Datasheet SN8P1602BP, SN8P1602BS, SN8P1602BX Datasheet (SONIX)

Page 1
SN8P1602B
8-Bit Micro-Controller
SN8P1602B
USER’S MANUAL
General Release Specification
S
O
Nii
S
O
SONIX reserves the right to make change without further notice to any products herein to improve reliability, function or design. SONIX does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. SONIX products are not designed, intended, or authorized for us as components in systems intended, for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the fai lure of the SONIX product could create a situation where personal injury or death may occur. Should Buyer purchase or use SONIX products for any such unintended or unauthorized application. Buyer shall indemnify and hold SONIX and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of pe rsonal injury or death associated with such unintended or unauthorized use even if such claim alleges that SONIX was negligent regarding the design or manufacture of the part.
N
X 88--
X
Biitt
B
Miiccrroo--
M
Coonnttrroolllleerr
C
SONiX TECHNOLOGY CO., LTD Version 1.1
Page 2
SN8P1602B
8-Bit Micro-Controller
AMENDENT HISTORY
Version Date Description
VER 1.0 Sep. 2003 V1.0 First Issue VER 1.1 Sep. 2003 1. Remove approval sheet
2. Remove PCB layout notice section.
3. Modify the description of code option no tice.
4. Add the description of PEDGE register.
5. Modify the description of INTRQ regi ster.
6. Change operating voltage range from “2.2V ~ 5.5V” to “2.4V ~ 5.5V” at Fosc=3.579545 MHz, ambient temperature = 25°C.
SONiX TECHNOLOGY CO., LTD Version 1.1
Page 3
SN8P1602B
8-Bit Micro-Controller
Table of Content
AMENDENT HISTORY ............................................................................................................................... 2
1
1
1
PRODUCT OVERVIEW................................................................................................................. 8
GENERAL DESCRIPTION........................................................................................................................... 8
UPGRADE FROM SN8P1602/SN8P1603/SN8P1602A............................................................................... 8
FEATURES.................................................................................................................................................... 9
SELECTION TABLE..................................................................................................................................... 9
SYSTEM BLOCK DIAGRAM.................................................................................................................... 10
PIN ASSIGNMENT..................................................................................................................................... 11
PIN DESCRIPTIONS .................................................................................................................................. 12
PIN CIRCUIT DIAGRAMS ........................................................................................................................ 12
2
2
2
3
3
3
CODE OPTION TABLE ...............................................................................................................13
SN8P1602B.................................................................................................................................................. 13
ADDRESS SPACES.......................................................................................................................14
PROGRAM MEMORY (ROM)................................................................................................................... 14
OVERVIEW .............................................................................................................................................. 14
USER RESET VECTOR ADDRESS (0000H)........................................................................................... 15
INTERRUPT VECTOR ADDRESS (0008H) ............................................................................................ 15
CHECKSUM CALCULATION................................................................................................................. 17
GENERAL PURPOSE PROGRAM MEMORY AREA.............................................................................. 18
LOOK-UP TABLE DESCRIPTION.......................................................................................................... 18
JUMP TABLE DESCRIPTION................................................................................................................. 20
DATA MEMORY (RAM) ........................................................................................................................... 22
OVERVIEW .............................................................................................................................................. 22
WORKING REGISTERS............................................................................................................................. 23
Y, Z REGISTERS ...................................................................................................................................... 23
SONiX TECHNOLOGY CO., LTD Page 3 Version 1.1
Page 4
SN8P1602B
8-Bit Micro-Controller
R REGISTERS........................................................................................................................................... 24
PROGRAM FLAG....................................................................................................................................... 25
RESET/WAKEUP FLAG .......................................................................................................................... 25
CARRY FLAG........................................................................................................................................... 25
DECIMAL CARRY FLAG......................................................................................................................... 25
ZERO FLAG............................................................................................................................................. 25
ACCUMULATOR ....................................................................................................................................... 26
STACK OPERATIONS............................................................................................................................... 27
OVERVIEW .............................................................................................................................................. 27
STACK REGISTERS................................................................................................................................. 28
STACK OPERATION EXAMPLE............................................................................................................. 29
PROGRAM COUNTER............................................................................................................................... 29
ONE ADDRESS SKIPPING ..................................................................................................................... 30
MULTI-ADDRESS JUMPING ................................................................................................................. 31
4
4
4
5
5
5
ADDRESSING MODE................................................................................................................... 32
OVERVIEW................................................................................................................................................. 32
IMMEDIATE ADDRESSING MODE.......................................................................................................32
DIRECTLY ADDRESSING MODE.......................................................................................................... 32
INDIRECTLY ADDRESSING MODE......................................................................................................32
SYSTEM REGISTER.................................................................................................................... 33
OVERVIEW................................................................................................................................................. 33
SYSTEM REGISTER ARRANGEMENT (BANK 0)................................................................................. 33
BYTES of SYSTEM REGISTER ................................................................................................................ 33
BITS of SYSTEM REGISTER.................................................................................................................... 34
6
6
6
SONiX TECHNOLOGY CO., LTD Page 4 Version 1.1
POWER ON RESET...................................................................................................................... 35
OVERVIEW................................................................................................................................................. 35
EXTERNAL RESET DESCRIPTION......................................................................................................... 36
LOW VOLTAGE DETECTOR (LVD) DESCRIPTION ............................................................................ 37
Page 5
SN8P1602B
8-Bit Micro-Controller
7
7
7
OSCILLATORS ............................................................................................................................. 38
OVERVIEW................................................................................................................................................. 38
CLOCK BLOCK DIAGRAM .................................................................................................................... 38
OSCM REGISTER DESCRIPTION.......................................................................................................... 39
EXTERNAL HIGH-SPEED OSCILLATOR.............................................................................................. 40
OSCILLATOR MODE CODE OPTION................................................................................................... 40
OSCILLATOR DEVIDE BY 2 CODE OPTION ....................................................................................... 40
OSCILLATOR SAFE GUARD CODE OPTION....................................................................................... 40
SYSTEM OSCILLATOR CIRCUITS..................................................................................................... .... 41
External RC Oscillator Frequency Measurement....................................................................................42
INTERNAL LOW-SPEED OSCILLATOR ................................................................................................ 43
SYSTEM MODE DESCRIPTION............................................................................................................... 44
OVERVIEW .............................................................................................................................................. 44
NORMAL MODE...................................................................................................................................... 44
SLOW MODE........................................................................................................................................... 44
GREEN MODE......................................................................................................................................... 44
POWER DOWN MODE ........................................................................................................................... 44
SYSTEM MODE CONTROL...................................................................................................................... 45
SYSTEM MODE SWITCHING................................................................................................................. 46
WAKEUP TIME .......................................................................................................................................... 47
OVERVIEW .............................................................................................................................................. 47
HARDWARE WAKEUP............................................................................................................................ 47
EXTERNAL WAKEUP TRIGGER CONTROL......................................................................................... 48
8
8
8
TIMERS .......................................................................................................................................... 49
WATCHDOG TIMER (WDT)..................................................................................................................... 49
TIMER0 (TC0)............................................................................................................................................. 50
OVERVIEW .............................................................................................................................................. 50
TC0M MODE REGISTER........................................................................................................................ 51
TC0C COUNTING REGISTER................................................................................................................ 52
TC0 TIMER OPERATION SEQUENCE .................................................................................................. 53
SONiX TECHNOLOGY CO., LTD Page 5 Version 1.1
Page 6
SN8P1602B
8-Bit Micro-Controller
9
9
9
INTERRUPT................................................................................................................................... 54
OVERVIEW................................................................................................................................................. 54
INTEN INTERRUPT ENABLE REGISTER .............................................................................................. 55
INTRQ INTERRUPT REQUEST REGISTER............................................................................................ 55
INTERRUPT OPERATION DESCRIPTION.............................................................................................. 56
GIE GLOBAL INTERRUPT OPERATION............................................................................................... 56
INT0 (P0.0) INTERRUPT OPERATION.................................................................................................. 57
TC0 INTERRUPT OPERATION .............................................................................................................. 58
MULTI-INTERRUPT OPERATION......................................................................................................... 59
1
1
1
1
0
0
1
1
0
OVERVIEW................................................................................................................................................. 60
I/O PORT FUNCTION TABLE................................................................................................................... 61
I/O PORT MODE......................................................................................................................................... 61
I/O PULL UP REGISTER............................................................................................................................ 62
I/O PORT DATA REGISTER ..................................................................................................................... 62
1
1
1
TEMPLATE CODE ..................................................................................................................................... 63
PROGRAM CHECK LIST .......................................................................................................................... 67
I/O PORT............................................................................................................................ 60
CODING ISSUE................................................................................................................. 63
1
1
1
1
2
2
1 1
SONiX TECHNOLOGY CO., LTD Page 6 Version 1.1
2
3
3
3
ABSOLUTE MAXIMUM RATING............................................................................................................ 69
INSTRUCTION SET TABLE........................................................................................... 68
ELECTRICAL CHARACTERISTIC.............................................................................. 69
Page 7
SN8P1602B
8-Bit Micro-Controller
STANDARD ELECTRICAL CHARACTERISTIC.................................................................................... 69
CHARACTERISTIC GRAPHS................................................................................................................... 70
1
1
4
4
1
4
P-DIP 18 PIN................................................................................................................................................ 73
SOP 18 PIN................................................................................................................................................... 74
SSOP 20 PIN................................................................................................................................................ 75
PACKAGE INFORMATION ........................................................................................... 73
SONiX TECHNOLOGY CO., LTD Page 7 Version 1.1
Page 8
SN8P1602B
8-Bit Micro-Controller
1
1
1

PRODUCT OVERVIEW

GENERAL DESCRIPTION

The SN8P1602B is an 8-bit micro-controller utilized CMOS technology and featured with low power consumption and high performance by its unique electronic structure.
SN8P1602B is designed with the excellent IC structure including the program memory up to 1K-word OTP ROM, data memory of 48-bytes RAM, one 8-bit timer (TC0), a watchdog timer, two interrupt sources (TC0, INT0), and 4-level stack buffers. Besides, user can choose desired oscillator configuration for the controller. There are four external oscillator configurations to select for generating system clock, including High/Low speed crystal, ceramic resonator or cost-saving RC. SN8P1602B also includes an internal RC oscillator for slow mode controlled by programming.

UPGRADE FROM SN8P1602/SN8P1603/SN8P1602A

Item SN8P1602B SN8P1602A SN8P1602 SN8P1603
Standby Current at 3V <1uA 3 ~ 4uA 3 ~ 4uA 70uA
Pull-up resistor Yes Yes - -
Power On Reset / Brown Out Reset
Watchdog Clock Source
Watchdog Clock Source Fixed
at Internal RC and Internal RC
Clock Always Enable
Green Mode Yes Yes - -
P0.0 Interrupt Edge Falling/Rising/Both Falling/Rising/Both Falling Falling
Port 1 Wakeup Level Change Level Change Low Level Low Level
TC0 Event Counter Yes Yes - -
External Reset
Recommend Value
Power On Delay at 4Mhz ~ 200ms ~ 200ms ~ 70ms ~ 70ms
Low Power code option Yes Yes - -
LVD
Excellent Excellent - Good
High Clock Internal RC
Yes Yes - -
20K / 0.1uF 20K / 0.33uF 20K / 0.1uF 20K / 0.1uF
1.8V
Always ON
High Clock Internal RC
1.8V
Always ON
High Clock
2.4V
ON/OFF
High Clock
2.4V
Always ON
SONiX TECHNOLOGY CO., LTD Page 8 Version 1.1
Page 9
SN8P1602B
8-Bit Micro-Controller

FEATURES

Memory configuration
OTP ROM size: 1K * 16-bit. One internal interrupt: TC0.
RAM size: 48 * 8-bit. One external interrupt: INT0.
I/O pin configuration
Input only: P0 Bi-directional: P1, P2, Wakeup: P0, P1 External high clock: RC type up to 10 MHz Pull-up resistors: P0, P1, P2 External high clock: Crystal type up to 16 MHz External interrupt: P0 Internal low clock: RC type 16KHz(3V), 32KHz(5V) Normal mode: Both high and low clock active Slow mode: Low clock only
On chip watchdog timer.
One 8-bit timer counters.
57 powerful instructions
Four clocks per instruction cycle P-DIP18, SOP18, SSOP20. All of instructions are one word length. Most of instructions are one cycle only. Maximum instruction cycle is two. All ROM area JMP instruction. All ROM area lookup table function (MOVC)
Two interrupt sources
Four levels stack buffer.
Dual clock system offers four operating modes
Sleep mode: Both high and low clock stop Green mode: Periodical wakeup by timer.
Package

SELECTION TABLE

CHIP ROM RAM Stack
Timer PWM Wakeup
TC0 TC1
SN8P1602B 1K*16 48 4 V - 14 V - 6
I/O
Green
Mode
Buzzer Pin no.
Package
DIP18/SOP18
/SSOP20
SONiX TECHNOLOGY CO., LTD Page 9 Version 1.1
Page 10
SN8P1602B
8-Bit Micro-Controller

SYSTEM BLOCK DIAGRAM

SN8P1602B
Internal
Internal
PC
PC
PC
IR ROM
IR ROM
IR ROM
FLAGS
FLAGS
FLAGS
ALU
ALU
ALU
ACC
ACC
ACC
INTERRUPT
INTERRUPT
INTERRUPT CONTROL
CONTROL
CONTROL
H-OSC
H-OSC
H-OSC
TIMING GENERATOR
TIMING GENERATOR
TIMING GENERATOR
RAM
RAM
RAM
SYSTEM REGISTER
SYSTEM REGISTER
SYSTEM REGISTER
Internal
RC
RC
RC
Watch
Watch
Watch
TIMER & COUNTER
TIMER & COUNTER
TIMER & COUNTER
POR
POR
POR
Dog
Dog
Dog
PORT 0
PORT 0
PORT 0
PORT 2PORT 1
PORT 2PORT 1
PORT 2PORT 1
SONiX TECHNOLOGY CO., LTD Page 10 Version 1.1
Page 11
SN8P1602B
8-Bit Micro-Controller

PIN ASSIGNMENT

OTP Type:
SN8P1602BP (P-DIP 18 pins) SN8P1602BS (SOP 18 pins)
P1.2 1 U 18 P1.1 P1.3 2 17 P1.0 INT0/P0.0 3 16 XIN RST/VPP 4 15 XOUT/P1.4 VSS 5 14 VDD P2.0 6 13 P2.7 P2.1 7 12 P2.6 P2.2 8 11 P2.5 P2.3 9 10 P2.4
SN8P1602BP SN8P1602BS
SN8P1602BX (SSOP 20 pins)
P1.2 1 U 20 P1.1 P1.3 2 19 P1.0 INT0/P0.0 3 18 XIN RST/VPP 4 17 XOUT/P1.4 VSS 5 16 VDD VSS 6 15 VDD P2.0 7 14 P2.7 P2.1 8 13 P2.6 P2.2 9 12 P2.5 P2.3 10 11 P2.4
SN8P1602BX
SONiX TECHNOLOGY CO., LTD Page 11 Version 1.1
Page 12
SN8P1602B
8-Bit Micro-Controller

PIN DESCRIPTIONS

SN8P1602B
PAD NAME TYPE DESCRIPTION
VDD, VSS P
Power supply input pins. Place the 0.1µF bypass capacitor between the VDD and VSS pin. RST: System reset input pin. Schmitt trigger structure, low active, normal stay to
RST/VPP I, P
“high”. VPP: OTP programming pin.
XIN I External oscillator input pin. RC mode input pin.
XOUT/P1.4 I/O External oscillator output pin. In RC mode is P1.4 I/O.
P0.0 / INT0 I Port 0.0 and shared with INT0 trigger pin (Schmitt trigger) / Built-in pull-up resistors. P1.0 ~ P1.4 I/O Port 1.0~Port 1.4 bi-direction pins / Built-in pull-up resistors. P2.0 ~ P2.7 I/O Port 2.0~Port 2.7 bi-direction pins / Built-in pull-up resistors.

