail warning, low battery detection, or monitoring a power supply other than +3.3V/+3.0V.
4. An active-LOW manual-reset that allows RESET to be triggered by a pushbutton switch.
The SP706R/S/T devices are the same as the SP708R/S/T devices except for the active-HIGH RESET substitution of the watchdog timer. The SP706P device is the same as the SP706R de­vice except an active-HIGH RESET is provided rather than an active-LOW RESET.
THEORY OF OPERATION
The SP706P/R/S/T-SP708R/S/T series is a mi­croprocessor (µP) supervisory circuit that moni­tors the power supplied to digital circuits such as microprocessors, microcontrollers, or memory. The series is an ideal solution for portable, battery-powered equipment that re­quires power supply monitoring. Implementing this series will reduce the number of compo­nents and overall complexity of a system. The watchdog functions of this product family will continuously oversee the operational status of a system. The operational features and benefits of the SP706P/R/S/T-SP708R/S/T series are de­scribed, in more detail, below.
the reset threshold, an internal timer releases RESET after 200ms. RESET pulses LOW when­ever VCC dips below the reset threshold, such as in a brownout condition. When a brownout condition occurs in the middle of a previously initiated reset pulse, the pulse continues for at least another 140ms. During power-down, once VCC falls below the reset threshold, RESET stays LOW and is guaranteed to be 0.4V or less until VCC drops below 1V.
The active-HIGH RESET output is simply the complement of the RESET output and is guaranteed to be valid with VCC down to 1.1V. Some µPs, such as Intel's 80C51, require an active-HIGH reset pulse.
Watchdog Timer
The SP706P/R/S/T-SP708R/S/T series watchdog circuit monitors the µP's activity. If the µP does not toggle the watchdog input (WDI) within 1.6 seconds and WDI is not tri-stated, WDO goes LOW. As long as RESET is asserted or the WDI input is tri-stated, the watchdog timer will stay cleared and will not count. As soon as RESET is released and WDI is driven HIGH or LOW, the timer will start counting. Pulses as short as 50ns can be detected.
Typically, WDO will be connected to the non-maskable interrupt input (NMI) of a µP. When VCC drops below the reset threshold, WDO will go LOW independent of the current status of the watchdog timer. Normally this would trigger an NMI but RESET goes LOW simulta­neously, and thus overrides the NMI.
RESET Output
A microprocessor's reset input starts the µP in a known state. The SP706P/R/S/T-SP708R/ S/T series asserts reset during power-up and
If WDI is left unconnected, WDO can be used as a low-line output. Since floating WDI disables the internal timer, WDO goes LOW only when VCC falls below the reset threshold, thus functioning as a low-line output.
prevents code execution errors during power­down or brownout conditions.
During power-up, once VCC reaches 1V, RESET is a guaranteed logic LOW of 0.4V or less. As V
CC
rises, RESET stays LOW. When VCC rises above
Rev. 10-17-00 SP706 +3.0/ +3.3 Low Power Microprocessor Circuits © Copyright 2000 Sipex Corporation
Power-Fail Comparator
The power-fail comparator can be used for various purposes because its output and noninverting input are not internally connected. The inverting input is internally connected to a 1.25V reference.
10
Page 11
t
WDI
WDO
RESET*
RESET*
WP
+3.3V
0V
+3.3V
0V
+3.3V
0V
+3.3V
0V
t
WD
* externally triggered LOW by MR,
RESET is for the SP813L/813M only
Figure 14. Watchdog Timing Waveforms
To build an early-warning circuit for power failure, connect the PFI pin to a voltage divider as shown in Figure 16. Choose the voltage divider ratio so that the voltage at PFI falls below 1.25V just before the +5V regulator drops out. Use PFO to interrupt the µP so it can prepare for an orderly power-down.
t
WD
t
WD
t
RS
Manual Reset
The manual-reset input (MR) allows RESET to be triggered by a pushbutton switch. The switch is effectively debounced by the 140ms minimum RESET pulse width. MR is TTL/ CMOS logic compatible, so it can be driven by an external logic line. MR can be used to force a watchdog timeout to generate a RESET pulse in the SP706P/R/S/T-SP708R/S/T series. Simply connect WDO to MR.
V
CC
WDO
RESET
MR*
+3.3V
0V
+3.3V
0V
+3.3V
0V
+3.3V
0V
V
RT
*externally driven LOW
V
RT
t
t
RS
RS
MD
t
t
MR
Figure 15. Timing Diagrams with WDI Tri-stated. The RESET Output is the Inverse of the RESET Waveform Shown.
