1149.1-1990 (JTAG) Test Access Port and
Boundary-Scan Architecture
D
Functionally Equivalent to ’BCT2952 and
’ABT2952 in the Normal-Function Mode
D
SCOPE
D
IEEE Standard 1149.1-1990 Required
Instruction Set
Instructions, Optional INTEST, CLAMP, and
HIGHZ
D
Parallel-Signature Analysis at Inputs With
Masking Option
D
Pseudo-Random Pattern Generation From
Outputs
D
Sample Inputs/Toggle Outputs
D
Binary Count From Outputs
D
Even-Parity Opcodes
D
Two Boundary-Scan Cells Per I/O for
Greater Flexibility
D
State-of-the-Art
EPIC-ΙΙB
BiCMOS Design
Significantly Reduces Power Dissipation
D
Package Options Include Shrink
Small-Outline (DL) and Plastic
Small-Outline (DW) Packages, Ceramic
Chip Carriers (FK), and Standard Ceramic
DIPs (JT)
description
The ’ABT8952 scan test devices with octal
registered bus transceivers are members of the
Texas Instruments SCOPE testability integra-
ted-circuit family. This family of devices supports
IEEE Standard 1149.1-1990 boundary scan to
facilitate testing of complex circuit-board assemblies. Scan access to the test circuitry is
accomplished via the 4-wire test access port
(TAP) interface.
SN54ABT8952 . . . JT PACKAGE
SN74ABT8952 . . . DL OR DW PACKAGE
CLKAB
CLKENAB
OEAB
SN54ABT8952 . . . FK PACKAGE
OEBA
CLKENBA
CLKBA
CLKAB
CLKENAB
OEAB
A1
A1
A2
A3
GND
A4
A5
A6
A7
A8
TDO
TMS
4
5
6
7
8
9
10
11
12
(TOP VIEW)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
(TOP VIEW)
B1B2B3
321
13 14
A3
A2
GND
28
27
26
25
24
23
22
21
20
19
18
17
16
15
B4
VB5B6
28 27 26
15 16 17 18
A4A5A6
CLKBA
CLKENBA
OEBA
B1
B2
B3
B4
V
CC
B5
B6
B7
B8
TDI
TCK
CC
A7
25
24
23
22
21
20
19
B7
B8
TDI
TCK
TMS
TDO
A8
In the normal mode, these devices are functionally equivalent to the ’BCT2952 and ’ABT2952 octal registered
bus transceivers. The test circuitry can be activated by the T AP to take snapshot samples of the data appearing
at the device pins or to perform a self-test on the boundary-test cells. Activating the T AP in normal mode does
not affect the functional operation of the SCOPE octal registered bus transceivers.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
SCOPE and EPIC-
UNLESS OTHERWISE NOTED this document contains PRODUCTION
DATA information current as of publication date. Products conform to
specifications per the terms of Texas Instruments standard warranty.
Production processing does not necessarily include testing of all
parameters.
ΙΙB are trademarks of Texas Instruments Incorporated.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Copyright 1996, Texas Instruments Incorporated
On products compliant to MIL-PRF-38535, all parameters are tested
unless otherwise noted. On all other products, production
processing does not necessarily include testing of all parameters.
1
Page 2
SN54ABT8952, SN74ABT8952
SCAN TEST DEVICES WITH
OCTAL REGISTERED BUS TRANSCEIVERS
SCBS121D – AUGUST 1992 – REVISED JUL Y 1996
description (continued)
Data flow in each direction is controlled by clock (CLKAB and CLKBA), clock-enable (CLKENAB and
CLKENBA), and output-enable (OEAB and OEBA) inputs. For A-to-B data flow, A-bus data is stored in the
associated registers on the low-to-high transition of CLKAB, provided that CLKENAB
CLKENAB is high or CLKAB remains at a static low or high level, the register contents are not changed. When
OEAB is low, the B outputs are active. When OEAB is high, the B outputs are in the high-impedance state.
Control for B-to-A data flow is similar to that for A-to-B, but uses CLKBA, CLKENBA, and OEBA.
In the test mode, the normal operation of the SCOPE registered bus transceivers is inhibited, and the test
circuitry is enabled to observe and control the I/O boundary of the device. When enabled, the test circuitry
performs boundary-scan test operations as described in IEEE Standard 1149.1-1990.