PIN CIRCUIT DIAGRAMS

SN8P1602B
Port1~Port2 structure
Port0 structure
Port0 structure
Pin
Pin
PUR
PUR
PUR
PUR
Int. bus
Int. bus
Port1~Port2 structure
PnM, PUR
PnM, PUR
Pin
Pin
PnM
PnM
Note: All of the latch output circuits are push-pull structures.
PUR
PUR
PnM
PnM
Latch
Latch
SONiX TECHNOLOGY CO., LTD Page 12 Version 1.1
Page 13
SN8P1602B
A
8-Bit Micro-Controller
2
2
2

CODE OPTION TABLE

SN8P1602B

Code Option Content Function Description
RC Low cost RC for external high clock oscillator
Low frequency, power saving crystal (e.g. 32.768K) for external high clock oscillator
Enable Oscillator Safe Guard function to enhance noise immunity performance.
Force Watch Dog Timer clock source come from INT 16K RC.
lso INT 16K RC never stop both in power down and green mode that means Watch Dog Timer will always enable both in power down and green mode.
High_Clk
High_Clk / 2
OSG
Watch_Dog
Low Power
Noise Filter
Security
INT_16K_RC
32K X’tal
12M X’tal High speed crystal /resonator (e.g. 12M) for external high clock oscillator
4M X’tal Standard crystal /resonator (e.g. 3.58M) for external high clock oscillator
Enable External high clock divided by two, Fosc = high clock / 2
Disable Fosc = high clock
Enable
Disable Disable Oscillator Safe Guard function
Enable Enable Watch Dog function
Disable Disable Watch Dog function
Enable Enable Low Power function to save Operating current
Disable Disable Low Power function
Enable Enable Noise Filter function to enhance noise immunity performance
Disable Disable Noise Filter function
Enable Enable ROM code Security function
Disable Disable ROM code Security function
Always_ON
By_CPUM Enable or Disable internal 16K(at 3V) RC clock by CPUM register
Table 2-1 SN8P1602B Code Option Table
This table is for design guidance, not tested or guaranteed. Some values presented are outside specifie d operating range. This is for information only and devices are guaranteed to operate properly only within the specified range.
Code Option Lowest Operation Voltage
Enable Disable 4 MHz 16 MHz
- Noise Filter/Low Power/OSG 2.2V 2.8V
Noise Filter Low Power/OSG 2.2V 3.5V
Low Power Noise Filter/OSG 2.2V 3.8V
OSG Noise Filter/Low Power 2.2V 2.9V
Table 2-2 SN8P1602B Minimum Working Voltage vs. Code Option and clock frequency
Notice: Under high noisy environment, enable “Noise Filter”, “OSG” and disable “Low Power” is strongly
recommended.
The side effect is to increase the minimum working voltage if enables “Noise Filter”/“OSG”/ “Low Power”
code option. (Please refer to Characteristic Graphs)
Enable “Low Power” option will reduce operating current during the normal operating mode.If users select “32K X’tal” in “High_Clk” option, assembler will force “OSG” to be enabled.
If users select “RC” in “High_Clk” option, assembler will force “High_Clk / 2” to be enabled.
SONiX TECHNOLOGY CO., LTD Page 13 Version 1.1
Page 14
SN8P1602B
8-Bit Micro-Controller
3
3
3

ADDRESS SPACES

PROGRAM MEMORY (ROM)

OVERVIEW

The SN8P1602B provides the program memory up to 1024 * 16-bit to be addressed and is able to fetch instructions through 10-bit wide PC (Program Counter). It can look up ROM data by using ROM code registers (R, Y, Z).
1-word reset vector addresses 1-word interrupt vector addresses 1K words general purpose area 5-word reserved area
All of the program memory is partitioned into three coding areas. The first area is located from 00H to 03H(The Reset vector area), the second area is a reserved area 04H ~07H, the 3 area from 0008H to 03FEH/0FFEH. The address 08H is the interrupt enter address point.
0000H 0001H Jump to user start address 0002H Jump to user start address 0003H 0004H 0005H 0006H 0007H 0008H 0009H User program
.
. 000FH 0010H 0011H
.
.
03FEH 03FFH
General purpose area
General purpose area
ROM
Reset vector
Reserved
Interrupt vector
Reserved
rd
area is for the interrupt vecto r and the user code
User reset vector
Jump to user start address
User interrupt vector
End of user program
SONiX TECHNOLOGY CO., LTD Page 14 Version 1.1
Page 15
SN8P1602B
8-Bit Micro-Controller

USER RESET VECTOR ADDRESS (0000H)

A 1-word vector address area is used to execute system reset. After power on reset or watchdog timer overflow reset, then the chip will restart the program from address 0000h and all system registers will be set as default values. The following example shows the way to define the reset vector in the program memory.
Programming Tip: Defining Reset Vector CHIP SN8P1602B
ORG 0 ; 0000H JMP START ; Jump to user program address.
. ; 0004H ~ 0007H are reserved
ORG 10H START: ; 0010H, The head of user program.
. ; User program . . .
ENDP ; End of program

INTERRUPT VECTOR ADDRESS (0008H)

A 1-word vector address area is used to execute interrupt request. If any interrupt service executes, the program counter (PC) value is stored in stack buffer and jump to 0008h of program memory to execute the vectored interrupt. Users have to define the interrupt vector. The following example shows the way to define the interrupt vector in the program memory.
Programming Tip: Defining Interrupt Vector (Example 1) CHIP SN8P1602B
.DATA PFLAGBUF .CODE
ORG 0 ; 0000H JMP START ; Jump to user program address.
. ; 0004H ~ 0007H are reserved
ORG 8
B0XCH A, ACCBUF ; B0XCH doesn’t change C, Z flag B0MOV A, PFLAG B0MOV PFLAGBUF, A ; Save PFLAG register in a buffer . . B0MOV A, PFLAGBUF B0MOV PFLAG, A ; Restore PFLAG register from buffer B0XCH A, ACCBUF ; B0XCH doesn’t change C, Z flag RETI ; End of interrupt service routine
START: ; The head of user program.
. ; User program . JMP START ; End of user program
ENDP
; End of program
; Interrupt service routine
SONiX TECHNOLOGY CO., LTD Page 15 Version 1.1
Page 16
SN8P1602B
8-Bit Micro-Controller
Programming Tip: Defining Interrupt Vector (Example 2) CHIP SN8P1602B
.DATA PFLAGBUF .CODE
ORG 0 ; 0000H JMP START ; Jump to user program address.
. ; 0001H ~ 0007H are reserved
ORG 08 JMP MY_IRQ ; 0008H, Jump to interrupt service routine address
ORG 10H START: ; 0010H, The head of user program.
. ; User program . . JMP START ; End of user program
MY_IRQ: ;The head of interrupt service routine
B0XCH A, ACCBUF ; B0XCH doesn’t change C, Z flag B0MOV A, PFLAG B0MOV PFLAGBUF, A ; Save PFLAG register in a buffer . . B0MOV A, PFLAGBUF B0MOV PFLAG, A ; Restore PFLAG register from buffer B0XCH A, ACCBUF ; B0XCH doesn’t change C, Z flag RETI ; End of interrupt service routine
ENDP ; End of program
Remark: It is easy to understand the rules of SONIX program from demo programs given above. These
points are as following:
1. The address 0000H is a “JMP” instruction to make the program starts from the beginning.
2. The 0004H~0007H are reserved. Users is NOT allow to use 0004H~0007H addresses. The default value might change from time to time during various production progress. We strongly suggest users DO NOT take this value into the Check Sum. For detailed information, please check the following Checksum Calculation section
SONiX TECHNOLOGY CO., LTD Page 16 Version 1.1
Page 17
SN8P1602B
8-Bit Micro-Controller

CHECKSUM CALCULATION

The ROM addresses 0004H~0007H and last address are reserved area. User should avoid these addresses (0004H~0007H and last address) when calculate the Checksum value.
Example:
The demo program shows how to avoid 0004H~0007H when calculated Checksum from 00H to the end of
user’s code MOV A,#END_USER_CODE$L B0MOV END_ADDR1,A ;save low end address to end_addr1 MOV A,#END_USER_CODE$M B0MOV END_ADDR2,A ;save middle end address to end_addr2 CLR Y ;set Y to 00H CLR Z ;set Z to 00H @@: CALL YZ_CHECK ;call function of check yz value MOVC ; B0BSET FC ;clear C flag ADD DATA1,A ;add A to Data1 MOV A,R ADC DATA2,A ;add R to Data2 JMP END_CHECK ;check if the YZ address = the end of code AAA: INCMS Z ;Z=Z+1 JMP @B ;if Z!= 00H calculate to next address JMP Y_ADD_1 ;if Z=00H increase Y END_CHECK: MOV A,END_ADDR1 CMPRS A,Z ;check if Z = low end address JMP AAA ;if Not jump to checksum calculate MOV A,END_ADDR2 CMPRS A,Y ;if Yes, check if Y = middle end address JMP AAA ;if Not jump to checksum calculate JMP CHECKSUM_END ;if Yes checksum calculated is done. YZ_CHECK: ;check if YZ=0004H MOV A,#04H CMPRS A,Z ;check if Z=04H RET ;if Not return to checksum calculate MOV A,#00H CMPRS A,Y ;if Yes, check if Y=00H RET ;if Not return to checksum calculate INCMS Z ;if Yes, increase 4 to Z INCMS Z INCMS Z INCMS Z RET ;set YZ=0008H then return Y_ADD_1: INCMS Y ;increase Y NOP JMP @B ;jump to checksum calculate CHECKSUM_END: ………. ………. END_USER_CODE: ;Label of program end
SONiX TECHNOLOGY CO., LTD Page 17 Version 1.1
Page 18
SN8P1602B
8-Bit Micro-Controller

GENERAL PURPOSE PROGRAM MEMORY AREA

The ROM location 0009H~03FEH are used as general-purpose memory. The area is to store both instruction’s op-code and look-up table data. The SN8P1602B includes jump table function by using program counter (PC) and look-up table function by using ROM code registers (R, Y, Z).
The boundary of program memory is separated by the high-byte program counter (PCH) every 100H. In jump table function and look-up table function, the program counter can’t leap over the boundary by program counter automatically. Users need to modify the PCH value to “PCH+1” when the PCL overflows (from 0FFH to 000H).

LOOK-UP TABLE DESCRIPTION

In the ROM’s data lookup function, Y register is pointed to the bit 8~bit 15 and Z register to the bit 0~bit 7 data of ROM address. After MOVC instruction is executed, the low-byte data will be stored in ACC and high-byte data stored in R register.
Example: To look up the ROM data located “TABLE1”. B0MOV Y, #TABLE1$M ; To set lookup table1’s middle address
B0MOV Z, #TABLE1$L ; To set lookup table1’s low address. MOVC ; To lookup data, R = 00H, ACC = 35H ;
; @@: MOVC ; To lookup data, R = 51H, ACC = 05H. . . ; TABLE1: DW 0035H ; To define a word (16 bits) data. DW 5105H ; “ DW 2012H ; “
CAUSION: The Y register will not increase automatically when Z register crosses boundary from 0xFF to
0x00. Therefore, user must take care such situation to avoid loop-up table errors. If Z register
overflows, Y register must be added one. The following INC_YZ macro shows a simple method to process
Y and Z registers automatically.
Note: Because the program counter (PC) is only 12-bit, the X register is useless in the application. Users
can omit “B0MOV X, #TABLE1$H”. SONiX ICE supports larger program memory addressing capability.
Please be sure that X register is “0” to avoid unpredicted error in loop-up table operation.
INCMS Z ; Z+1 JMP @F ; Not overflow INCMS Y ; Z overflow (FFH 00), Y=Y+1 NOP ;
; Increment the index address for next address
Example: INC_YZ Macro
INC_YZ MACRO INCMS Z ; Z+1 JMP @F ; Not overflow
INCMS Y ; Y+1 NOP ; Not overflow @@: ENDM
SONiX TECHNOLOGY CO., LTD Page 18 Version 1.1
Page 19
SN8P1602B
8-Bit Micro-Controller
The other example of loop-up table is to add Y or Z index register by accumulator. Please be careful if “carry” happen.
Example: Increase Y and Z register by B0ADD/ADD instruction
B0MOV Y, #TABLE1$M ; To set lookup table’s middle address. B0MOV Z, #TABLE1$L ; To set lookup table’s low address.
GETDATA: ; MOVC ; To lookup data. If BUF = 0, data is 0x0035 ; If BUF = 1, data is 0x5105 ; If BUF = 2, data is 0x2012 . . . . ; TABLE1: DW 0035H ; To define a word (16 bits) data. DW 5105H ; “ DW 2012H ; “
B0MOV A, BUF ; Z = Z + BUF. B0ADD Z, A
B0BTS1 FC ; Check the carry flag. JMP GETDATA ; FC = 0 INCMS Y ; FC = 1. Y+1. NOP
SONiX TECHNOLOGY CO., LTD Page 19 Version 1.1
Page 20
SN8P1602B
8-Bit Micro-Controller

