■ Precision Low Voltage Monitor:
SP706P/R and SP708R at +2.63VSP706S and SP708S at +2.93VSP706T and SP708T at +3.08V
■ RESET Pulse Width - 200ms
■ Independent Watchdog Timer - 1.6 sec
Timeout (SP706P/S/R/T)
■ 40µA Maximum Supply Current
■ Debounced TTL/CMOS Manual-Reset Input
■ RESET Asserted Down to VCC = 1V
■ RESET Output:
SP706P Active-HighSP706R/S/T Active-Low
SP708R/S/T Both Active High + Active Low
■ WDI Can Be Left Floating, Disabling the
Watchdog Function
DESCRIPTION
The SP706P/S/R/T, SP708R/S/T series is a family of microprocessor (µP) supervisory circuits
that integrate myriad components involved in discrete solutions which monitor power-supply and
battery, in µP, and digital systems. The SP706P/S/R/T, SP708R/S/T series will significantly
improve system reliability and operational efficiency when compared to results obtained with
discrete components. The features of the SP706P/S/R/T, SP708R/S/T series include a
watchdog timer, a µP reset, a Power Fail Comparator, and a manual-reset input. The SP706P/
S/R/T, SP708R/S/T series is ideal for +3.0V or +3.3V applications in automotive systems,
computers, controllers, and intelligent instruments. The SP706P/S/R/T, SP708R/S/T series is
an ideal solution for systems in which critical monitoring of the power supply to the µP and related
digital components is demanded.
These are stress ratings only and functional operation
of the device at these ratings or any other above those
indicated in the operation sections of the specifications
below is not implied. Exposure to absolute maximum
rating conditions for extended periods of time may
affect reliability.
Terminal Voltage (with respect to GND):
VCC........................................................-0.3V to +6.0V
All Other Inputs (Note 1)..............-0.3V to (V
The SP706P/R/S/T-SP708R/S/T series provides
four key functions:
1. A reset output during power-up, power-down
and brownout conditions.
2. An independent watchdog output that goes
LOW if the watchdog input has not been toggled
within 1.6 sec.
3. A 1.25V threshold detector for power-fail
warning, low battery detection, or monitoring a
power supply other than +3.3V/+3.0V.
4. An active-LOW manual-reset that allows
RESET to be triggered by a pushbutton switch.
The SP706R/S/T devices are the same as the
SP708R/S/T devices except for the active-HIGH
RESET substitution of the watchdog timer. The
SP706P device is the same as the SP706R device except an active-HIGH RESET is provided
rather than an active-LOW RESET.
THEORY OF OPERATION
The SP706P/R/S/T-SP708R/S/T series is a microprocessor (µP) supervisory circuit that monitors the power supplied to digital circuits such
as microprocessors, microcontrollers, or
memory. The series is an ideal solution for
portable, battery-powered equipment that requires power supply monitoring. Implementing
this series will reduce the number of components and overall complexity of a system. The
watchdog functions of this product family will
continuously oversee the operational status of a
system. The operational features and benefits of
the SP706P/R/S/T-SP708R/S/T series are described, in more detail, below.
the reset threshold, an internal timer releases
RESET after 200ms. RESET pulses LOW whenever VCC dips below the reset threshold, such as
in a brownout condition. When a brownout
condition occurs in the middle of a previously
initiated reset pulse, the pulse continues for at
least another 140ms. During power-down, once
VCC falls below the reset threshold, RESET
stays LOW and is guaranteed to be 0.4V or less
until VCC drops below 1V.
The active-HIGH RESET output is simply
the complement of the RESET output and is
guaranteed to be valid with VCC down to 1.1V.
Some µPs, such as Intel's 80C51, require an
active-HIGH reset pulse.