Four dedicated test pins control the operation of the test circuitry: test data input (TDI), test data output (TDO),
test mode select (TMS), and test clock (TCK). Additionally, the test circuitry performs other testing functions
such as parallel signature analysis (PSA) on data inputs and pseudo-random pattern generation (PRPG) from
data outputs. All testing and scan operations are synchronized to the TAP interface.
The SN54ABT8952 is characterized for operation over the full military temperature range of –55°C to 125°C.
The SN74ABT8952 is characterized for operation from –40°C to 85°C.
is low. Otherwise, if
FUNCTION TABLE
(normal mode, each register)
INPUTS
OEAB CLKENAB CLKABA
LL↑LL
LL↑HH
LHXXB
LXLXB
HXXXZ
†
A-to-B data flow is shown; B-to-A data flow is similar
but uses OEBA
, CLKENBA, and CLKBA.
†
OUTPUT
B
0
0
2
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Page 3
functional block diagram
26
OEBA
SN54ABT8952, SN74ABT8952
SCAN TEST DEVICES WITH
OCTAL REGISTERED BUS TRANSCEIVERS
SCBS121D – AUGUST 1992 – REVISED JUL Y 1996
Boundary-Scan Register
CLKENBA
CLKBA
OEAB
CLKENAB
CLKAB
A1
27
28
3
2
1
1D
C1
C1
1D
MUX
G1
25
B1
1
1
MUX
G1
1
1
4
One of Eight Channels
V
CC
16
TDI
V
CC
14
TMS
TAP
15
TCK
Pin numbers shown are for the DL, DW, and JT packages.
Controller
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Bypass Register
Boundary-Control
Register
Instruction Register
13
TDO
3
Page 4
SN54ABT8952, SN74ABT8952
SCAN TEST DEVICES WITH
OCTAL REGISTERED BUS TRANSCEIVERS
SCBS121D – AUGUST 1992 – REVISED JUL Y 1996
Terminal Functions
TERMINAL
NAME
A1–A8Normal-function A-bus I/O ports. See function table for normal-mode logic.
B1–B8Normal-function B-bus I/O ports. See function table for normal-mode logic.
CLKAB, CLKBANormal-function clock inputs. See function table for normal-mode logic.
CLKENAB, CLKENBANormal-function clock-enable inputs. See function table for normal-mode logic.
GNDGround
OEAB, OEBANormal-function output-enable inputs. See function table for normal-mode logic.
TCK
TDI
TDO
TMS
V
CC
T est clock. One of four pins required by IEEE Standard 1149.1-1990. T est operations of the device are synchronous
to TCK. Data is captured on the rising edge of TCK and outputs change on the falling edge of TCK.
Test data input. One of four pins required by IEEE Standard 1149.1-1990. TDI is the serial input for shifting data
through the instruction register or selected data register. An internal pullup forces TDI to a high level if left
unconnected.
T est data output. One of four pins required by IEEE Standard 1 149.1-1990. TDO is the serial output for shifting data
through the instruction register or selected data register.
T est mode select. One of four pins required by IEEE Standard 1 149.1-1990. TMS directs the device through its T AP
controller states. An internal pullup forces TMS to a high level if left unconnected.
Supply voltage
DESCRIPTION
4
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Page 5
SN54ABT8952, SN74ABT8952
SCAN TEST DEVICES WITH
OCTAL REGISTERED BUS TRANSCEIVERS
SCBS121D – AUGUST 1992 – REVISED JUL Y 1996
test architecture
Serial-test information is conveyed by means of a 4-wire test bus or TAP, that conforms to IEEE Standard
1 149.1-1990. Test instructions, test data, and test control signals all are passed along this serial-test bus. The
T AP controller monitors two signals from the test bus, namely TCK and TMS. The TAP controller extracts the
synchronization (TCK) and state control (TMS) signals from the test bus and generates the appropriate on-chip
control signals for the test structures in the device. Figure 1 shows the TAP-controller state diagram.
The T AP controller is fully synchronous to the TCK signal. Input data is captured on the rising edge of TCK and
output data changes on the falling edge of TCK. This scheme ensures data to be captured is valid for fully
one-half of the TCK cycle.
The functional block diagram illustrates the IEEE Standard 1149.1-1990 4-wire test bus and boundary-scan
architecture and the relationship among the test bus, the T AP controller, and the test registers. As illustrated,
the device contains an 8-bit instruction register and three test-data registers: a 38-bit boundary-scan register,
an 11-bit boundary-control register, and a 1-bit bypass register.