JUMP TABLE DESCRIPTION

The jump table operation is one of multi-address jumping function. Add low-byte program counter (PCL) and ACC value to get one new PCL. The new program counter (PC) points to a series jump instructions as a listing table. It is easy to make a multi-jump program depends on the value of the accumulator (A).
When carry flag occurs after executing of “ADD PCL, A”, it will not affect PCH register. Users have to check if the jump table crosses over the ROM page boundary or the listing file generated by SONIX assembly software. We suggest users to place the jump table at the beginning of the program memory page (xx00H) to avoid errors to occur when editing the program.
Example :
ORG 0X0100 ; The jump table is from the head of the ROM boundary B0ADD PCL, A ; PCL = PCL + ACC, the PCH can’t be changed.
JMP A0POINT ; ACC = 0, jump to A0POINT JMP A1POINT ; ACC = 1, jump to A1POINT JMP A2POINT ; ACC = 2, jump to A2POINT JMP A3POINT ; ACC = 3, jump to A3POINT
In following example, the jump table starts at 0x00FD. When execute B0ADD PCL, A. If ACC = 0 or 1, the jump table points to the right address. If the ACC is larger then 1 will cause error because PCH doesn't increase one automatically. We can see the PCL = 0 when ACC = 2 but the PCH still keep in 0. The program counter (PC) will enter the wrong address 0x0000 and the system will be in a unexpected operation mode. It is important to check whether the jump table crosses over the boundary (xxFFH to xx00H). A good coding style is to put the jump table at the start of ROM boundary (e.g. 0100H).
Example (Incorrect): If the “jump table” crosses over ROM boundary, the program will cause the
errors to occur.
ROM Address
. . . .
. . 0X00FD 0X00FE
0X00FF 0X0100 0X0101
. .
. .
SONIX provides a macro for safe jump table function. This macro will check the ROM boundary and move the jump table to the right position automatically. The side effect of this macro maybe wastes some ROM size.
@JMP_A MACRO VAL IF (($+1) !& 0XFF00) !!= (($+(VAL)) !& 0XFF00) JMP ($ | 0XFF) ORG ($ | 0XFF) ENDIF ADD PCL, A ENDM
Note: “VAL” is the number of the jump table listing number.
B0ADD PCL, A ; PCL = PCL + ACC, the PCH can’t be changed. JMP A0POINT ; ACC = 0 JMP A1POINT ; ACC = 1 JMP A2POINT ; ACC = 2 jump table cross boundary here JMP A3POINT ; ACC = 3
SONiX TECHNOLOGY CO., LTD Page 20 Version 1.1
Page 21
SN8P1602B
8-Bit Micro-Controller
Example: “@JMP_A” application in SONIX macro file called “MACRO3.H”.
B0MOV A, BUF0 ; “BUF0” is from 0 to 4. @JMP_A 5 ; The number of the jump table listing is five. JMP A0POINT ; If ACC = 0, jump to A0POINT JMP A1POINT ; ACC = 1, jump to A1POINT JMP A2POINT ; ACC = 2, jump to A2POINT JMP A3POINT ; ACC = 3, jump to A3POINT JMP A4POINT ; ACC = 4, jump to A4POINT
If the jump table position is from 00FDH to 0101H, the “@JMP_A” macro will make the jump table to start from 0100h.
SONiX TECHNOLOGY CO., LTD Page 21 Version 1.1
Page 22
SN8P1602B
8-Bit Micro-Controller

DATA MEMORY (RAM)

OVERVIEW

The SN8P1602B has internally built-in data memory up to 48 bytes for storing the general-purpose data. 48 * 8-bit RAM The memory is separated into bank 0. The bank 0 uses the first 48 bytes as general-purpose area, and the remaining
128 bytes area as system register.
BANK 0
SN8P1602B
000h
“ “ “ “
“ 02Fh 080h
“ 0FFh
RAM location
General purpose area
System register
End of bank 0 area
000h~02FH/07FH of Bank 0 store general-purpose data (48 bytes /128bytes).
080h~0FFh of Bank 0 store system registers (128 bytes).
SONiX TECHNOLOGY CO., LTD Page 22 Version 1.1
Page 23
SN8P1602B
8-Bit Micro-Controller

WORKING REGISTERS

These Y,Z registers can be used as the general-purpose working buffer or access ROM’s and RAM’s data. For instance, all of the ROM table can be looked-up by Y and Z registers. The data of RAM memory can be indirectly accessed with Y and Z registers.

Y, Z REGISTERS

The Y and Z registers are the 8-bit buffers. There are three major functions of these registers.
can be used as general working registers can be used as RAM data pointers with @YZ register can be used as ROM data pointer with the MOVC instruction for look-up table
084H Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Y
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
After reset 0 0 0 0 0 0 0 0
083H Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Z
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
After reset 0 0 0 0 0 0 0 0
Example: uses YZ register as the data pointer to access data in the RAM address 025H of bank0.
B0MOV Y, #00H ; To set RAM bank 0 for Y register B0MOV Z, #25H ; To set location 25H for Z register B0MOV A, @YZ ; To read a data into ACC
Example: uses the YZ register as data pointer to clear the RAM data
B0MOV Y, #0 ; Y = 0, bank 0 B0MOV Z, #07FH ; Y = 7FH, the last address of the data memory area
CLR_YZ_BUF: CLR @YZ ; Clear @YZ to be zero
DECMS Z ; Z – 1, if Z= 0, finish the routine JMP CLR_YZ_BUF ; Not zero
CLR @YZ END_CLR: ; End of clear general purpose data memory area of bank 0 .
YBIT7 YBIT6 YBIT5 YBIT4 YBIT3 YBIT2 YBIT1 YBIT0
ZBIT7 ZBIT6 ZBIT5 ZBIT4 ZBIT3 ZBIT2 ZBIT1 ZBIT0
SONiX TECHNOLOGY CO., LTD Page 23 Version 1.1
Page 24
SN8P1602B
8-Bit Micro-Controller

R REGISTERS

R register is an 8-bit buffer. There are two major functions of the register.
can be used as working register for store high-byte data of look-up table
(MOVC instruction executed, the high-byte data of specified ROM address will be stored in R register and the low-byte data will be stored in ACC).
082H Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
R
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
After reset 0 0 0 0 0 0 0 0
Note: Please refer to the “LOOK-UP TABLE DESCRIPTION” about R register look-up table application.
RBIT7 RBIT6 RBIT5 RBIT4 RBIT3 RBIT2 RBIT1 RBIT0
SONiX TECHNOLOGY CO., LTD Page 24 Version 1.1
Page 25
SN8P1602B
8-Bit Micro-Controller

PROGRAM FLAG

The PFLAG includes carry flag (C), decimal carry flag (DC) and zero flag (Z). If the result of operating is zero or there is carry, borrow occurrence, then these flags will be set to PFLAG register.
086H Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
PFLAG
Read/Write R/W R/W - - - R/W R/W R/W
After reset - - - - - 0 0 0

RESET/WAKEUP FLAG

NT0 NPD Description 0 0 0 1 Watchdog timer overflow in normal/slow/green mode.
1 0 During the sleep mode, the device wakes up by the reset pin. 1 1 External reset or LVD reset active
Note: Watchdog timer can also be used as a fixed-period timer if the watchdog reset function has been disabled.

CARRY FLAG

C = 1: When executed arithmetic addition with overflow or executed arithmetic subtraction without borrow or executed rotation instruction with logic “1” shifting out. C = 0: When executed arithmetic addition without overflow or executed arithmetic subtraction with borrow or executed rotation instruction with logic “0” shifting out.

DECIMAL CARRY FLAG

DC = 1: If executed arithmetic addition with overflow of low nibble or executed arithmetic subtraction without borrow of low nibble. DC = 0: If executed arithmetic addition without overflow of low nibble or executed arithmetic subtraction with borrow of low nibble.

ZERO FLAG

Z = 1: When the content of ACC or target memory is zero after executing instructions involving a zero flag. Z = 0: When the content of ACC or target memory is not zero after executing instructions involving a zero flag.
NT0 NPD - - - C DC Z
During the sleep mode, the device wakes up by the watch dog. Such function only valid when users set “INT_16K_RC” code option as “Always_On”
SONiX TECHNOLOGY CO., LTD Page 25 Version 1.1
Page 26
SN8P1602B
8-Bit Micro-Controller

ACCUMULATOR

The ACC is an 8-bit data register responsible for transferring or manipulating data between ALU and data memory. If the result of operating is zero (Z) or there is carry (C or DC) occurrence, then these flags will be set to PFLAG register.
ACC is not in data memory (RAM), so ACC can’t be access by “B0MOV” instruction during the instant addressing mode.
Example: Read and write ACC value.
; Read ACC data and store in BUF data memory MOV BUF, A ; Write a immediate data into ACC MOV A, #0FH ; Write ACC data from BUF data memory MOV A, BUF
The system doesn’t store ACC and PFLAG value when interrupt executed. ACC and PFLAG data must be saved to other data memories.
Example: Protect ACC and working registers.
ACCBUF EQU 00H ; ACCBUF is ACC data buffer. PFLAGBUF EQU 01H ; PFLAGBUF is PFLAG data buffer.
INT_SERVICE:
B0XCH A, ACCBUF ; Store ACC value B0MOV A, PFLAG ; Store PFLAG value B0MOV PFLAGBUF,A
. . . .
B0MOV A, PFLAGBUF ; Re-load PFLAG value B0MOV PFLAG,A B0XCH A, ACCBUF ; Re-load ACC by B0XCH command, and which will not
RETI ; Exit interrupt service vector
Note: To save and re-load ACC data, users must use “B0XCH” instruction, or else the PFLAG Register
might be modified by ACC operation.
affect the PFLAG again.
SONiX TECHNOLOGY CO., LTD Page 26 Version 1.1
Page 27
SN8P1602B
8-Bit Micro-Controller

STACK OPERATIONS

OVERVIEW

The stack buffer of SN8P1602B has 4-level. These buffers are designed to push and pop up program counter’s (PC) data when interrupt service routine is executed. The STKP register is a pointer designed to point active level in order to push or pop up data from stack buffer. The STKnH and STKnL are the stack buffers to store program counter (PC) data.
PCL
PCL
PCLPCL
RET /
RET /
RET / RETI
RETI
RETI
CALL /
CALL /
CALL / interrupt
interrupt
interrupt
PCH
PCH
PCHPCH
STKP + 1
STKP + 1
STKP + 1
STKP + 1
STKP - 1
STKP - 1
STKP - 1
STKP - 1STKP - 1
STKP = 3
STKP = 3
STKP = 3
STKP = 2
STKP = 2
STKP = 2
STKP = 1
STKP = 1
STKP = 1
STKP = 0
STKP = 0
STKP = 0
STKP
STKPSTKP
STK3H
STK3H
STK2H
STK2H
STK1H
STK1H
STK0H
STK0H
STKP
STKPSTKP
STK3L
STK3L
STK2L
STK2L
STK1L
STK1L
STK0L
STK0L
SONiX TECHNOLOGY CO., LTD Page 27 Version 1.1
Page 28
SN8P1602B
8-Bit Micro-Controller

STACK REGISTERS

The stack pointer (STKP) is a 3-bit register to store the address used to access the stack buffer, 10-bit data memory (STKnH and STKnL) set aside for temporary storage of stack addresses.
The two stack operations are writing to the top of the stack (push) and reading from the top of stack (pop). Push operation decrements the STKP and the pop operation increments each time. That makes the STKP always point to the top address of stack buffer and write the last program counter value (PC) into the stack buffer.
The program counter (PC) value is stored in the stack buffer before a CALL instruction executed or during interrupt service routine. Stack operation is a LIFO type (Last in and first out). The stack pointer (STKP) and stack buffer (STKnH and STKnL) are located in the system register area bank 0.
SN8P1602B
0DFH Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
STKP
Read/Write R/W - - - - R/W R/W R/W
After reset 0 - - - - 1 1 1
STKPBn: Stack pointer (n = 0 ~ 2) GIE: Global interrupt control bit. 0 = disable, 1 = enable. Please refer to the interrupt chapter.
Example: Stack pointer (STKP) reset, we strongly recommended to clear the stack pointers in the
beginning of the program.
MOV A, #00000111B B0MOV STKP, A
SN8P1602B
0F0H~0FFH Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
STKnH
Read/Write - - - - - - R/W R/W
After reset - - - - - - 0 0
STKn = <STKnH , STKnL> (n = 3 ~ 0)
SN8P1602B
0F0H~0FFH Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
STKnL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
After reset 0 0 0 0 0 0 0 0
For SN8P1602B : STKn = <STKnH , STKnL> (n = 3 ~ 0)
GIE - - - - STKPB2 STKPB1 STKPB0
- - - - - - SnPC9 SnPC8
SnPC7 SnPC6 SnPC5 SnPC4 SnPC3 SnPC2 SnPC1 SnPC0
SONiX TECHNOLOGY CO., LTD Page 28 Version 1.1
Page 29
SN8P1602B
8-Bit Micro-Controller

STACK OPERATION EXAMPLE

The two kinds of Stack-Save operations refer to the stack pointer (STKP) and write the content of program counter (PC) to the stack buffer are CALL instruction and interrupt service. Under each condition, the STKP decreases and points to the next available stack location. The stack buffer stores the program counter about the op-code address. The Stack-Save operation is as the following table.
SN8P1602B
Stack Level
0 1 2 3 4
> 4
There are Stack-Restore operations correspond to each push operation to restore the program counter (PC). The RETI instruction uses for interrupt service routine. The RET instruction is for CALL instruction. When a pop operation occurs, the STKP is incremented and points to the next free stack location. The stack buffer restores the last program counter (PC) to the program counter registers. The Stack-Restore operation is as the following table.
SN8P1602B
Stack Level
4 3 2 1 0
STKPB2 STKPB1 STKPB0 High Byte Low Byte
STKPB2 STKPB1 STKPB0 High Byte Low Byte
STKP Register Stack Buffer
1 1 1 Free Free 1 1 0 STK0H STK0L 1 0 1 STK1H STK1L 1 0 0 STK2H STK2L 0 1 1 STK3H STK3L 0 1 0 - -
STKP Register Stack Buffer
0 1 1 STK3H STK3L 1 0 0 STK2H STK2L 1 0 1 STK1H STK1L 1 1 0 STK0H STK0L 1 1 1 Free Free
Description
Stack Over, error
Description
-
-
-
-
-
-
-
-
-
-

PROGRAM COUNTER

The program counter (PC) is a 10-bit binary counter separated into the high-byte 2 and the low-byte 8 bits. This counter is responsible for pointing a location in order to fetch an instruction for kernel circuit. Normally, the program counter is automatically incremented with each instruction during program exe cu tion.
Besides, it can be replaced with specific address by executing CALL or JMP instruction. When JMP or CALL instruction is executed, the destination address will be inserted to bit 0 ~ bit 9.
SN8P1602B
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
PC
After reset
PCH PCL
- - - - - - PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0
- - - - - - 0 0 0 0 0 0 0 0 0 0
SONiX TECHNOLOGY CO., LTD Page 29 Version 1.1
Page 30
SN8P1602B
8-Bit Micro-Controller