Watchdog Timer
The SP706P/R/S/T-SP708R/S/T series watchdog
circuit monitors the µP's activity. If the µP does
not toggle the watchdog input (WDI) within 1.6
seconds and WDI is not tri-stated, WDO goes
LOW. As long as RESET is asserted or the WDI
input is tri-stated, the watchdog timer will stay
cleared and will not count. As soon as RESET
is released and WDI is driven HIGH or LOW,
the timer will start counting. Pulses as short as
50ns can be detected.
Typically, WDO will be connected to the
non-maskable interrupt input (NMI) of a µP.
When VCC drops below the reset threshold, WDO
will go LOW independent of the current status
of the watchdog timer. Normally this would
trigger an NMI but RESET goes LOW simultaneously, and thus overrides the NMI.
RESET Output
A microprocessor's reset input starts the µP
in a known state. The SP706P/R/S/T-SP708R/
S/T series asserts reset during power-up and
If WDI is left unconnected, WDO can be used as
a low-line output. Since floating WDI disables
the internal timer, WDO goes LOW only when
VCC falls below the reset threshold, thus
functioning as a low-line output.
prevents code execution errors during powerdown or brownout conditions.
During power-up, once VCC reaches 1V, RESET
is a guaranteed logic LOW of 0.4V or less. As
V
The power-fail comparator can be used for
various purposes because its output and
noninverting input are not internally connected.
The inverting input is internally connected to
a 1.25V reference.
10
Page 11
t
WDI
WDO
RESET*
RESET*
WP
+3.3V
0V
+3.3V
0V
+3.3V
0V
+3.3V
0V
t
WD
* externally triggered LOW by MR,
RESET is for the SP813L/813M only
Figure 14. Watchdog Timing Waveforms
To build an early-warning circuit for power
failure, connect the PFI pin to a voltage divider
as shown in Figure 16. Choose the voltage
divider ratio so that the voltage at PFI falls
below 1.25V just before the +5V regulator drops
out. Use PFO to interrupt the µP so it can prepare
for an orderly power-down.
t
WD
t
WD
t
RS
Manual Reset
The manual-reset input (MR) allows RESET to
be triggered by a pushbutton switch. The switch
is effectively debounced by the 140ms
minimum RESET pulse width. MR is TTL/
CMOS logic compatible, so it can be driven by
an external logic line. MR can be used to force
a watchdog timeout to generate a RESET pulse
in the SP706P/R/S/T-SP708R/S/T series.
Simply connect WDO to MR.
V
CC
WDO
RESET
MR*
+3.3V
0V
+3.3V
0V
+3.3V
0V
+3.3V
0V
V
RT
*externally driven LOW
V
RT
t
t
RS
RS
MD
t
t
MR
Figure 15. Timing Diagrams with WDI Tri-stated. The RESET Output is the Inverse of the RESET Waveform
Shown.
longer sinks current, it becomes an open circuit.
High-impedance CMOS logic inputs can drift to
undetermined voltages if left undriven. If a pulldown resistor is added to the RESET pin, any
stray charge or leakage currents will be shunted
to ground, holding RESET LOW. The resistor
value is not critical. It should be about 100KΩ,
large enough not to load RESET and small
enough to pull RESET to ground.
Monitoring Voltages Other Than the
Unregulated DC Input
Monitor voltages other than the unregulated DC
by connecting a voltage divider to PFI and
adjusting the ratio appropriately. If required,
add hysteresis by connecting a resistor (with a
value approximately 10 times the sum of the
two resistors in the potential divider network)
between PFI and PFO. A capacitor between PFI
and GND will reduce the power-fail circuit's
sensitivity to high-frequency noise on the
line being monitored. RESET can be used to
monitor voltages other than the +3.3V/+3.0V
V
line. Connect PFO to MR to initiate a
CC
RESET pulse when PFI drops below 1.25V.
Figure 17 shows the SP706R/S/T-SP708R/
S/T series configured to assert RESET when the
+3.3V/+3.0V supply falls below the RESET
threshold, or when the +12V supply falls below
approximately 11V.