Test-Logic-Reset
TMS = H
TMS = L
TMS = L
Run-Test/IdleSelect-DR-Scan
TMS = L
Capture-DR
TMS = L
Shift-DR
TMS = L
TMS = H
TMS = H
Exit1-DR
TMS = L
Pause-DR
TMS = L
TMS = H
Exit2-DR
TMS = H
TMS = HTMS = H
TMS = HTMS = H
TMS = L
TMS = L
Select-IR-Scan
TMS = H
TMS = L
Capture-IR
TMS = L
Shift-IR
TMS = L
TMS = H
TMS = H
Exit1-IR
TMS = L
Pause-IR
TMS = L
TMS = H
Exit2-IR
TMS = H
Update-DR
TMS = LTMS = H
Figure 1. TAP-Controller State Diagram
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Update-IR
TMS = LTMS = H
5
Page 6
SN54ABT8952, SN74ABT8952
SCAN TEST DEVICES WITH
OCTAL REGISTERED BUS TRANSCEIVERS
SCBS121D – AUGUST 1992 – REVISED JUL Y 1996
state diagram description
The T AP controller is a synchronous finite state machine that provides test control signals throughout the device.
The state diagram shown in Figure 1 is in accordance with IEEE Standard 1149.1-1990. The TAP controller
proceeds through its states based on the level of TMS at the rising edge of TCK.
As shown, the T AP controller consists of 16 states. There are six stable states (indicated by a looping arrow in
the state diagram) and ten unstable states. A stable state as a state the T AP controller can retain for consecutive
TCK cycles. Any state that does not meet this criterion is an unstable state.
There are two main paths through the state diagram: one to access and control the selected data register and
one to access and control the instruction register. Only one register can be accessed at a time.
Test-Logic-Reset
The device powers up in the T est-Logic-Reset state. In the stable Test-Logic-Reset state, the test logic is reset
and is disabled so that the normal logic function of the device is performed. The instruction register is reset to
an opcode that selects the optional IDCODE instruction, if supported, or the BYP ASS instruction. Certain data
registers also can be reset to their power-up values.
The state machine is constructed such that the T AP controller returns to the Test-Logic-Reset state in no more
than five TCK cycles if TMS is left high. The TMS pin has an internal pullup resistor that forces it high if left
unconnected or if a board defect causes it to be open circuited.
For the ’ABT8952, the instruction register is reset to the binary value 11111111, which selects the BYPASS
instruction. Each bit in the boundary-scan register is reset to logic 0 except bits 37–36, which are reset to logic 1.
The boundary-control register is reset to the binary value 00000000010, which selects the PSA test operation
with no input masking.
Run-Test/Idle
The T AP controller must pass through the Run-T est/Idle state (from T est-Logic-Reset) before executing any test
operations. The Run-Test/Idle state also can be entered following data-register or instruction-register scans.
Run-Test/Idle is a stable state in which the test logic can be actively running a test or can be idle.
The test operations selected by the boundary-control register are performed while the T AP controller is in the
Run-Test/Idle state.
Select-DR-Scan, Select-lR-Scan
No specific function is performed in the Select-DR-Scan and Select-lR-Scan states, and the T AP controller exits
either of these states on the next TCK cycle. These states allow the selection of either data-register scan or
instruction-register scan.
Capture-DR
When a data-register scan is selected, the TAP controller must pass through the Capture-DR state. In the
Capture-DR state, the selected data register can capture a data value as specified by the current instruction.
Such capture operations occur on the rising edge of TCK, upon which the TAP controller exits the
Capture-DR state.
Shift-DR
Upon entry to the Shift-DR state, the data register is placed in the scan path between TDI and TDO and, on the
first falling edge of TCK, TDO goes from the high-impedance state to an active state. TDO enables to the logic
level present in the least-significant bit of the selected data register.
While in the stable Shift-DR state, data is serially shifted through the selected data register on each TCK cycle.
The first shift occurs on the first rising edge of TCK after entry to the Shift-DR state (i.e., no shifting occurs during
the TCK cycle in which the T AP controller changes from Capture-DR to Shift-DR or from Exit2-DR to Shift-DR).
The last shift occurs on the rising edge of TCK, upon which the TAP controller exits the Shift-DR state.