ONE ADDRESS SKIPPING

There are nine instructions (CMPRS, INCS, INCMS, DECS, DECMS, BTS0, BTS1, B0BTS0, B0BTS1) with one address skipping function. If the result of these instructions is true, the PC will add 2 steps to skip next instruction.
If the condition of bit test instruction is true, the PC will add 2 steps to skip next instruction.
JMP C0STEP ; Else jump to C0STEP. . C0STEP: NOP
B0MOV A, BUF0 ; Move BUF0 value to ACC. JMP C1STEP ; Else jump to C1STEP.
. C1STEP: NOP
If the ACC is equal to the immediate data or memory, the PC will add 2 steps to skip next instruction.
JMP C0STEP ; Else jump to C0STEP. . C0STEP: NOP
If the destination increased by 1, which results overflow of 0xFF to 0x00, the PC will add 2 steps to skip next instruction.
INCS instruction:
JMP C0STEP ; Jump to C0STEP if ACC is not zero. … C0STEP: NOP
INCMS instruction:
JMP C0STEP ; Jump to C0STEP if BUF0 is not zero. … C0STEP: NOP
If the destination decreased by 1, which results underflow of 0x00 to 0xFF, the PC will add 2 steps to skip next instruction.
DECS instruction:
JMP C0STEP ; Jump to C0STEP if ACC is not zero. … C0STEP: NOP
DECMS instruction:
JMP C0STEP ; Jump to C0STEP if BUF0 is not zero. … C0STEP: NOP
B0BTS1
B0BTS0
CMPRS
INCS
INCMS
DECS
DECMS
FC ; To skip, if Carry_flag = 1
FZ ; To skip, if Zero flag = 0.
A, #12H ; To skip, if ACC = 12H.
BUF0
BUF0
BUF0
BUF0
SONiX TECHNOLOGY CO., LTD Page 30 Version 1.1
Page 31
SN8P1602B
8-Bit Micro-Controller

MULTI-ADDRESS JUMPING

Users can jump around the multi-address by either JMP instruction or ADD M, An instruction (M = PCL) to activate multi-address jumping function. If carry flag occurs after execution of ADD PCL, A, the carry flag will not affect PCH register.
Example: If PC = 0323 H (PCH = 03HPCL = 23H)
; PC = 0323H MOV A, #28H B0MOV PCL, A ; Jump to address 0328H . . . . ; PC = 0328H . . MOV A, #00H B0MOV PCL, A ; Jump to address 0300H
Example: If PC = 0323 H (PCH = 03HPCL = 23H)
; PC = 0323H B0ADD PCL, A ; PCL = PCL + ACC, the PCH cannot be changed. JMP A0POINT ; If ACC = 0, jump to A0POINT JMP A1POINT ; ACC = 1, jump to A1POINT JMP A2POINT ; ACC = 2, jump to A2POINT JMP A3POINT ; ACC = 3, jump to A3POINT . . ;
SONiX TECHNOLOGY CO., LTD Page 31 Version 1.1
Page 32
SN8P1602B
8-Bit Micro-Controller
4
4
4

ADDRESSING MODE

OVERVIEW

The SN8P1602B provides three addressing modes to access RAM data, including immediate addressing mode, directly addressing mode and indirectly address mode.

IMMEDIATE ADDRESSING MODE

The immediate addressing mode uses an immediate data to set up the location (“ MOV A, # I ”, “ B0MOV M, # I “) in ACC or specific RAM.
Immediate addressing mode
MOV A, #12H ; To set an immediate data 12H into ACC

DIRECTLY ADDRESSING MODE

The directly addressing mode moves the content of RAM location in or out of ACC.(“ MOV A,12H ”, “ MOV 12H, A ”).
Directly addressing mode
B0MOV A, 12H ; To get a content of location 12H of bank 0 and save in ACC

INDIRECTLY ADDRESSING MODE

The indirectly addressing mode is to access the memory by the data pointer registers (Y/Z).
Example: Indirectly addressing mode with @YZ register
CLR Y ; To clear Y register to access RAM bank 0. B0MOV Z, #12H ; To set an immediate data 12H into Z register. B0MOV A, @YZ ; Use data pointer @YZ reads a data from RAM location ; 012H into ACC.
SONiX TECHNOLOGY CO., LTD Page 32 Version 1.1
Page 33
SN8P1602B
8-Bit Micro-Controller
5
5
5

SYSTEM REGISTER

OVERVIEW

The RAM area located in 80H~FFH bank 0 is system register area. The main purpose of system registers is to control peripheral hardware of the chip. Using system registers can control I/O ports, timers and counters by programming. The memory map provides an easy and quick reference source for writing application program. These system registers accessing is controlled by the selected memory bank (RBANK = 0) or the bank 0 read/write instruction (B0MOV, B0BSET, B0BCLR…).

SYSTEM REGISTER ARRANGEMENT (BANK 0)

BYTES of SYSTEM REGISTER

SN8P1602B
0 1 2 3 4 5 6 7 8 9 A B C D E F
- - R Z Y - PFLAG RPAGE - - - - - - - -
8
- - - - - - - - - - - - - - - -
9
- - - - - - - - - - - - - - - -
A
- - - - - - - - - - - - - -
B
P1W P1M P2M - - - - - INTRQ INTEN OSCM - - - PCL PCH
C
P0 P1 P2 - - - - - T0M - TC0M TC0C - - - STKP
D
- - - - - - - @YZ - - - - - - - -
E
- - - - - - - - STK3L STK3H STK2L STK2H STK1L STK1H STK0L STK0H
F
Description
PFLAG = ROM page and special flag register. R = Working register and ROM look-up data buffer.
P1W = Port 1 wakeup register. Y, Z = Working, @YZ and ROM addressing register.
PnM = Port n input/output mode register. Pn = Port n data buffer.
INTRQ = Interrupt request register. INTEN = Interrupt enable register.
OSCM = Oscillator mode register. PCH, PCL = Program counter.
TCnM = Timer n mode register. TCnC = Timer n counting register.
T0M.1= TC0GN, TC0 green mode wakeup flag.
STKP = Stack pointer buffer. STK0~STK3 = Stack 0 ~ stack 3 buffer.
@YZ = RAM YZ indirect addressing index pointer.
PUR PEDGE
SONiX TECHNOLOGY CO., LTD Page 33 Version 1.1
Page 34
SN8P1602B
8-Bit Micro-Controller

BITS of SYSTEM REGISTER

SN8P1602B system register table
Address Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 R/W Remarks
082H RBIT7 RBIT6 RBIT5 RBIT4 RBIT3 RBIT2 RBIT1 RBIT0 R/W R 083H ZBIT7 ZBIT6 ZBIT5 ZBIT4 ZBIT3 ZBIT2 ZBIT1 ZBIT0 R/W Z 084H YBIT7 YBIT6 YBIT5 YBIT4 YBIT3 YBIT2 YBIT1 YBIT0 R/W Y 086H NT0 NPD - - - C DC Z R/W PFLAG
0BEH - - - - - PUR2 PUR1 PUR0 W PUR 0BFH PEDGEN - - P00G1 P00G0 - - - W PEDGE
0C0H 0 0 0 P14W P13W P12W P11W P10W R/W P1W wakeup register 0C1H 0 0 0 P14M P13M P12M P11M P10M R/W P1M I/O direction 0C2H P27M P26M P25M P24M P23M P22M P21M P20M R/W P2M I/O direction 0C8H 0 0 TC0IRQ 0 0 0 0 P00IRQ R/W INTRQ
0C9H 0 0 TC0IEN 0 0 0 0 P00IEN R/W INTEN 0CAH WTCKS WDRST 0 CPUM1 CPUM0 CLKMD STPHX 0 R/W OSCM 0CEH PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0 R/W PCL 0CFH - - - - - - PC9 PC8 R/W PCH
0D0H - - - - - - - P00 R P0 data buffer 0D1H - - - P14 P13 P12 P11 P10 R/W P1 data buffer 0D2H P27 P26 P25 P24 P23 P22 P21 P20 R/W P2 data buffer 0D8H - - - - - - TC0GN - R/W T0M 0DAH TC0ENB TC0rate2 TC0rate1 TC0rate0 TC0CKS 0 0 0 R/W TC0M 0DBH TC0C7 TC0C6 TC0C5 TC0C4 TC0C3 TC0C2 TC0C1 TC0C0 R/W TC0C 0DFH GIE - - - - STKPB2 STKPB1 STKPB0 R/W STKP stack pointer 0E7H @YZ7 @YZ6 @YZ5 @YZ4 @YZ3 @YZ2 @YZ1 @YZ0 R/W @YZ index pointer
0F8H S3PC7 S3PC6 S3PC5 S3PC4 S3PC3 S3PC2 S3PC1 S3PC0 R/W STK3L
0F9H - - - - - - S3PC9 S3PC8 R/W STK3H 0FAH S2PC7 S2PC6 S2PC5 S2PC4 S2PC3 S2PC2 S2PC1 S2PC0 R/W STK2L 0FBH - - - - - - S2PC9 S2PC8 R/W STK2H 0FCH S1PC7 S1PC6 S1PC5 S1PC4 S1PC3 S1PC2 S1PC1 S1PC0 R/W STK1L 0FDH - - - - - - S1PC9 S1PC8 R/W STK1H 0FEH S0PC7 S0PC6 S0PC5 S0PC4 S0PC3 S0PC2 S0PC1 S0PC0 R/W STK0L
0FFH - - - - - - S0PC9 S0PC8 R/W STK0H
Note
a): To avoid system error, please be sure to put all the “0” as it indicates in the above table
b). All of register names had been declared in SN8ASM assembler. c). One-bit name had been declared in SN8ASM assembler with “F” prefix code. d). “b0bset”, “b0bclr”, ”bset”, ”bclr” instructions are only available to the “R/W” registers. e). For detail description, please refer to the “System Register Quick Reference Table”
SONiX TECHNOLOGY CO., LTD Page 34 Version 1.1
Page 35
SN8P1602B
8-Bit Micro-Controller
6
6
6

OVERVIEW

SN8P1602B provides two system resets. One is external reset and the other is internal low voltage detector (LVD). The external reset is a simple RC circuit connecting to the reset pin. The low voltage detector (LVD) is built in internal circuit. When one of the reset devices occurs, the system will reset and the system registers become initial value. The timing diagram is as the following.

POWER ON RESET

VDD
External Reset
LVD
LVD Detect Level
External Reset Detect Level
End of LVD Reset
Internal Reset Signal
SN8P1602B power on reset timing diagram
End of External Reset
SONiX TECHNOLOGY CO., LTD Page 35 Version 1.1
Page 36
SN8P1602B
8-Bit Micro-Controller

EXTERNAL RESET DESCRIPTION

The external reset is a low level active device. The reset pin receives the low voltage and resets the system. When the voltage detects high level, it stops resetting the system. Users can use an external reset circuit to control system operation.
VDD
External Reset
Internal Reset Signal
Users must make sure the VDD is stable earlier than external reset. Otherwise, the power on reset maybe fail. The external reset circuit is a simple RC circuit as the following figure.
R
20K ohm
C
0.1uF
External Reset Detect Level
End of External ResetSystem Reset
VDD RST
MCU
VSS
VCC
GND
SONiX TECHNOLOGY CO., LTD Page 36 Version 1.1
Page 37
SN8P1602B
8-Bit Micro-Controller
Under different environment, by placing a diode in between VCC and reset pin will help the Brownout reset.
DIODE
R 20K ohm
C
0.1uF
VDD
RST
MCU
VSS
VCC
GND

LOW VOLTAGE DETECTOR (LVD) DESCRIPTION

The LVD is a low voltage detector. It detects VDD level and reset the system as the VDD lower than the detected voltage. The detect level is 1.8V. If the VDD lower than 1.8V, the system resets.
VDD
LVD
System Reset
LVD Detect Level
End of LVD Reset
SONiX TECHNOLOGY CO., LTD Page 37 Version 1.1
Page 38
SN8P1602B
8-Bit Micro-Controller
7
7
7

OSCILLATORS

OVERVIEW

The SN8P1602B is a dual clock micro-controller system. There are external high-speed clock and internal low-speed clock. The high-speed clock is generated from the external oscillator circuit. The low-speed clock is generated from on-chip RC oscillator circuit.
Both the external high-speed clock and the internal low-speed clock can be system clock (Fosc). The system clock is divided by 4 to be the instruction cycle (Fcpu).
Fcpu = Fosc / 4

CLOCK BLOCK DIAGRAM

HXRC(1:0) is code option
HXRC(1:0) is code option
•00= RC
•00= RC
•01 =32 Khz Oscillator
•01 =32 Khz Oscillator
•10 = High Speed Oscillator (>10Mhz)
XIN
XIN
XIN
XOUT
XOUT
XOUT
•10 = High Speed Oscillator (>10Mhz)
•11 = Standard Oscillator (4Mhz)
•11 = Standard Oscillator (4Mhz) STPHX HXRC
STPHX HXRC
STPHX HXRC
HXOSC.
HXOSC.
HXOSC.
CPUM0
CPUM0
CPUM0
LXOSC.
LXOSC.
LXOSC.
fh
fh
fh
OSG : Oscillator Safe Guard
OSG : Oscillator Safe Guard
1 : Disable --System Default
1 : Disable --System Default
fl
fl
fl
0 : Enable
0 : Enable
Divided by 2
Divided by 2
1 : Disable
1 : Disable 0 : Enable
0 : Enable
Divided by 2OSG
Divided by 2Divided by 2OSGOSG
CLKMD
CLKMD
CLKMD
Divided by 4
Divided by 4
Divided by 4Divided by 4
fosc/4 CPUM0
fosc/4 CPUM0
fosc/4 CPUM0
fcpu
fcpu
fcpu
CPUM0
CPUM0
CPUM0
HXOSC: External high-speed clock LXOSC: Internal low-speed clock OSG: Oscillator safe guard
SONiX TECHNOLOGY CO., LTD Page 38 Version 1.1
Page 39
SN8P1602B
8-Bit Micro-Controller

OSCM REGISTER DESCRIPTION

The OSCM register is an oscillator control register. It controls oscillator status, system mode, watchdog timer clock rate.
0CAH Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
OSCM
Read/Write R/W R/W - R/W R/W R/W R/W -
After reset 0 0 - 0 0 0 0 -
STPHX: External high-speed oscillator control bit. 0 = free run, 1 = stop. This bit only controls external high-speed
CLKMD: System high/Low clock mode: bit 0 = normal (dual) mode, 1 = slow mo de. CPUM1, CPUM0: CPU operating mode control bit:
WDRST: Watchdog timer reset bit
WTCKS: Watchdog clock source
WTCKS WDRST 0 CPUM1 CPUM0 CLKMD STPHX 0
oscillator. If STPHX=1, the internal low-speed RC oscillator is still running.
00 = normal 01 = sleep (power down) mode 10 = green mode 11 = reserved.
0 = Non-reset 1 = clear the watchdog timer’s counter. Please refer to the “watchdog timer chapter” for detailed information.
0 = Fcpu 1 = internal RC low clock
SONiX TECHNOLOGY CO., LTD Page 39 Version 1.1
Page 40
SN8P1602B
8-Bit Micro-Controller

EXTERNAL HIGH-SPEED OSCILLATOR

SN8P1602B can be operated in four different oscillator modes. There are external RC oscillator modes, high crystal/resonator mode (12M code option), standard crystal/resonator mode (4M code option) and low crystal mode (32K code option). For different application, the users can select one of suitable oscillator mode by programming code option to generate system high-speed clock source after reset.
Example: Stop external high-speed oscillator
B0BSET FSTPHX ; To stop external high-speed oscillator only.
Example: When entering the Power Down mode, both external high-speed oscillator and internal
low-speed oscillator will be stopped.
B0BSET FCPUM0 ; To stop external high-speed oscillator and internal low-speed ; oscillator called power down mode (sleep mode).