Rev. 10-17-00 SP706 +3.0/ +3.3 Low Power Microprocessor Circuits © Copyright 2000 Sipex Corporation
11
Page 12
Ensuring a Valid RESET Output Down to VCC = 0V
When V
falls below 1V, the RESET output no
CC
longer sinks current, it becomes an open circuit. High-impedance CMOS logic inputs can drift to undetermined voltages if left undriven. If a pull­down resistor is added to the RESET pin, any stray charge or leakage currents will be shunted to ground, holding RESET LOW. The resistor value is not critical. It should be about 100KΩ, large enough not to load RESET and small enough to pull RESET to ground.
Monitoring Voltages Other Than the Unregulated DC Input
Monitor voltages other than the unregulated DC by connecting a voltage divider to PFI and adjusting the ratio appropriately. If required, add hysteresis by connecting a resistor (with a value approximately 10 times the sum of the two resistors in the potential divider network) between PFI and PFO. A capacitor between PFI and GND will reduce the power-fail circuit's sensitivity to high-frequency noise on the line being monitored. RESET can be used to monitor voltages other than the +3.3V/+3.0V
V
line. Connect PFO to MR to initiate a
CC
RESET pulse when PFI drops below 1.25V. Figure 17 shows the SP706R/S/T-SP708R/ S/T series configured to assert RESET when the +3.3V/+3.0V supply falls below the RESET threshold, or when the +12V supply falls below approximately 11V.
Monitoring a Negative Voltage Supply
The power-fail comparator can also monitor a negative supply rail, shown in Figure 18. When the negative rail is good (a negative voltage of large magnitude), PFO is LOW. By adding the resistors and transistor as shown, a HIGH PFO triggers RESET. As long as PFO remains HIGH, the SP706P/R/S/T-SP708R/S/ T series will keep RESET asserted (where RESET = LOW and RESET = HIGH). Note that this circuit's accuracy depends on the PFI threshold tolerance, the VCC line, and the resis­tors.
Interfacing to mPs with Bidirectional RESET Pins
µPs with bidirectional RESET pins, such as the Motorola 68HC11 series, can contend with the RESET output. If, for example, the RESET
Regulated +3.3V/+3.0V
Power Supply
Unregulated DC
Power Supply
V
CC
RESET
µP
INTERRUPT I/O LINE
NMI
GND
Figure 16. Typical Operating Circuit
Rev. 10-17-00 SP706 +3.0/ +3.3 Low Power Microprocessor Circuits © Copyright 2000 Sipex Corporation
0.1µF
RESET
PFO
PFI
WDO
PUSHBUTTON
SWITCH
CC
V
GND
PFI
MR
R
1
R
2
to µP
Figure 17. Monitoring Both +3.3V/+3.0V and +12V Power Supplies
+3.3V/+3.0V
V
MR
PFO
RESET
GND
+12V
CC
1M 1%
PFI
130K 1%
12
Page 13
output is driven HIGH and the µP wants to pull it LOW, indeterminate logic levels may result. To correct this, connect a 4.7k resistor between the RESET output and the µP reset I/O, as shown if Figure 19. Buffer the RESET output to other system components.
Negative-Going VCC Transients
While issuing resets to the µP during power-up, power-down, and brownout conditions, these supervisors are relatively immune to short­duration negative-going VCC transients (glitches). It is usually undesirable to reset the µP when V experiences only small glitches.
CC
the magnitude indicated (reset comparator over­drive). The graph shows the maximum pulse width a negative-going VCC transient may typically have without causing a reset pulse to be issued. As the amplitude of the transient increases (i.e. goes farther below the reset threshold), the maximum allowable pulse width decreases. Typically, a VCC transient that goes 100mV below the reset threshold and lasts for 40µs or less will not cause a reset pulse to be issued. A 100nF bypass capacitor mounted close to the VCC pin provides additional transient immunity.
Applications
Figure 20 shows maximum transient dura­tion vs. reset-comparator overdrive, for which reset pulses are not generated. The data was gen­erated using negative-going VCC pulses, starting at 3.3V and ending below the reset threshold by
+3.3V/+3.0V
V
100k
2N3904
MR
PFO
to µP
+3.3V
+3.3V
CC
MR
PFO
100k
RESET
GND
VCC - 1.25
1
R
=
1.25 - V
R
2
0V
0V
TRIP
, V
TRIP
V
TRIP
0V
< 0
PFI
R
1
R
2
V-
V-
V-
The SP706P/R/S/T-SP708R/S/T series offers unmatched performance and the lowest power consumption for these industry standard de­vices. Refer to Figures 21 and 22 for supply current performance characteristics rated against temperature and supply voltages.