6
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Page 7
SN54ABT8952, SN74ABT8952
SCAN TEST DEVICES WITH
OCTAL REGISTERED BUS TRANSCEIVERS
SCBS121D – AUGUST 1992 – REVISED JUL Y 1996
Exit1-DR, Exit2-DR
The Exit1-DR and Exit2-DR states are temporary states that end a data-register scan. It is possible to return
to the Shift-DR state from either Exit1-DR or Exit2-DR without recapturing the data register.
On the first falling edge of TCK after entry to Exit1-DR, TDO goes from the active state to the
high-impedance state.
Pause-DR
No specific function is performed in the stable Pause-DR state, in which the TAP controller can remain
indefinitely. The Pause-DR state suspends and resumes data-register scan operations without loss of data.
Update-DR
If the current instruction calls for the selected data register to be updated with current data, then such update
occurs on the falling edge of TCK, following entry to the Update-DR state.
Capture-IR
When an instruction-register scan is selected, the TAP controller must pass through the Capture-IR state. In
the Capture-IR state, the instruction register captures its current status value. This capture operation occurs
on the rising edge of TCK, upon which the TAP controller exits the Capture-IR state.
For the ’ABT8952, the status value loaded in the Capture-IR state is the fixed binary value 10000001.
Shift-IR
Upon entry to the Shift-IR state, the instruction register is placed in the scan path between TDI and TDO and,
on the first falling edge of TCK, TDO goes from the high-impedance state to an active state. TDO enables to
the logic level present in the least-significant bit of the instruction register.
While in the stable Shift-IR state, instruction data is serially shifted through the instruction register on each TCK
cycle. The first shift occurs on the first rising edge of TCK after entry to the Shift-IR state (i.e., no shifting occurs
during the TCK cycle in which the TAP controller changes from Capture-IR to Shift-IR or from Exit2-IR to
Shift-IR). The last shift occurs on the rising edge of TCK, upon which the T AP controller exits the Shift-IR state.
Exit1-IR, Exit2-IR
The Exit1-IR and Exit2-IR states are temporary states that end an instruction-register scan. It is possible to
return to the Shift-IR state from either Exit1-IR or Exit2-IR without recapturing the instruction register.
On the first falling edge of TCK after entry to Exit1-IR, TDO goes from the active state to the
high-impedance state.
Pause-IR
No specific function is performed in the stable Pause-IR state, in which the TAP controller can remain
indefinitely. The Pause-IR state suspends and resumes instruction-register scan operations without loss
of data.
Update-IR
The current instruction is updated and takes effect on the falling edge of TCK, following entry to the
Update-IR state.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
7
Page 8
SN54ABT8952, SN74ABT8952
SCAN TEST DEVICES WITH
OCTAL REGISTERED BUS TRANSCEIVERS
SCBS121D – AUGUST 1992 – REVISED JUL Y 1996
register overview
With the exception of the bypass register, any test register can be thought of as a serial-shift register with a
shadow latch on each bit. The bypass register differs in that it contains only a shift register. During the
appropriate capture state (Capture-IR for instruction register, Capture-DR for data registers), the shift register
can be parallel loaded from a source specified by the current instruction. During the appropriate shift state
(Shift-IR or Shift-DR), the contents of the shift register are shifted out from TDO while new contents are shifted
in at TDI. During the appropriate update state (Update-IR or Update-DR), the shadow latches are updated from
the shift register.
instruction register description
The instruction register (IR) is eight bits long and tells the device what instruction is to be executed. Information
contained in the instruction includes the mode of operation (either normal mode, in which the device performs
its normal logic function, or test mode, in which the normal logic function is inhibited or altered), the test operation
to be performed, which of the three data registers is to be selected for inclusion in the scan path during
data-register scans, and the source of data to be captured into the selected data register during Capture-DR.
T able 3 lists the instructions supported by the ’ABT8952. The even-parity feature specified for SCOPE devices
is supported in this device. Bit 7 of the instruction opcode is the parity bit. Any instructions that are defined for
SCOPE devices but are not supported by this device default to BYPASS.
During Capture-IR, the IR captures the binary value 10000001. As an instruction is shifted in, this value is shifted
out via TDO and can be inspected as verification that the IR is in the scan path. During Update-IR, the value
that has been shifted into the IR is loaded into shadow latches. At this time, the current instruction is updated,
and any specified mode change takes effect. At power up or in the Test-Logic-Reset state, the IR is reset to the
binary value 11111111, which selects the BYPASS instruction. The IR order of scan is shown in Figure 2.