OSCILLATOR MODE CODE OPTION

SN8P1602B has four oscillator modes for different applications. These modes are 4M, 12M, 32K and RC. The main purpose is to support different oscillator types and frequencies. MCU needs more current when operating at High-speed mode than the low-speed mode. For crystals, there are three steps to select. If the oscillator is RC type, to select “RC” and the system will divide the frequency by 2 automatically. User can select oscillator mode from code option table before compiling. Following is the code option table.
Code Option Oscillator Mode Remark
00 01 10 11
RC mode Output the Fcpu square wave from Xout pin.
32K 32768Hz
12M 12MHz ~ 16MHz
4M 3.58MHz

OSCILLATOR DEVIDE BY 2 CODE OPTION

SN8P1602B has a code option to divide external clock by 2,called “High_Clk / 2”. If “High_Clk / 2” is enabled, the external clock frequency is divided by 8 for the Fcpu. Fcpu is equal to Fosc/8. If “High_Clk / 2” is disabled, the Fcpu is equal to Fosc/4.
Note: In RC mode, “High_Clk / 2” is always enabled.

OSCILLATOR SAFE GUARD CODE OPTION

SN8P1602B builds in an oscillator safe guard (OSG) to make oscillator more stable. It is a low-pass filter circuit and stops high frequency noise into system from external oscillator circuit. This function makes system to work better under AC noisy conditions.
SONiX TECHNOLOGY CO., LTD Page 40 Version 1.1
Page 41
SN8P1602B
8-Bit Micro-Controller

SYSTEM OSCILLATOR CIRCUITS

20PF
CRYSTAL
20PF
Crystal/Ceramic Oscillator
R
C
RC Oscillator
VDD XIN XOUT VSS
VDD XIN XOUT VSS
MCU
MCU
External Clock Input
External clock input
Note1: The external oscillator circuit must be directly from Vss pin of micro-controller.
Note2: The input source of XIN pin received from external oscillator circuit, the code option can be either
be RC type oscillator or crystal type oscillator.
Note3: In RC type oscillator code option situation, the external clock frequency is automatically divided
by 2.
VDD XIN XOUT VSS
MCU
SONiX TECHNOLOGY CO., LTD Page 41 Version 1.1
Page 42
SN8P1602B
8-Bit Micro-Controller

External RC Oscillator Frequency Measurement

There are two ways to get the Fosc frequency of external RC oscillator. One way is to measure the XOUT output waveform. Moreover, the other way is to measure the external RC frequency by software instruction cycle (Fcpu).
Example: Fcpu instruction cycle of external oscillator
B0BSET P1M.0 ; Set P1.0 to be output mode for outputting Fcpu toggle signal.
@@: B0BSET P1.0 ; Output Fcpu toggle signal in low-speed clock mode. B0BCLR P1.0 ; Measure the Fcpu frequency by oscilloscope. JMP @B
Note: Do not measure the RC frequency directly from XIN, the probe impendence will affect the RC
value.
SONiX TECHNOLOGY CO., LTD Page 42 Version 1.1
Page 43
SN8P1602B
8-Bit Micro-Controller

INTERNAL LOW-SPEED OSCILLATOR

The internal low-speed oscillator is built in the micro-controller. The low-speed clock source is a RC type oscillator circuit.
Example: Stop internal low-speed oscillator
B0BSET FCPUM0 ; To stop external high-speed oscillator and internal low-speed ; oscillator called power down mode (sleep mode).
Note: The internal low-speed clock can’t be turned off individually. It is controlled by CPUM0 bit of OSCM
register.
The low-speed oscillator uses RC type oscillator circuit. The frequency is affected by the voltage and temperature of the system. In common condition, the frequency of the RC oscillator is about 16KHz at 3V and 32KHz at 5V. The relation between the RC frequency and voltage is as the following figure.
Internal RC vs. VDD
40 35 30 25 20 15 10
Fintrc (KHz)
5 0
1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50
7.329
25.338
22.003
18.668
15.333
11.998
8.663
32.008
28.673
VDD (Volts)
Example: Measure the internal RC frequency by instruction cycle (Fcpu). The internal RC frequency is the
Fcpu multiplied by 4. We can get the Fosc frequency of internal RC from the Fcpu frequency.
B0BSET P1M.0 ; Set P1.0 to be output mode for outputting Fcpu toggle signal. B0BSET FCLKMD ; Switch the system clock to internal low-speed clock mode.
@@: B0BSET P1.0 ; Output Fcpu toggle signal in low-speed clock mode. B0BCLR P1.0 ; Measure the Fcpu frequency by oscilloscope. JMP @B
38.678
35.343
SONiX TECHNOLOGY CO., LTD Page 43 Version 1.1
Page 44
SN8P1602B
8-Bit Micro-Controller

SYSTEM MODE DESCRIPTION

OVERVIEW

The chip is featured with low power consumption by switching around four different modes as following.
High-speed mode Low-speed mode Power-down mode (Sleep mode) Green mode

NORMAL MODE

In normal mode, the system clock source is external high-speed clock. After power on, the system works under normal mode. The instruction cycle is fosc/4. When the external high-speed oscillator is 3.58MHz, the instruction cycle is
3.58MHz/4 = 895KHz. From normal mode, the system can get into power down mode, slow mode and green mode.

SLOW MODE

In slow mode, the system clock source is internal low-speed RC clock. To set CLKMD =1, the system switches into slow mode. In slow mode, the system functions similar to the normal mode except using the internal RC clock. The system in slow mode can switch back to high-speed normal mode. On the other hand, it can be easily switch to power down mode and green mode for less power consumption.

GREEN MODE

The green mode provides a time-variable wakeup function. Users can decide wakeup time by setting TC0 timer. There are two paths into green mode. One is from normal mode and the other is from slow mode. In normal mode, the TC0 timer overflow time is very short. In slow mode, the overflow time is longer. Users can select appropriate situation for their applications. Under green mode, the power consumption is around 5uA in 3V condition. The system can be waked up to last system mode by TC0 timer timeout and P0 trigger signal.

POWER DOWN MODE

The power down mode is also called sleep mode. The MCU stops working as sleeping status. To set CUPM0 = 1, the system gets into power down mode. The external high-speed and low-speed oscillators are turned off. The system can be waked up by P0, P1 trigger signal.
SONiX TECHNOLOGY CO., LTD Page 44 Version 1.1
Page 45
SN8P1602B
8-Bit Micro-Controller

SYSTEM MODE CONTROL

Power Down Mode
Power Down Mode
(Sleep Mode)
(Sleep Mode)
P0, P1 wake-up function active.
P0, P1 wake-up function active. External reset circuit active.
External reset circuit active.
Normal Mode
Normal Mode
P0, P1 wake-up function active.
P0, P1 wake-up function active. TC0 time out.
TC0 time out. External reset circuit active.
External reset circuit active.
CPUM1, CPUM0 = 01
CPUM1, CPUM0 = 01
CLKMD = 1
CLKMD = 1
CLKMD = 0
CLKMD = 0
CPUM1, CPUM0 = 10
CPUM1, CPUM0 = 10
Green Mode
Green Mode
Slow Mode
Slow Mode
P0, P1 wake-up function active.
P0, P1 wake-up function active.
TC0 time out.
TC0 time out.
External reset circuit active.
External reset circuit active.
SN8P1602B Type
Operating mode description
POWER
MODE NORMAL SLOW GREEN
DOWN
REMARK
(SLEEP)
HX osc. Running By STPHX By STPHX Stop
LX osc. Running Running Running Stop
CPU instruction Executing Executing Stop Stop
TC0 timer *Active *Active *Active Inactive
Watchdog timer Active Active
Internal interrupt External interrupt
All active All active TC0 All inactive All active All active All active All inactive
Wakeup source - -
By
INT_16K_RC
P0, P1, TC0
Reset
By
INT_16K_RC
P0, P1, Reset
* Active by
program
SONiX TECHNOLOGY CO., LTD Page 45 Version 1.1
Page 46
SN8P1602B
8-Bit Micro-Controller

SYSTEM MODE SWITCHING

Switch normal/slow mode to power down (sleep) mode. CPUM0 = 1
B0BSET FCPUM0 ; Set CPUM0 = 1. During the sleep, only the wakeup pin and reset can wakeup the system back to the normal mode.
Switch normal mode to slow mode.
B0BSET FCLKMD ;To set CLKMD = 1, Change the system into slow mode B0BSET FSTPHX ;To stop external high-speed oscillator for power saving.
Switch slow mode to normal mode (The external high-speed oscillator is still running)
B0BCLR FCLKMD ;To set CLKMD = 0 Switch slow mode to normal mode (The external high-speed oscillator stops)
If external high clock stop and program want to switch back normal mode. It is necessary to delay at least 10mS for external clock stable.
B0BCLR FSTPHX ; Turn on the external high-speed oscillator. B0MOV Z, #27 ; If VDD = 5V, internal RC=32KHz (typical) will delay
@@: DECMS Z ; 0.125ms X 81 = 10.125ms for external clock stable JMP @B ; B0BCLR FCLKMD ; Change the system back to the normal mode
Example: Go into Green mode and enable TC0 wakeup function.
; Set TC0 timer wakeup function. B0BCLR FTC0IEN ; To disable TC0 interrupt service B0BCLR FTC0ENB ; To disable TC0 timer MOV A,#20H ; B0MOV TC0M,A ; To set TC0 clock = Fcpu / 64 MOV A,#74H B0MOV TC0C,A ; To set TC0C initial value = 74H (To set TC0 interval = 10
B0BCLR FTC0IEN ; To disable TC0 interrupt service B0BCLR FTC0IRQ ; To clear TC 0 interrupt request B0BSET FTC0ENB ; To enable TC0 timer B0BSET FTC0GN ; To enable TC0 wakeup function ; Go into green mode B0BCLR FCPUM0 ;To set CPUMx = 10 B0BSET FCPUM1
Note: If TC0ENB = 0 or TC0GN = 0, TC0 will not be able to wakeup from green mode to normal/slow mode
ms)
function.
SONiX TECHNOLOGY CO., LTD Page 46 Version 1.1
Page 47
SN8P1602B
8-Bit Micro-Controller

WAKEUP TIME

OVERVIEW

The external high-speed oscillator needs a delay time from stopping to operating. The delay is necessary for oscillator to be stabilized.. The delay time for external high-speed oscillator restart is sometimes called wakeup time.
Following are two conditions require wakeup time, one is switching power down mode to normal mode, and the other is switching slow mode to normal mode. For the first condition, SN8P1602B provides 2048 oscillator clocks as the wakeup time. The second condition, users need to take the wakeup time into consideration, which involved stabilizing period for start up the external high-speed oscillator.

HARDWARE WAKEUP

When the system is in power down mode (sleep mode), the external high-speed oscillator stops. When waked up from power down mode, MCU waits for 2048 external high-speed oscillator clocks as the wakeup time to stable the oscillator circuit. After the wakeup time, the system goes into the normal mode. The value of the wakeup time is as the followi ng.
The Wakeup time = 1/Fosc * 2048 (sec) + X’tal settling time
The X’tal settling time is depended on the X’tal type. Typically, it is about 2~4mS.
Example: In power down mode (sleep mode), the system is waked up by P0 or P1 trigger signal. After the
wakeup time, the system goes into normal mode. The wakeup time of P0, P1 wakeup function is as the following.
The wakeup time = 1/Fosc * 2048 = 0.57 ms (Fosc = 3.58MHz)
The total wakeup time = 0.57ms + X’tal settling time
Under power down mode (sleep mode), only the I/O ports with wakeup function are able to wake the system up to normal mode. The Port 0 and Port 1 have wakeup function. Port 0 wakeup function always enables, but the Port 1 is controlled by the P1W register.
SN8P1602B
0C0H Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
P1W
Read/Write - - - R/W R/W R/W R/W R/W
After reset - - - 0 0 0 0 0
P10W~P14W: Port 1 wakeup function control bits. 0 = none wakeup function, 1 = Enable each pin of Port 1 wakeup function.
0 0 0 P14W P13W P12W P11W P10W
SONiX TECHNOLOGY CO., LTD Page 47 Version 1.1
Page 48
SN8P1602B
8-Bit Micro-Controller

EXTERNAL WAKEUP TRIGGER CONTROL

In the SN8P1602B, the wakeup trigger direction is control by PEDGE register.
PEDGE initial value = 0xx0 0xxx
0BFH Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
PEDGE
R/W - - R/W R/W - - -
Bit7 PEDGEN: Interrupt and wakeup trigger edge control bit.
Bit[4:3] P00G[1:0]: Port 0.0 edge select bits.
PEDGEN - - P00G1 P00G0 - - -
0 = Disable edge trigger function.
Port 0: Low-level wakeup trigger and falling edge interrupt trigger. Port 1: Low-level wakeup trigger.
1 = Enable edge trigger function.
P0.0: Wakeup and interrupt trigger is controlled by P00G1 and P00G0 bits. Port 1: Level change (falling or rising edge) wakeup trigger.
00 = reserved, 01 = rising edge, 10 = falling edge, 11 = rising/falling bi-direction.
SONiX TECHNOLOGY CO., LTD Page 48 Version 1.1
Page 49
SN8P1602B
8-Bit Micro-Controller
8
8
8

TIMERS

WATCHDOG TIMER (WDT)

The watchdog timer (WDT) is a binary up counter designed for monitoring program execution. If the program goes into the unknown status by noise interference, WDT overflow signal raises and resets MCU. The instruction that clears the watchdog timer (“ B0BSET FWDRST “) should be executed within a certain period. If an instruction that clears the watchdog timer is not executed within the period and the watchdog timer overflows, reset signal is generated and system is restarted.
0CAH Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
OSCM
Read/Write R/W R/W - R/W R/W R/W R/W -
After reset 0 0 - 0 0 0 0 -
WDRST: Watchdog timer reset bit. 0 = Non reset, 1 = clear the watchdog timer counter. WTCKS: Watchdog clock source select bit 0 = Fcpu, 1 = internal RC low clock.
Watchdog timer overflow table.
WTCKS CLKMD Code Option Watchdog Timer Overflow Time
0 0 4M_X’tal / 12M_X’tal / RC 0 0 32K_X’tal 0 1 ­1 - -
- - Enable Int_16K_RC
Note: The watchdog timer can be enabled or disabled by the code option. If disabled, the watchdog
timer can also be served as fixed-period timer by checking the NT0 flag.
Example: An operation of watchdog timer is as following. To clear the watchdog timer counter in the top
of the main routine of the program.
Main: B0BSET FWDRST ; Clear the watchdog timer counter. . . CALL SUB1 CALL SUB2 . . . . . . JMP MAIN
WTCKS WDRST 0 CPUM1 CPUM0 CLKMD STPHX 0
1 / ( Fcpu ÷ 2
1 / ( Fcpu ÷ 2
1 / ( Fcpu ÷ 2
14
÷ 16 ) = 293 ms, Fosc=3.58MHz
8
÷ 16 ) = 500 ms, Fosc=32768Hz
14
÷ 16 ) = 65.5s, Fosc=16KHz@3V 1 / ( 16K ÷ 512 ÷ 16 ) ~ 0.5s @3V 1 / ( 16K ÷ 512 ÷ 16 ) ~ 0.5s @3V
SONiX TECHNOLOGY CO., LTD Page 49 Version 1.1
Page 50
SN8P1602B
8-Bit Micro-Controller