Monitoring a Negative Voltage Supply
The power-fail comparator can also monitor a
negative supply rail, shown in Figure 18.
When the negative rail is good (a negative
voltage of large magnitude), PFO is LOW. By
adding the resistors and transistor as shown, a
HIGH PFO triggers RESET. As long as PFO
remains HIGH, the SP706P/R/S/T-SP708R/S/
T series will keep RESET asserted (where
RESET = LOW and RESET = HIGH). Note that
this circuit's accuracy depends on the PFI
threshold tolerance, the VCC line, and the resistors.
Interfacing to mPs with Bidirectional
RESET Pins
µPs with bidirectional RESET pins, such as the
Motorola 68HC11 series, can contend with the
RESET output. If, for example, the RESET
Figure 17. Monitoring Both +3.3V/+3.0V and +12V
Power Supplies
+3.3V/+3.0V
V
MR
PFO
RESET
GND
+12V
CC
1MΩ
1%
PFI
130KΩ
1%
12
Page 13
output is driven HIGH and the µP wants to pull
it LOW, indeterminate logic levels may result.
To correct this, connect a 4.7kΩ resistor
between the RESET output and the µP reset
I/O, as shown if Figure 19. Buffer the
RESET output to other system components.
Negative-Going VCC Transients
While issuing resets to the µP during power-up,
power-down, and brownout conditions, these
supervisors are relatively immune to shortduration negative-going VCC transients (glitches).
It is usually undesirable to reset the µP when V
experiences only small glitches.
CC
the magnitude indicated (reset comparator overdrive). The graph shows the maximum pulse
width a negative-going VCC transient may
typically have without causing a reset pulse to
be issued. As the amplitude of the transient
increases (i.e. goes farther below the reset
threshold), the maximum allowable pulse width
decreases. Typically, a VCC transient that goes
100mV below the reset threshold and lasts for
40µs or less will not cause a reset pulse to be
issued. A 100nF bypass capacitor mounted close
to the VCC pin provides additional transient
immunity.
Applications
Figure 20 shows maximum transient duration vs. reset-comparator overdrive, for which
reset pulses are not generated. The data was generated using negative-going VCC pulses, starting
at 3.3V and ending below the reset threshold by
+3.3V/+3.0V
V
100kΩ
2N3904
MR
PFO
to µP
+3.3V
+3.3V
CC
MR
PFO
100kΩ
RESET
GND
VCC - 1.25
1
R
=
1.25 - V
R
2
0V
0V
TRIP
, V
TRIP
V
TRIP
0V
< 0
PFI
R
1
R
2
V-
V-
V-
The SP706P/R/S/T-SP708R/S/T series offers
unmatched performance and the lowest power
consumption for these industry standard devices. Refer to Figures 21 and 22 for supply
current performance characteristics rated against
temperature and supply voltages.