Bit 7
Parity
(MSB)
Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1
Bit 0
(LSB)
TDOTDI
Figure 2. Instruction Register Order of Scan
8
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Page 9
SN54ABT8952, SN74ABT8952
SCAN TEST DEVICES WITH
OCTAL REGISTERED BUS TRANSCEIVERS
SCBS121D – AUGUST 1992 – REVISED JUL Y 1996
data register description
boundary-scan register
The boundary-scan register (BSR) is 38 bits long. It contains one boundary-scan cell (BSC) for each
normal-function input pin and two BSCs for each normal-function I/O pin (one for input data and one for output
data). The BSR is used 1) to store test data that is to be applied internally to the inputs of the normal on-chip
logic and/or externally to the device output pins, and/or 2) to capture data that appears internally at the outputs
of the normal on-chip logic and/or externally at the device input pins.
The source of data to be captured into the BSR during Capture-DR is determined by the current instruction. The
contents of the BSR can change during Run-Test/Idle as determined by the current instruction. At power up or
in Test-Logic-Reset, the value of each BSC is reset to logic 0 except BSCs 37–36, which are reset to logic 1.
The BSR order of scan is from TDI through bits 37–0 to TDO. T able 1 shows the BSR bits and their associated
device pin signals.
SN54ABT8952, SN74ABT8952
SCAN TEST DEVICES WITH
OCTAL REGISTERED BUS TRANSCEIVERS
SCBS121D – AUGUST 1992 – REVISED JUL Y 1996
boundary-control register
The boundary-control register (BCR) is 1 1 bits long. The BCR is used in the context of the RUNT instruction to
implement additional test operations not included in the basic SCOPE instruction set. Such operations include
PRPG, PSA with input masking, and binary count up (COUNT). Table 4 shows the test operations that are
decoded by the BCR.
During Capture-DR, the contents of the BCR are not changed. At power up or in Test-Logic-Reset, the BCR is
reset to the binary value 00000000010, which selects the PSA test operation with no input masking.
The BCR order of scan is from TDI through bits 10–0 to TDO. T able 2 shows the BCR bits and their associated
test control signals.
The bypass register is a 1-bit scan path that can be selected to shorten the length of the system scan path,
thereby reducing the number of bits per test pattern that must be applied to complete a test operation.
During Capture-DR, the bypass register captures a logic 0. The bypass register order of scan is shown in
Figure 3.
Bit 0
TDOTDI
Figure 3. Bypass Register Order of Scan
10
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Page 11
SN54ABT8952, SN74ABT8952
SCAN TEST DEVICES WITH
OCTAL REGISTERED BUS TRANSCEIVERS
SCBS121D – AUGUST 1992 – REVISED JUL Y 1996
instruction-register opcode description
The instruction-register opcodes are shown in Table 3. The following descriptions detail the operation of
each instruction.
Table 3. Instruction-Register Opcodes
BINARY CODE
BIT 7 → BIT 0
MSB → LSB
00000000EXTEST/INTESTBoundary scanBoundary scanTest
10000001BYPASS
10000010SAMPLE/PRELOADSample boundaryBoundary scanNormal
0000001 1INTEST/EXTESTBoundary scanBoundary scanTest
10000100BYPASS
00000101BYPASS
00000110HIGHZControl boundary to high impedanceBypassModified test
100001 11CLAMPControl boundary to 1/0BypassTest
10001000BYPASS
00001001RUNTBoundary run testBypassTest
00001010READBNBoundary readBoundary scanNormal
1000101 1READBTBoundary readBoundary scanTest
00001 100CELLTSTBoundary self testBoundary scanNormal
10001 101TOPHIPBoundary toggle outputsBypassTest
10001 110SCANCNBoundary-control register scanBoundary controlNormal
00001 111SCANCTBoundary-control register scanBoundary controlTest
All othersBYP ASSBypass scanBypassNormal
†
Bit 7 is used to maintain even parity in the 8-bit instruction.
‡
The BYPASS instruction is executed in lieu of a SCOPE instruction that is not supported in the ’ABT8952.