TIMER0 (TC0)

OVERVIEW

The TC0 is an 8-bit binary up timer and event counter, using TC0M register to select TC0C’s clock source from GTMR or from external INT0 pin ( falling edge trigger) for counting a precision time. If TC0 timer occurs an overflow (from FFH to 00H), it will continue counting and issue a time-out signal to trigger TC0 interrupt to request interrupt service.
(8-TC0Rate)
Fcpu
Fcpu
INT0
INT0 (schm i tter trigger)
(schm i tter trigger)
The main purposes of the TC0 timer is as following. 8-bit programmable timer: Generates interrupts at specific time intervals based on the selected clock
frequency.
External event counter: Counts system “events” based on falling edge detection of external clock signals at
the INT0 input pin.
(8-TC0Rate)
÷
2
÷
2
TC0cks
TC0cks
TC0enb
TC0enb
CPUM1,0
CPUM1,0
Internal data bus
Internal data bus
pre_load
pre_load
TC0C
TC0C 8 -bit bi nary count e r
8 -bit bi nary count e r
TC0 Time out
TC0 Time out
SONiX TECHNOLOGY CO., LTD Page 50 Version 1.1
Page 51
SN8P1602B
8-Bit Micro-Controller

TC0M MODE REGISTER

The TC0M is an 8-bit read/write timer mode register. By loading different value into the TC0M register, users can modify the timer period as program executing.
Eight rates for TC0 timer can be selected by TC0RATE0 ~ TC0RATE2 bits. The range is from fcpu/2 to fcpu/256. The TC0M initial value is zero and the rate is fcpu/256. The bit7 of TC0M called TC0ENB is the control bit to start TC0 timer. The combination of these bits is to determine the TC0 timer clock frequency and the intervals.
0DAH Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
TC0M
Read/Write R/W R/W R/W R/W R/W - - -
After reset 0 0 0 0 0 - - -
TC0ENB: TC0 counter enable bit. “0” = disable, “1” = enable. TC0RATE2~TC0RATE0: TC0 internal clock select bits. 000 = fcpu/256, 001 = fcpu/128, … , 110 = fcpu/4, 111 = fcpu/2. TC0CKS: TC0 clock source select bit. 0 = Fcpu, 1 = External clock comes from INT0/P0.0 pin.
Note1: The ICE S8KC does not support the PWM0OUT and TC0OUT Function. The PWM0OUT and
Note2: When TC0CKS=1, TC0 became an external event counter. No more P0.0 interrupt request will be
TC0ENB TC0rate2 TC0rate1 TC0rate0 TC0CKS 0 0 0
TC0OUT must use the S8KD ICE (or later) to verify the function.
raised. (P0.0IRQ will be always 0)
SONiX TECHNOLOGY CO., LTD Page 51 Version 1.1
Page 52
SN8P1602B
8-Bit Micro-Controller

TC0C COUNTING REGISTER

TC0C is an 8-bit counter register for the timer (TC0). TC0C must be reset whenever the TC0ENB is set to “1” to start the timer. TC0C is incremented each time a clock pulse of the frequency determined by TC0RATE0 ~ TC0RATE2. When TC0C has incremented to “0FFH”, it counts to “00H” an overflow generated. Under TC0 interrupt service request (TC0IEN) enable condition, the TC0 interrupt request flag will be set to “1” and the system executes the interrupt service routine. The TC0C has no auto reload function. After TC0C overflow, the TC0C is continuing counting. Users need to redefine the TC0C value to get an accurate time.
0DBH Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
TC0C
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
After reset 0 0 0 0 0 0 0 0
The basic timer table interval time of TC0
TC0RATE TC0CLOCK
000 fcpu/256 73.2 ms 286us 8000 ms 31.25 ms 001 fcpu/128 36.6 ms 143us 4000 ms 15.63 ms 010 fcpu/64 18.3 ms 71.5us 2000 ms 7.8 ms 011 fcpu/32 9.15 ms 35.8us 1000 ms 3.9 ms 100 fcpu/16 4.57 ms 17.9us 500 ms 1.95 ms 101 fcpu/8 2.28 ms 8.94us 250 ms 0.98 ms 110 fcpu/4 1.14 ms 4.47us 125 ms 0.49 ms 111 fcpu/2 0.57 ms 2.23us 62.5 ms 0.24 ms
The equation of TC0C initial value is as following.
Example: To set 10ms interval time for TC0 interrupt at 3.58MHz high-speed mode. TC0C value (74H) =
256 - (10ms * fcpu/64)
TC0C7 TC0C6 TC0C5 TC0C4 TC0C3 TC0C2 TC0C1 TC0C0
High speed mode (Fcpu = 3.58MHz / 4) Low speed mode (Fcpu = 32768Hz / 4)
Max overflow interval One step = max/256 Max overflow interval One step = max/256
TC0C initial value = 256 - (TC0 interrupt interval time * input clock)
TC0C initial value = 256 - (TC0 interrupt interval time * input clock)
= 256 - (10ms * 3.58 * 10 = 256 - (10 = 116 = 74H
-2
* 3.58 * 106 / 4 / 64)
6
/ 4 / 64)
SONiX TECHNOLOGY CO., LTD Page 52 Version 1.1
Page 53
SN8P1602B
8-Bit Micro-Controller

TC0 TIMER OPERATION SEQUENCE

The TC0 timer’s sequence of operation may be as following.
Set the TC0C initial value to setup the interval time. Set the TC0ENB to be “1” to enable TC0 timer. TC0C is incremented by one after each clock pulse corresponding to TC0M selection. TC0C overflow if TC0C from FFH to 00H. When TC0C overflow occur, the TC0IRQ flag is set to be “1” by hardware. Execute the interrupt service routine. Users reset the TC0C value and resume the TC0 timer operation.
Example: Setup the TC0M and TC0C.
B0BCLR FTC0IEN ; To disable TC0 interrupt service B0BCLR FTC0ENB ; To disable TC0 timer MOV A,#20H ; B0MOV TC0M,A ; To set TC0 clock = Fcpu / 64 MOV A,#74H ; To set TC0C initial value = 74H B0MOV TC0C,A ;(To set TC0 interval = 10 ms)
B0BSET FTC0IEN ; To enable TC0 interrupt service B0BCLR FTC0IRQ ; To clear TC 0 interrupt request B0BSET FTC0ENB ; To enable TC0 timer
Example: TC0 interrupt s ervice routine.
ORG 8 ; Interrupt vector JMP INT_SERVICE INT_SERVICE:
B0XCH A, ACCBUF ; B0xch instruction do not change C,Z flag B0MOV A, PFLAG B0MOV PFLAGBUF, A
B0BTS1 FTC0IRQ ; Check TC0IRQ JMP EXIT_INT ; TC0IRQ = 0, exit interrupt vector
B0BCLR FTC0IRQ ; Reset TC0IRQ MOV A,#74H ; Reload TC0C B0MOV TC0C,A . . ; TC0 interrupt service routine . . JMP EXIT_INT ; End of TC0 interrupt service routine and exit interrupt
vector . . . . EXIT_INT: B0MOV A, PFLAGBUF B0MOV PFLAG, A B0XCH A, ACCBUF ; Restore ACC value.
RETI ; Exit interrupt vector
SONiX TECHNOLOGY CO., LTD Page 53 Version 1.1
Page 54
SN8P1602B
8-Bit Micro-Controller
9
9
9

INTERRUPT

OVERVIEW

The SN8P1602B provides 2 interrupt sources, including 1 internal interrupt (TC0) and 1 external interrupt (INT0). The external interrupt can wakeup the chip while the system is switched from power down mode to high-speed normal mode. Once interrupt service is executed, the GIE bit in STKP register will clear to “0” for stopping other interrupt request. On the contrast, when interrupt service exits, the GIE bit will set to “1” to accept the next interrupts’ request. All of the interrupt request signals are stored in INTRQ register.
SN8P1602B
INTEN Interrupt enable registerThe interrupt trigger edge :
INT0 = falling edge
INT0 = falling edge
TC0 time out
TC0 time out
INT0 trigger
INT0 trigger
INTRQ
INTRQ 2-bit
2-bit Latchs
Latchs
INTEN Interrupt enable registerThe interrupt trigger edge :
TC0IRQ
TC0IRQ
P00IRQ
P00IRQ
Interrupt
Interrupt enable
enable gating
gating
Interrupt vector address (0008H)
Interrupt vector address (0008H)
Global interrupt request signal
Global interrupt request signal
Note: The GIE bit must enable during all interrupt operation.
SONiX TECHNOLOGY CO., LTD Page 54 Version 1.1
Page 55
SN8P1602B
8-Bit Micro-Controller

INTEN INTERRUPT ENABLE REGISTER

INTEN is the interrupt request control register including one internal interrupts, one external interrupts enable control bits. One of the register to be set “1” is to enable the interrupt request function. Once of the interrupt occur, the stack is incremented and program jump to ORG 8 to execute interrupt service routines. The program exits the interrupt service routine when the returning interrupt service routine instruction (RETI) is executed.
SN8P1602B
0C9H Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
INTEN
Read/Write - - R/W - - - - R/W
After reset - - 0 - - - - 0
P00IEN : External P0.0 interrupt control bit. 0 = disable, 1 = enable. TC0IEN : Timer 0 interrupt control bit 0 = disable, 1 = enable.
0 0 TC0IEN 0 0 0 0 P00IEN

INTRQ INTERRUPT REQUEST REGISTER

INTRQ is the interrupt request flag register. The register includes all interrupt request indication flags. Each one of the interrupt requests occurs, the bit of the INTRQ register would be set “1”. The INTRQ value needs to be clear by programming after detecting the flag. In the interrupt vector of program, users know the any interrupt requests occurring by the register and do the routine corresponding of the interrupt request.
SN8P1602B
0C8H Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
INTRQ
Read/Write - - R/W - - - - R/W
After reset - - 0 - - - - 0
P00IRQ : External P0.0 interrupt request bit. 0 = non-request, 1 = request. TC0IRQ : TC0 timer interrupt request controls bit 0 = non request, 1 = request.
When interrupt occurs, the related request bit of INTRQ register will be set to “1” no matter the related enable bit of INTEN register is enabled or disabled. If the related bit of INTEN = 1 and the related bit of INTRQ is also set to be “1”. As the result, the system will execute the interrupt vector (ORG 8). If the related bit of INTEN = 0, moreover, the system won’t execute interrupt vector even when the related bit of INTRQ is set to be “1”. Users need to be cautious with the operation under multi-interrupt situation.
0 0 TC0IRQ 0 0 0 0 P00IRQ
SONiX TECHNOLOGY CO., LTD Page 55 Version 1.1
Page 56
SN8P1602B
8-Bit Micro-Controller

INTERRUPT OPERATION DESCRIPTION

GIE GLOBAL INTERRUPT OPERATION

GIE is the global interrupt control bit. All interrupts start work after the GIE = 1. It is necessary for interrupt service request. One of the interrupt requests occurs, and the program counter (PC) points to the interrupt vector (ORG 8) and the stack add 1 level.
SN8P1602B
0DFH Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
STKP
Read/Write R/W - - - - R/W R/W R/W
After reset 0 - - - - 1 1 1
GIE: Global interrupt control bit. 0 = disable, 1 = enable.
Example: Set global interrupt control bit (GIE).
B0BSET FGIE ; Enable GIE
Note: The GIE bit must enable during all interrupt operation.
GIE - - - - STKPB2 STKPB1 STKPB0
SONiX TECHNOLOGY CO., LTD Page 56 Version 1.1
Page 57
SN8P1602B
8-Bit Micro-Controller

INT0 (P0.0) INTERRUPT OPERATION

The P0.0 interrupt trigger direction is control by PEDGE register.
PEDGE initial value = 0xx0 0xxx
0BFH Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
PEDGE
R/W - - R/W R/W - - -
Bit7 PEDGEN: Interrupt and wakeup trigger edge control bit.
Bit[4:3] P00G[1:0]: Port 0.0 edge select bits.
Example: INT0 interrupt request setup.
B0BSET FP00IEN ; Enable INT0 interrupt service B0BCLR FP00IRQ ; Clear INT0 interrupt request flag B0BSET FGIE ; Enable GIE
Example: INT0 interrupt service routine.
ORG 8 ; Interrupt vector JMP INT_SERVICE INT_SERVICE:
B0XCH A, ACCBUF ; Store ACC value. B0MOV A, PFLAG B0MOV PFLAGBUF, A
B0BTS1 FP00IRQ ; Check P00IRQ JMP EXIT_INT ; P00IRQ = 0, exit interrupt vector
B0BCLR FP00IRQ ; Reset P00IRQ . . ; INT0 interrupt service routine . . EXIT_INT: B0MOV A, PFLAGBUF B0MOV PFLAG, A B0XCH A, ACCBUF ; Restore ACC value.
RETI ; Exit interrupt vector When the INT0 trigger occurs, the P00IRQ will be set to “1” no matter the P00IEN is enable or disable. If the P00IEN =
1 and the trigger event P00IRQ is also set to be “1”. As the result, the system will execute the interrupt vector (ORG
8). If the P00IEN = 0 and the trigger event P00IRQ is still set to be “1”. Moreover, the system won’t execute interrupt vector even when the P00IRQ is set to be “1”. Users need to be cautious with the operation under multi-interrupt situation.
PEDGEN - - P00G1 P00G0 - - -
0 = Disable edge trigger function.
Port 0: Low-level wakeup trigger and falling edge interrupt trigger. Port 1: Low-level wakeup trigger.
1 = Enable edge trigger function.
P0.0: Wakeup and interrupt trigger is controlled by P00G1 and P00G0 bits. Port 1: Level change (falling or rising edge) wakeup trigger.
00 = reserved, 01 = rising edge, 10 = falling edge, 11 = rising/falling bi-direction.
SONiX TECHNOLOGY CO., LTD Page 57 Version 1.1
Page 58
SN8P1602B
8-Bit Micro-Controller