Buffered RESET connects to System Components
+3.3V/+3.0V
V
CC
GND
RESET
4.7KΩ
RESET
+3.3V/+3.0V
V
CC
µP
GND
Figure 18. Monitoring a Negative Voltage SupplyFigure 19. Interfacing to Microprocessors with
Model .......................................................................................Temperature Range ................................................................................ Package
ORDERING INFORMATION
SP706PCP ..................................................................................... 0°C to +70°C ...................................................................................8–pin PDIP
SP706PCN .....................................................................................0°C to +70°C ................................................................................ 8–pin NSOIC
SP706PCU .....................................................................................0°C to +70°C ................................................................................. 8-pin µSOIC
SP706RCP .....................................................................................0°C to +70°C ................................................................................... 8–pin PDIP
SP706RCN..................................................................................... 0°C to +70°C ................................................................................8–pin NSOIC
SP706RCU..................................................................................... 0°C to +70°C ................................................................................. 8-pin µSOIC
SP706SCP ..................................................................................... 0°C to +70°C ...................................................................................8–pin PDIP
SP706SCN .....................................................................................0°C to +70°C ................................................................................ 8–pin NSOIC
SP706SCU .....................................................................................0°C to +70°C ................................................................................. 8-pin µSOIC
SP706TCP ..................................................................................... 0°C to +70°C ...................................................................................8–pin PDIP
SP706TCN ..................................................................................... 0°C to +70°C ................................................................................8–pin NSOIC
SP706TCU ..................................................................................... 0°C to +70°C ................................................................................. 8-pin µSOIC
SP706PEP ................................................................................... -40°C to +85 °C ................................................................................. 8–pin PDIP
SP706PEN ................................................................................... -40°C to +85°C ..............................................................................8–pin NSOIC
SP706PEU ................................................................................... -40°C to +85°C ............................................................................... 8-pin µSOIC
SP706REP ................................................................................... -40°C to +85°C .................................................................................8–pin PDIP
SP706REN ................................................................................... -40°C to +85°C ..............................................................................8–pin NSOIC
SP706REU ................................................................................... -40°C to +85°C ............................................................................... 8-pin µSOIC
SP706SEP ................................................................................... -40°C to +85 °C ................................................................................. 8–pin PDIP
SP706SEN ................................................................................... -40°C to +85°C ..............................................................................8–pin NSOIC
SP706SEU ................................................................................... -40°C to +85°C ............................................................................... 8-pin µSOIC
SP706TEP ................................................................................... -40°C to +85°C .................................................................................8–pin PDIP
SP706TEN ................................................................................... -40°C to +85 °C .............................................................................. 8–pin NSOIC
SP706TEU ................................................................................... -40°C to +85 °C ............................................................................... 8-pin µSOIC
SP708RCP .....................................................................................0°C to +70°C ................................................................................... 8–pin PDIP
SP708RCN..................................................................................... 0°C to +70°C ................................................................................8–pin NSOIC
SP708RCU..................................................................................... 0°C to +70°C ................................................................................. 8-pin µSOIC
SP708SCP ..................................................................................... 0°C to +70°C ...................................................................................8–pin PDIP
SP708SCN .....................................................................................0°C to +70°C ................................................................................ 8–pin NSOIC
SP708SCU .....................................................................................0°C to +70°C ................................................................................. 8-pin µSOIC
SP708TCP ..................................................................................... 0°C to +70°C ...................................................................................8–pin PDIP
SP708TCN ..................................................................................... 0°C to +70°C ................................................................................8–pin NSOIC
SP708TCU ..................................................................................... 0°C to +70°C ................................................................................. 8-pin µSOIC
SP708REP ................................................................................... -40°C to +85°C .................................................................................8–pin PDIP
SP708REN ................................................................................... -40°C to +85°C ..............................................................................8–pin NSOIC
SP708REU ................................................................................... -40°C to +85°C ............................................................................... 8-pin µSOIC
SP708SEP ................................................................................... -40°C to +85 °C ................................................................................. 8–pin PDIP
SP708SEN ................................................................................... -40°C to +85°C ..............................................................................8–pin NSOIC
SP708SEU ................................................................................... -40°C to +85°C ............................................................................... 8-pin µSOIC
SP708TEP ................................................................................... -40°C to +85°C .................................................................................8–pin PDIP
SP708TEN ................................................................................... -40°C to +85 °C .............................................................................. 8–pin NSOIC
SP708TEU ................................................................................... -40°C to +85 °C ............................................................................... 8-pin µSOIC
Please consult the factory for pricing and availability on a Tape-On-Reel option.
Corporation
SIGNAL PROCESSING EXCELLENCE
Sipex Corporation
Headquarters and
Sales Office
22 Linnell Circle
Billerica, MA 01821
TEL: (978) 667-8700
FAX: (978) 670-9001
e-mail: sales@sipex.com
Sales Office
233 South Hillview Drive
Milpitas, CA 95035
TEL: (408) 934-7500
FAX: (408) 935-7600
Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the
application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.