Buffered RESET connects to System Components
+3.3V/+3.0V
V
CC
GND
RESET
4.7K
RESET
+3.3V/+3.0V
V
CC
µP
GND
Figure 18. Monitoring a Negative Voltage Supply Figure 19. Interfacing to Microprocessors with
Bidirectional RESET I/O for the SP706
Rev. 10-17-00 SP706 +3.0/ +3.3 Low Power Microprocessor Circuits © Copyright 2000 Sipex Corporation
13
Page 14
100
V
Maximum Transient Duration
20.2
20.1
80
1nF Capacitor V
TO GND
60
40
20
Transient Duration (µS)
NO
RESET
Generated
OUT
Above Line
RESET
Generated
0
10
100
1000
10000
Reset Overdrive (mV)
Figure 20. Maximum Transient Duration Without Causing a Reset Pulse vs. Reset Comparator Overdrive
30
28
26
24
22
20
18
Supply Current (µA)
16
14
2.5 3 3.5 4 4.5 5 5.5
Supply Voltage (V)
Figure 22. Supply Current vs. Supply Voltage
20.0
19.9
19.8
19.7
19.6
Supply Current (mA)
19.5
19.4
-60 -40 -20 0 2 0 40 6 0 80 100
Temperature (°C)
cc=3.3V
Figure 21. Supply Current vs. Temperature
Rev. 10-17-00 SP706 +3.0/ +3.3 Low Power Microprocessor Circuits © Copyright 2000 Sipex Corporation
14
Page 15
D1 = 0.005" min.
(0.127 min.)
D
e = 0.100 BSC
(2.540 BSC)
B1
B
ALTERNATE
END PINS
(BOTH ENDS)
PACKAGE: PLASTIC
DUAL–IN–LINE (NARROW)
E1
E
A1 = 0.015" min.
(0.381min.)
A = 0.210" max.
(5.334 max).
A2
L
C
Ø
eA = 0.300 BSC
(7.620 BSC)
DIMENSIONS (Inches)
Minimum/Maximum
(mm) A2
B
B1
C
D
E
E1
L
Ø
8–PIN
0.115/0.195
(2.921/4.953)
0.014/0.022
(0.356/0.559)
0.045/0.070
(1.143/1.778)
0.008/0.014
(0.203/0.356)
0.355/0.400
(9.017/10.160)
0.300/0.325
(7.620/8.255)
0.240/0.280
(6.096/7.112)
0.115/0.150
(2.921/3.810)
0°/ 15°
(0°/15°)
Rev. 10-17-00 SP706 +3.0/ +3.3 Low Power Microprocessor Circuits © Copyright 2000 Sipex Corporation
15
Page 16
PACKAGE: PLASTIC
SMALL OUTLINE (SOIC) (NARROW)
EH
h x 45°
D
A
Ø
Be
A1
DIMENSIONS (Inches)
Minimum/Maximum
(mm) A
A1
B
D
E
e
H
h
L
Ø
0.053/0.069
(1.346/1.748)
0.004/0.010
(0.102/0.249
0.014/0.019 (0.35/0.49)
0.189/0.197 (4.80/5.00)
0.150/0.157
(3.802/3.988)
0.050 BSC
(1.270 BSC)
0.228/0.244
(5.801/6.198)
0.010/0.020
(0.254/0.498)
0.016/0.050
(0.406/1.270)
8–PIN
0°/8°
(0°/8°)
L
Rev. 10-17-00 SP706 +3.0/ +3.3 Low Power Microprocessor Circuits © Copyright 2000 Sipex Corporation
16
Page 17
PACKAGE: PLASTIC
MICRO SMALL OUTLINE (µSOIC)
0.020
0.0965 ±0.003
0.020 1
0.013 ±0.005
0.0256
2
0.116
±0.004
0.118
±0.004
BSC
0.118
±0.004
0.004
±0.002
0.034
±0.004
0.040
±0.003
0.012
±0.003
±0.003
0.16
R .003
12.0˚ ±
0.01
12.0˚ ±
0.008 0˚ - 6˚
0.006
±0.006
0.006
±0.006
0.0215 ±0.006
0.037 Ref
±0.004
0.116
0.118
±0.004
3.0˚ ±
All package dimensions are in inches
50 USOIC devices per tube
Rev. 10-17-00 SP706 +3.0/ +3.3 Low Power Microprocessor Circuits © Copyright 2000 Sipex Corporation
17
Page 18
Model .......................................................................................Temperature Range ................................................................................ Package
ORDERING INFORMATION
SP706PCP ..................................................................................... 0°C to +70°C ...................................................................................8–pin PDIP
SP706PCN .....................................................................................0°C to +70°C ................................................................................ 8–pin NSOIC
SP706PCU .....................................................................................0°C to +70°C ................................................................................. 8-pin µSOIC
SP706RCP .....................................................................................0°C to +70°C ................................................................................... 8–pin PDIP
SP706RCN..................................................................................... 0°C to +70°C ................................................................................8–pin NSOIC
SP706RCU..................................................................................... 0°C to +70°C ................................................................................. 8-pin µSOIC
SP706SCP ..................................................................................... 0°C to +70°C ...................................................................................8–pin PDIP
SP706SCN .....................................................................................0°C to +70°C ................................................................................ 8–pin NSOIC
SP706SCU .....................................................................................0°C to +70°C ................................................................................. 8-pin µSOIC
SP706TCP ..................................................................................... 0°C to +70°C ...................................................................................8–pin PDIP
SP706TCN ..................................................................................... 0°C to +70°C ................................................................................8–pin NSOIC
SP706TCU ..................................................................................... 0°C to +70°C ................................................................................. 8-pin µSOIC
SP706PEP ................................................................................... -40°C to +85 °C ................................................................................. 8–pin PDIP
SP706PEN ................................................................................... -40°C to +85°C ..............................................................................8–pin NSOIC
SP706PEU ................................................................................... -40°C to +85°C ............................................................................... 8-pin µSOIC