TC0 INTERRUPT OPERATION

Example: TC0 interrupt r equest setup.
B0BCLR FTC0IEN ; Disable TC0 interrupt service B0BCLR FTC0ENB ; Disable TC0 timer MOV A, #20H ; B0MOV TC0M, A ; Set TC0 clock = Fcpu / 64 MOV A, #74H ; Set TC0C initial value = 74H B0MOV TC0C, A ; Set TC0 interval = 10 ms
B0BSET FTC0IEN ; Enable TC0 interrupt service B0BCLR FTC0IRQ ; Clear TC0 i nterrupt request flag B0BSET FTC0ENB ; Enable TC0 timer
B0BSET FGIE ; Enable GIE
Example: TC0 interrupt s ervice routine.
ORG 8 ; Interrupt vector JMP INT_SERVICE INT_SERVICE:
B0XCH A, ACCBUF ; Store ACC value. B0MOV A, PFLAG B0MOV PFLAGBUF, A
B0BTS1 FTC0IRQ ; Check TC0IRQ JMP EXIT_INT ; TC0IRQ = 0, exit interrupt vector
B0BCLR FTC0IRQ ; Reset TC0IRQ MOV A, #74H B0MOV TC0C, A ; Reset TC0C. . . ; TC0 interrupt service routine . . EXIT_INT: B0MOV A, PFLAGBUF B0MOV PFLAG, A B0XCH A, ACCBUF ; Restore ACC value.
RETI ; Exit interrupt vector When the TC0C counter overflows, the TC0IRQ will be set to “1” no matter the TC0IEN is enable or disable. If the
TC0IEN and the trigger event TC0IRQ is set to be “1”. As the result, the system will execute the interrupt vector. If the TC0IEN = 0, the trigger event TC0IRQ is still set to be “1”. Moreover, the system won’t execute interrupt vector even when the TC0IEN is set to be “1”. Users need to be cautious with the operation under multi-interrupt situation.
SONiX TECHNOLOGY CO., LTD Page 58 Version 1.1
Page 59
SN8P1602B
8-Bit Micro-Controller

MULTI-INTERRUPT OPERATION

Under certain condition, the software designer uses more than one interrupt requests. Processing multi-interrupt request requires setting the priority of the interrupt requests. The IRQ flags of interrupts are controlled by the interrupt event. Nevertheless, the IRQ flag “1” doesn’t mean the system will execute the interrupt vector. And which means the IRQ flags can be set “1” by the events without enable the interrupt. Once the event occurs, the IRQ will be logic “1”. The IRQ and its trigger event relationship is as the below table.
Interrupt Name Trigger Event Description
P00IRQ P0.0 trigger controlled by PEDGE
TC0IRQ TC0C overflow
For multi-interrupt conditions, two things need to be taking care of. One is to set the priority for these interrupt requests. Two is using IEN and IRQ flags to decide which interrupt to be executed. Users have to check interrupt control bit and interrupt request flag in interrupt routine.
Example: Check the inter rupt request under multi-interrupt operation
ORG 8 ; Interrupt vector B0XCH A, ACCBUF ; Store ACC value.
B0MOV A, PFLAG ; Store PFLAG value B0MOV PFLAGBUF,A
INTP00CHK: ; Check INT0 interrupt request B0BTS1 FP00IEN ; Check P00IEN JMP INTTC0CHK ; Jump check to next interrupt B0BTS0 FP00IRQ ; Check P00IRQ JMP INTP00 ; Jump to INT0 interrupt service routine INTTC0CHK: ; Check TC0 interrupt request B0BTS1 FTC0IEN ; Check TC0IEN JMP INT_EXIT ; Jump to exit of IRQ B0BTS0 FTC0IRQ ; Check TC0IRQ JMP INTTC0 ; Jump to TC0 interrupt service routine INT_EXIT:
B0MOV A, PFLAGBUF ; Restore PFLAG value B0MOV PFLAG,A B0XCH A, ACCBUF ; Restore ACC value.
RETI ; Exit interrupt vector
SONiX TECHNOLOGY CO., LTD Page 59 Version 1.1
Page 60
SN8P1602B
8-Bit Micro-Controller
1
1
1

OVERVIEW

The SN8P1602B provides 3 ports for users’ application, consisting one input only port (P0) and two I/O ports (P1, P2,). Each port consists input pull-up resistors. The direction of I/O port can be selected by PnM register. When the system resets, these ports will then be set as input port without pull up resistors.
The pull-up resistor can be set up by PUR register.
SN8P1602B
0
0
0

I/O PORT

Port0 structure
Port0 structure
PUR
PUR
Pin
Pin
PUR
PUR
Int. bus
Int. bus
Port1~Port2 structure
Port1~Port2 structure
PUR
PUR
PnM, PUR
PnM, PUR
Pin
Pin
PnM
PnM
Latch
Latch
PnM
PnM
Note: All of the latch output circuits are push-pull structures. .
SONiX TECHNOLOGY CO., LTD Page 60 Version 1.1
Page 61
SN8P1602B
8-Bit Micro-Controller

I/O PORT FUNCTION TABLE

SN8P1602B
Port/Pin I/O Function Description Remark
General-purpose input function
P0.0 I
P1.0~P1.4 I/O P2.0~P2.7 I/O General-purpose input/output function
Note: The P1.4 enables when the external oscillator is RC type.
External interrupt (INT0) See <P00G1,P00G0> Wakeup from power down mode See <P00G1,P00G0>
General-purpose input/output function Wakeup from power down mode Level Change

I/O PORT MODE

The port direction is programmed by PnM register. Port 0 is always input mode. Port 1 and Port 2 can select input or output direction.
SN8P1602B
0C1H Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
P1M
Read/Write - - - R/W R/W R/W R/W R/W
After reset - - - 0 0 0 0 0
SN8P1602B
0C2H Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
P2M
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
After reset 0 0 0 0 0 0 0 0
When PnM=0, the Pn is input mode
PnM=1, the Pn is output mode
Users can program them by bit control instructions (B0BSET, B0BCLR).
Example: I/O mode selecting
CLR P1M ; Set all ports to be input mode. CLR P2M
MOV A, #0FFH ; Set all ports to be output mode. B0MOV P1M, A B0MOV P2M, A
B0BCLR P1M.2 ; Set P1.2 to be input mode. B0BSET P1M.2 ; Set P1.2 to be output mode.
0 0 0 P14M P13M P12M P11M P10M
P27M P26M P25M P24M P23M P22M P21M P20M
SONiX TECHNOLOGY CO., LTD Page 61 Version 1.1
Page 62
SN8P1602B
8-Bit Micro-Controller

I/O PULL UP REGISTER

SN8P1602B
0BEH Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
PUR
Read/Write - - - - - W W W
After reset - - - - - 0 0 0
Example: I/O Pull up Register
CLR PUR ; Disable all ports Pull-up register. MOV A, #07H ; Enable Port0, 1, 2 Pull-up register,
B0MOV PUR, A ;
- - - - - PUR2 PUR1 PUR0

I/O PORT DATA REGISTER

SN8P1602B
0D0H Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
P0
Read/Write - - - - - - - R
After reset - - - - - - - 0
SN8P1602B
0D1H Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
P1
Read/Write - - - R/W R/W R/W R/W R/W
After reset - - - 0 0 0 0 0
SN8P1602B
0D2H Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
P2
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
After reset 0 0 0 0 0 0 0 0
Example: Read data from input port.
B0MOV A, P0 ; Read data from Port 0 B0MOV A, P1 ; Read data from Port 1 B0MOV A, P2 ; Read data from Port 2
Example: Write data to output port.
MOV A, #55H ; Write data 55H to Port 1 and Port 2 B0MOV P1, A B0MOV P2, A
Example: Write one bit data to output port.
B0BSET P1.3 ; Set P1.3 and P2.5 to be “1”. B0BSET P2.5
B0BCLR P1.3 ; Set P1.3 and P2.5 to be “0”. B0BCLR P2.5
Example: Port bit test.
B0BTS1 P0.0 ; Bit test 1 for P0.0 B0BTS0 P1.2 ; Bit test 0 for P1.2
- - - - - - - P00
- - - P14 P13 P12 P11 P10
P27 P26 P25 P24 P23 P22 P21 P20
SONiX TECHNOLOGY CO., LTD Page 62 Version 1.1
Page 63
SN8P1602B
8-Bit Micro-Controller
1
1
1

TEMPLATE CODE

;******************************************************************************* ; FILENAME : TEMPLATE.ASM ; AUTHOR : SONiX ; PURPOSE : Template Code for SN8X16XX ; REVISION : 09/01/2002 V1.0 First issue ;******************************************************************************* ;* (c) Copyright 2002, SONiX TECHNOLOGY CO., LTD. ;*******************************************************************************
CHIP SN8P1602B ; Select the CHIP
;------------------------------------------------------------------------------­; Include Files ;------------------------------------------------------------------------------­.nolist ; do not list the macro file
INCLUDESTD MACRO1.H INCLUDESTD MACRO2.H INCLUDESTD MACRO3.H
.list ; Enable the listing function
;------------------------------------------------------------------------------­; Constants Definition ;------------------------------------------------------------------------------­; ONE EQU 1
;------------------------------------------------------------------------------­; Variables Definition ;------------------------------------------------------------------------------­.DATA org 0h ;Data section start from RAM address 0 Wk00 DS 1 ;Temporary buffer for main loop Iwk00 DS 1 ;Temporary buffer for ISR AccBuf DS 1 ;Accumulator buffer PflagBuf DS 1 ;PFLAG buffer
;------------------------------------------------------------------------------­; Bit Variables Definition ;-------------------------------------------------------------------------------
Wk00B0 EQU Wk00.0 ;Bit 0 of Wk00 Iwk00B1 EQU Iwk00.1 ;Bit 1 of Iwk00
1
1
1

CODING ISSUE

SONiX TECHNOLOGY CO., LTD Page 63 Version 1.1
Page 64
SN8P1602B
8-Bit Micro-Controller
;------------------------------------------------------------------------------­; Code section ;-------------------------------------------------------------------------------
.CODE
ORG 0 ;Code section start jmp Reset ;Reset vector ;Address 4 to 7 are reserved ORG 8 jmp Isr ;Interrupt vector
ORG 10h ;------------------------------------------------------------------------------­; Program reset section ;------------------------------------------------------------------------------­Reset: mov A,#07Fh ;Initial stack pointer and b0mov STKP,A ;disable global interrupt b0mov PFLAG,#00h ;pflag = x,x,x,x,x,c,dc,z mov A,#40h ;Clear watchdog timer and initial system mode b0mov OSCM,A
call ClrRAM ;Clear RAM call SysInit ;System initial b0bset FGIE ;Enable global interrupt
;------------------------------------------------------------------------------­; Main routine ;------------------------------------------------------------------------------­Main: b0bset FWDRST ;Clear watchdog timer
call MnApp
jmp Main
;------------------------------------------------------------------------------­; Main application ;------------------------------------------------------------------------------­MnApp:
; Put your main program here
ret
;----------------------------------­; Jump table routine ;----------------------------------­ ORG 0x0100 ;The jump table should start from the head ;of boundary. b0mov A,Wk00 and A,#3 ADD PCL,A jmp JmpSub0 jmp JmpSub1 jmp JmpSub2 ;-----------------------------------
SONiX TECHNOLOGY CO., LTD Page 64 Version 1.1
Page 65
SN8P1602B
8-Bit Micro-Controller
JmpSub0: ; Subroutine 1 jmp JmpExit
JmpSub1: ; Subroutine 2 jmp JmpExit
JmpSub2: ; Subroutine 3 jmp JmpExit
JmpExit: ret ;Return Main
;------------------------------------------------------------------------------­; Isr (Interrupt Service Routine) ; Arguments : ; Returns : ; Reg Change: ;------------------------------------------------------------------------------­Isr: ;----------------------------------­; Save ACC ;-----------------------------------
b0xch A,AccBuf ;B0xch instruction do not change C,Z flag
b0mov A,PFLAG b0mov PflagBuf,A
;----------------------------------­; Interrupt service routine ;-----------------------------------
b0bts0 FP00IRQ jmp INT0isr b0bts0 FTC0IRQ jmp TC0isr
;----------------------------------­; Exit interrupt service routine ;-----------------------------------
IsrExit:
b0mov A, PflagBuf
b0mov PFLAG, A ;Restore the PFlag
b0xch A,AccBuf ;Restore the Reg. A
;B0xch instruction do not change C,Z flag
reti ;Exit the interrupt routine
SONiX TECHNOLOGY CO., LTD Page 65 Version 1.1
Page 66
SN8P1602B
8-Bit Micro-Controller
;------------------------------------------------------------------------------­; INT0 interrupt service routine ;------------------------------------------------------------------------------­INT0isr: b0bclr FP00IRQ
;Process P0.0 external interrupt here
jmp IsrExit
;------------------------------------------------------------------------------­; TC0 interrupt service routine ;------------------------------------------------------------------------------­TC0isr: b0bclr FTC0IRQ
;Process TC0 interrupt here
jmp IsrExit
;------------------------------------------------------------------------------­; SysInit
; System initial to define Register, RAM, I/O, Timer......
;------------------------------------------------------------------------------­SysInit:
ret
;------------------------------------------------------------------------------­; ClrRAM ; Use index @YZ to clear RAM (00h~2Fh) ;-------------------------------------------------------------------------------
ClrRAM:
clr Y ; b0mov Z,#0x2f ;Set @YZ address from 2fh
ClrRAM10: clr @YZ ;Clear @YZ content decms Z ;z = z – 1 , skip next if z=0 jmp ClrRAM10 clr @YZ ;Clear address $00
ret
;------------------------------------------------------------------------------­ ENDP
SONiX TECHNOLOGY CO., LTD Page 66 Version 1.1
Page 67
SN8P1602B
A
8-Bit Micro-Controller

PROGRAM CHECK LIST

Item Description
Undefined Bits
Interrupt
Non-Used I/O
Sleep Mode
Stack Buffer
System Initial
Noisy Immunity
ll bits those are marked as “0” (undefined bits) in system registers should be set “0” to avoid unpredicted system errors. Do not enable interrupt before initializing RAM. Non-used I/O ports should be set as output low mode or pull-up at input mode to save current consumption. Enable on-chip pull-up resistors of port 0 and port 1 to avoid unpredicted wakeup. Be careful of function call and interrupt service routine operation. Don’t let stack buffer overflow or underflow.
1. Write 0x7F into STKP register to initial stack pointer and disable global interrupt
2. Clear all RAM.
3. Initialize all system register even unused registers.
1. Enable OSG and High_Clk / 2 code option together
2. Enable noise filter code option in SN8P1602B.
3. Enable the watchdog option to protect system crash.
4. Non-used I/O ports should be set as output low mode
5. Constantly refresh important system registers and variables in RAM to avoid system
crash by a high electrical fast transient noise.
6. Disable Low Power Function
SONiX TECHNOLOGY CO., LTD Page 67 Version 1.1
Page 68
SN8P1602B
8-Bit Micro-Controller
1
1
1
Field Mnemonic Description C DC Z Cycle
Note: Any instruction that read/write from OSCM, will add an extra cycle.
2
2
2
MOV A,M
M MOV M,A
O B0MOV A,M V B0MOV M,A E MOV A,I
B0MOV M,I XCH A,M B0XCH A,M MOVC
ADC A,M A ADC M,A R ADD A,M
I ADD M,A T B0ADD M,A H ADD A,I
M SBC A,M
E SBC M,A T SUB A,M
I SUB M,A C SUB A,I
DAA To adjust ACC’s data format from HEX to DEC.
AND A,M L AND M,A O AND A,I G OR A,M
I OR M,A
C OR A,I
XOR A,M
XOR M,A
XOR A,I
SWAP M P SWAPM M R RRC M O RRCM M C RLC M E RLCM M S CLR M S BCLR M.b
BSET M.b
B0BCLR M.b
B0BSET M.b
CMPRS A,I B CMPRS A,M R INCS M A INCMS M N DECS M C DECMS M H BTS0 M.b If M.b = 0, then skip next instruction - - - 1 + S
BTS1 M.b If M.b = 1, then skip next instruction - - - 1 + S
B0BTS0 M.b If M(bank 0).b = 0, then skip next instruction - - - 1 + S
B0BTS1 M.b If M(bank 0).b = 1, then skip next instruction - - - 1 + S
JMP d
CALL d
M RET
I RETI S RETLW C NOP No operation - - - 1

INSTRUCTION SET TABLE

A M M A A M (bank 0) M (bank 0) A A I M ← I, (M = only for Working registers R, Y, Z , RBANK & PFLAG) A ←→M A ←→M (bank 0) R, A ROM [Y,Z]
A A + M + C, if occur carry, then C=1, else C=0 M A + M + C, if occur carry, then C=1, else C=0 A A + M, if occur carry, then C=1, else C=0 M A + M, if occur carry, then C=1, else C=0 M (bank 0) M (bank 0) + A, if occur carry, then C=1, else C=0 A A + I, if occur carry, then C=1, else C=0 A A - M - /C, if occur borrow, then C=0, else C=1 M A - M - /C, if occur borrow, then C=0, else C=1 A A - M, if occur borrow, then C=0, else C=1 M A - M, if occur borrow, then C=0, else C=1 A A - I, if occur borrow, then C=0, else C=1
A A and M M A and M A A and I A A or M M A or M A A or I A A xor M M A xor M A A xor I
A (b3~b0, b7~b4) M(b7~b4, b3~b0) M(b3~b0, b7~b4) M(b7~b4, b3~b0) A RRC M M RRC M A RLC M M RLC M M 0 M.b 0 M.b 1 M(bank 0).b 0 M(bank 0).b 1
ZF,C A - I, If A = I, then skip next instruction ZF,C A – M, If A = M, then skip next instruction A M + 1, If A = 0, then skip next instruction M M + 1, If M = 0, then skip next instruction A M - 1, If A = 0, then skip next instruction M M - 1, If M = 0, then skip next instruction
PC15/14 RomPages1/0, PC13~PC0 d Stack PC15~PC0, PC15/14 RomPages1/0, PC13~PC0 d
PC Stack PC Stack, and to enable global interrupt PC Stack, and to load a value by PC+A
- -
- - - 1
- -
- - - 1
- - - 1
- - - 1
- - - 1
- - - 1
- - - 2
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
- -
- -
- -
- -
- -
- -
- -
- -
- -
- - - 1
- - - 1
√ √ √ √
- - - 1
- - - 1
- - - 1
- - - 1
- - - 1
√ √
- - - 1 + S
- - - 1 + S
- - - 1 + S
- - - 1 + S
- - - 2
- - - 2
- - - 2
- - - 2
- - - 2
- - 1
√ √ √ √ √ √ √ √ √
- - 1
- - 1
- - 1
- - 1
-
-
1
1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 + S 1 + S
SONiX TECHNOLOGY CO., LTD Page 68 Version 1.1
Page 69
SN8P1602B
8-Bit Micro-Controller
1
1
1
3
3
3

ELECTRICAL CHARACTERISTIC

ABSOLUTE MAXIMUM RATING

(All of the voltages referenced to Vss) Supply voltage (Vdd)………………………………………………………………………………………………… - 0.3V ~ 6.0V Input in voltage (Vin)…………………………………………………………………………………… ..Vss - 0.2V ~ Vdd + 0.2V Operating ambient temperature (Top)………………………………………………… ………………………..-20°C ~ + 70°C Storage ambient temperature (Tstor)………………………………………………………………… …………-30°C ~ + 125°C Power consumption (Pc)……………………………………………………………………………………………………500 mW

STANDARD ELECTRICAL CHARACTERISTIC

SN8P1602B
(All of voltages referenced to Vss, Vdd = 5.0V, Fosc = 3.579545 MHz, ambient temperature is 25°C unless otherwise notice.)
PARAMETER SYM. DESCRIPTION MIN. TYP. MAX. UNIT
Normal mode (OSG, Low Power Disable) 2.4 5.0 5.5 V
Operating voltage Vdd
RAM Data Retention voltage Vdr - 1.5 - V
ViL1 All input pins except those specified below Vss - 0.3Vdd V
Input Low Voltage
Input High Voltage
Reset pin leakage current Ilekg Vin = Vdd - - 1 uA
I/O port input leakage current Ilekg Pull-up resistor disable, Vin = Vdd - - 2 uA
Port1 output source current IoH Vop = Vdd – 0.5V - 12 -
sink current IoL Vop = Vss + 0.5V - 15 -
Port2 output source current IoH Vop = Vdd – 0.5V - 12 -
sink current IoL Vop = Vss + 0.5V - 15 -
INTn trigger pulse width Tint0 INT0 ~ INT2 interrupt request pulse width 2/fcpu - - cycle
Oscillator Frequency Fhosc
Supply Current
LVD Detect Voltage Vdet Low voltage detect level - 1.8 - V
Note: Date in Typical (TYP.) column is base on characterization results at 25℃. This data is design for
guidance only and is not tested.
ViL2 Input with Schmitt trigger buffer - Port0 Vss - 0.2Vdd V ViL3 Reset pin ; Xin ( in RC mode ) Vss - 0.3Vdd V ViL4 Xin ( in X’tal mode ) Vss - 0.3Vdd V
ViH1 All input pins except those specified below 0.7Vdd - Vdd V ViH2 Input with Schmitt trigger buffer –Port0 0.8Vdd - Vdd V ViH3 Reset pin ; Xin ( in RC mode ) 0.9Vdd - Vdd V
ViH4 Xin ( in X’tal mode ) 0.7Vdd - Vdd V
Idd1
Idd2
Idd3
Idd4 Sleep mode
Idd5
Normal mode (OSG Enable, Low Power Disable) 2.4 5.0 5.5 V Normal mode (OSG Disable, Low Power Enable) 2.9 5.0 5.5 V Normal mode (OSG, Low Power Enable) 2.9 5.0 5.5 V Programming mode, Vpp = 12.5V 4.5 5.0 5.5 V
mA
mA
Crystal type or ceramic resonator 32768 4M 16M VDD = 3V, RC type for external mode - 6M ­VDD = 5V, RC type for external mode - 10M -
Run Mode
(Low Power Disable)
Run Mode
(Low Power Enable)
Slow mode
(Stop High Clock)
Green Mode
(Stop High Clock)
Vdd= 5V 4Mhz - 3 8 mA Vdd= 3V 4Mhz - 1 2 mA Vdd= 3V 32768Hz - 50 100 uA Vdd= 5V 4Mhz - 2 5 mA
Vdd= 3V 4Mhz - 0.8 2 mA Vdd= 5V 32KHz Int. RC - 25 50 uA Vdd= 3V 16KHz Int. RC - 7 20 uA Vdd= 5V - 1 2 uA Vdd= 3V - 0.6 1 uA Vdd= 5V 32KHz Int. RC - 15 30 Vdd= 3V 16KHz Int. RC 3 10
Hz
uA
SONiX TECHNOLOGY CO., LTD Page 69 Version 1.1
Page 70
SN8P1602B
8-Bit Micro-Controller

CHARACTERISTIC GRAPHS

The Graphs in this section are for design guidance, not tested or guaranteed. In some graphs, the data presented are outside specified operating range. This is for information only and devices are guaranteed to operate properly only within the specified range.
SN8P1602B
VDD
5.5
5.0
4.5
Working area
4.0
3.5
3.0
2.5
2.0
1.5
1.0 2 4 8 12 16 20
Fosc
MHz
VDD
5.5
5.0
4.5
Working area
4.0
3.5
3.0
2.5
2.0
1.5
1.0 248121620
Figure 13-1Working Voltage vs. Frequency Figure 13-2 Working Voltage vs. Frequency (OSG, Low Power, Noise Filter Disable) (Noise Filter Enable, OSG, Low Power Disable)
VDD
5.5
5.0
4.5
Working area
4.0
3.5
3.0
2.5
2.0
1.5
1.0 2 4 8 12 16 20
Fosc MHz
VDD
5.5
5.0
4.5
Working area
4.0
3.5
3.0
2.5
2.0
1.5
1.0 248121620
Fosc
MHz
Fosc
MHz
Figure 13-3 Working Voltage vs. Frequency Figure 13-4 Working Voltage vs. Frequency (Low Power Enable, OSG, Noise Filter Disable) (OSG Enable, Noise filter, Low Power Disable)
uA
2.0
1.5
1.0
0.5
0.0
2.0 2.5 3.0 3.5 4.0 4.5 5.0
VDD
uA 30
25
20
15 10
5
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0
VDD
Figure 13-5 Typical Stop Mode current (Idd4) vs. VDD Figure 13-6 Typical Slow Mode current (Idd3) vs. VDD (Stop High Clock)
SONiX TECHNOLOGY CO., LTD Page 70 Version 1.1
Page 71
SN8P1602B
8-Bit Micro-Controller
mA 10
8
6
4
2
0
2 6 10 14 18
5V
3V
Fosc
MHz
mA 10
8
6
4
2
0
2 6 10 14 18
5V
3V
Fosc
MHz
Figure 13-7 Typical Run Mode current (Idd1) vs. Fosc Figure 13-8 Typical Run Mode current (Idd2) vs. Fosc (Low Power Disable) (Low Power Enable)
mA
4.0
3.0
2.0
1.0
0.0 2 6 10 14 18
5V
3V
Fosc
MHz
uA 16
14 12 10
8 6 4 2 0
2.0 2.5 3.0 3.5 4.0 4.5 5.0
VDD
Figure 13-9 Typical Green Mode current vs. Fosc Figure 13-10 Typical Green Mode current vs. VDD (Without Stopping High clock) (Stop High clock)
mA
-14
-12
-10
-8
-6
-4
-2 0
2.0 2.5 3.0 3.5 4.0 4.5 5.0
VDD
mA
16 14 12 10
8 6 4 2 0
2.0 2.5 3.0 3.5 4.0 4.5 5.0
VDD
Figure 13-11 Typical IOH vs. VDD Figure 13-12 Typical IOL vs. VDD
SONiX TECHNOLOGY CO., LTD Page 71 Version 1.1
Page 72
SN8P1602B
8-Bit Micro-Controller
Fosc
KHz
30 25 20 15 10
5 0
2.0 2.5 3.0 3.5 4.0 4.5 5.0
VDD
Figure 13-13 Typical Slow Mode Frequency vs. VDD
SONiX TECHNOLOGY CO., LTD Page 72 Version 1.1
Page 73
SN8P1602B
8-Bit Micro-Controller
1
1
1

P-DIP 18 PIN

4
4
4

PACKAGE INFORMATION

SYMBOLS
A - - 0.210 - - 5.334 A1 0.015 - - 0.381 - ­A2 0.125 0.130 0.135 3.175 3.302 3.429
D 0.880 0.900 0.920 22.352 22.860 23.368
E 0.300 7.620
E1 0.245 0.250 0.255 6.223 6.350 6.477
L 0.115 0.130 0.150 2.921 3.302 3.810
B
θ° 0° 7° 15° 0° 7° 15°
SONiX TECHNOLOGY CO., LTD Page 73 Version 1.1
MIN NOR MAX MIN NOR MAX
(inch) (mm)
0.335 0.355 0.375 8.509 9.017 9.525
Page 74
SN8P1602B
8-Bit Micro-Controller

SOP 18 PIN

SYMBOLS
A 0.093 0.099 0.104 2.362 2.502 2.642 A1 0.004 0.008 0.012 0.102 0.203 0.305
D 0.447 0.455 0.463 11.354 11.557 11.760
E 0.291 0.295 0.299 7.391 7.493 7.595
H 0.394 0.407 0.419 10.008 10.325 10.643
L 0.016 0.033 0.050 0.406 0.838 1.270
θ° 0° 4° 8° 0° 4° 8°
MIN NOR MAX MIN NOR MAX
(inch) (mm)
SONiX TECHNOLOGY CO., LTD Page 74 Version 1.1
Page 75
SN8P1602B
8-Bit Micro-Controller

SSOP 20 PIN

SYMBOLS
A 0.053 0.063 0.069 1.350 1.600 1.750 A1 0.004 0.006 0.010 0.100 0.150 0.250 A2 - - 0.059 - - 1.500
b 0.008 0.010 0.012 0.200 0.254 0.300 c 0.007 0.008 0.010 0.180 0.203 0.250
D 0.337 0.341 0.344 8.560 8.660 8.740
E 0.228 0.236 0.244 5.800 6.000 6.200 E1 0.150 0.154 0.157 3.800 3.900 4.000 [e] 0.025 0.635
h 0.010 0.017 0.020 0.250 0.420 0.500
L 0.016 0.025 0.050 0.400 0.635 1.270 L1 0.039 0.041 0.043 1.000 1.050 1.100 ZD 0.059 1.500
Y - - 0.004 - - 0.100
θ° 0° - 8° 0° - 8°
MIN NOR MAX MIN NOR MAX
(inch) (mm)
SONiX TECHNOLOGY CO., LTD Page 75 Version 1.1
Page 76
SN8P1602B
8-Bit Micro-Controller
SONIX reserves the right to make change without further notice to any products herein to improve reliability, function or design. SONIX does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. SONIX products are not designed, intended, or authorized for us as components in systems intended, for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SONIX product could create a situation where personal injury or death may occur. Should Buyer purchase or use SONIX products for any such unintended or unauthorized application. Buyer shall indemnify and hold SONIX and its officers , employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that SONIX was negligent regarding the design or manufacture of the part.
Main Office:
Address: 9F, NO. 8, Hsien Cheng 5th St, Chupei City, Hsinchu, Taiwan R.O.C. Tel: 886-3-551 0520 Fax: 886-3-551 0523
Taipei Office:
Address: 15F-2, NO. 171, Song Ted Road, Taipei, Taiwan R.O.C. Tel: 886-2-2759 1980 Fax: 886-2-2759 8180
Hong Kong Office:
Address: Flat 3 9/F Energy Plaza 92 Granville Road, Tsimshatsui East Kowloon. Tel: 852-2723 8086 Fax: 852-2723 9179
Technical Support by Email:
Sn8fae@sonix.com.tw
SONiX TECHNOLOGY CO., LTD Page 76 Version 1.1
Loading...