SP706REP ................................................................................... -40°C to +85°C .................................................................................8–pin PDIP
SP706REN ................................................................................... -40°C to +85°C ..............................................................................8–pin NSOIC
SP706REU ................................................................................... -40°C to +85°C ............................................................................... 8-pin µSOIC
SP706SEP ................................................................................... -40°C to +85 °C ................................................................................. 8–pin PDIP
SP706SEN ................................................................................... -40°C to +85°C ..............................................................................8–pin NSOIC
SP706SEU ................................................................................... -40°C to +85°C ............................................................................... 8-pin µSOIC
SP706TEP ................................................................................... -40°C to +85°C .................................................................................8–pin PDIP
SP706TEN ................................................................................... -40°C to +85 °C .............................................................................. 8–pin NSOIC
SP706TEU ................................................................................... -40°C to +85 °C ............................................................................... 8-pin µSOIC
SP708RCP .....................................................................................0°C to +70°C ................................................................................... 8–pin PDIP
SP708RCN..................................................................................... 0°C to +70°C ................................................................................8–pin NSOIC
SP708RCU..................................................................................... 0°C to +70°C ................................................................................. 8-pin µSOIC
SP708SCP ..................................................................................... 0°C to +70°C ...................................................................................8–pin PDIP
SP708SCN .....................................................................................0°C to +70°C ................................................................................ 8–pin NSOIC
SP708SCU .....................................................................................0°C to +70°C ................................................................................. 8-pin µSOIC
SP708TCP ..................................................................................... 0°C to +70°C ...................................................................................8–pin PDIP
SP708TCN ..................................................................................... 0°C to +70°C ................................................................................8–pin NSOIC
SP708TCU ..................................................................................... 0°C to +70°C ................................................................................. 8-pin µSOIC
SP708REP ................................................................................... -40°C to +85°C .................................................................................8–pin PDIP
SP708REN ................................................................................... -40°C to +85°C ..............................................................................8–pin NSOIC
SP708REU ................................................................................... -40°C to +85°C ............................................................................... 8-pin µSOIC
SP708SEP ................................................................................... -40°C to +85 °C ................................................................................. 8–pin PDIP
SP708SEN ................................................................................... -40°C to +85°C ..............................................................................8–pin NSOIC
SP708SEU ................................................................................... -40°C to +85°C ............................................................................... 8-pin µSOIC
SP708TEP ................................................................................... -40°C to +85°C .................................................................................8–pin PDIP
SP708TEN ................................................................................... -40°C to +85 °C .............................................................................. 8–pin NSOIC
SP708TEU ................................................................................... -40°C to +85 °C ............................................................................... 8-pin µSOIC
Please consult the factory for pricing and availability on a Tape-On-Reel option.
Corporation
SIGNAL PROCESSING EXCELLENCE
Sipex Corporation Headquarters and
Sales Office
22 Linnell Circle Billerica, MA 01821 TEL: (978) 667-8700 FAX: (978) 670-9001 e-mail: sales@sipex.com
Sales Office
233 South Hillview Drive Milpitas, CA 95035 TEL: (408) 934-7500 FAX: (408) 935-7600
Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.
Rev. 10-17-00 SP706 +3.0/ +3.3 Low Power Microprocessor Circuits © Copyright 2000 Sipex Corporation
18
Loading...