†
SCOPE OPCODEDESCRIPTION
‡
‡
‡
‡
SELECTED DATA
REGISTER
Bypass scanBypassNormal
Bypass scanBypassNormal
Bypass scanBypassNormal
Bypass scanBypassNormal
MODE
boundary scan
This instruction conforms to the IEEE Standard 1149.1-1990 EXTEST and INTEST instructions. The BSR is
selected in the scan path. Data appearing at the device input pins is captured in the input BSCs, while data
appearing at the outputs of the normal on-chip logic is captured in the output BSCs. Data that has been scanned
into the input BSCs is applied to the inputs of the normal on-chip logic, while data that has been scanned into
the output BSCs is applied to the device output pins. The device operates in the test mode.
bypass scan
This instruction conforms to the IEEE Standard 1149.1-1990 BYPASS instruction. The bypass register is
selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. The device
operates in the normal mode.
sample boundary
This instruction conforms to the IEEE Standard 1149.1-1990 SAMPLE/PRELOAD instruction. The BSR is
selected in the scan path. Data appearing at the device input pins is captured in the input BSCs, while data
appearing at the outputs of the normal on-chip logic is captured in the output BSCs. The device operates in the
normal mode.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
11
Page 12
SN54ABT8952, SN74ABT8952
SCAN TEST DEVICES WITH
OCTAL REGISTERED BUS TRANSCEIVERS
SCBS121D – AUGUST 1992 – REVISED JUL Y 1996
control boundary to high impedance
This instruction conforms to the IEEE Standard 1149.1a-1993 HIGHZ instruction. The bypass register is
selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. The device
operates in a modified test mode in which all device I/O pins are placed in the high-impedance state, the device
input pins remain operational, and the normal on-chip logic function is performed.
control boundary to 1/0
This instruction conforms to the IEEE Standard 1149.1a-1993 CLAMP instruction. The bypass register is
selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. Data in the input
BSCs is applied to the inputs of the normal on-chip logic, while data in the output BSCs is applied to the device
output pins. The device operates in the test mode.
boundary run test
The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during
Capture-DR. The device operates in the test mode. The test operation specified in the BCR is executed during
Run-Test/Idle. The five test operations decoded by the BCR are: sample inputs/toggle outputs (TOPSIP),
PRPG, PSA, simultaneous PSA and PRPG (PSA/PRPG), and simultaneous PSA and binary count up
(PSA/COUNT).
boundary read
The BSR is selected in the scan path. The value in the BSR remains unchanged during Capture-DR. This
instruction is useful for inspecting data after a PSA operation.
boundary self test
The BSR is selected in the scan path. All BSCs capture the inverse of their current values during Capture-DR.
In this way , the contents of the shadow latches can be read out to verify the integrity of both shift-register and
shadow-latch elements of the BSR. The device operates in the normal mode.
boundary toggle outputs
The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during
Capture-DR. Data in the shift-register elements of the selected output BSCs is toggled on each rising edge of
TCK in Run-T est/Idle, updated in the shadow latches, and applied to the associated device output pins on each
falling edge of TCK in Run-Test/Idle. Data in the selected input BSCs remains constant and is applied to the
inputs of the normal on-chip logic. Data appearing at the device input pins is not captured in the input BSCs.
The device operates in the test mode.
boundary-control-register scan
The BCR is selected in the scan path. The value in the BCR remains unchanged during Capture-DR. This
operation must be performed before a boundary run test operation to specify which test operation is to be
executed.
12
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Page 13
SN54ABT8952, SN74ABT8952
SCAN TEST DEVICES WITH
OCTAL REGISTERED BUS TRANSCEIVERS
SCBS121D – AUGUST 1992 – REVISED JUL Y 1996
boundary-control register opcode description
The BCR opcodes are decoded from BCR bits 2–0 as shown in T able 4. The selected test operation is performed
while the RUNT instruction is executed in the Run-T est/Idle state. The following descriptions detail the operation
of each BCR instruction and illustrate the associated PSA and PRPG algorithms.
011Simultaneous PSA and PRPG/8-bit mode (PSA/PRPG)
111Simultaneous PSA and binary count up/8-bit mode (PSA/COUNT)
In general, while the control input BSCs (bits 37–32) are not included in the sample, toggle, PSA, PRPG, or
COUNT algorithms, the output-enable BSCs (bits 37–36 of the BSR) do control the drive state (active or high
impedance) of the selected device output pins. These BCR instructions are valid only when the device is
operating in one direction of data flow (that is, OEAB ≠OEBA). Otherwise, the bypass instruction is operated.
DESCRIPTION
PSA input masking
Bits 10–3 of the BCR specify device input pins to be masked from PSA operations. Bit 10 selects masking for
device input pin A8 during A-to-B data flow or for device input pin B8 during B-to-A data flow. Bit 3 selects
masking for device input pins A1 or B1 during A-to-B or B-to-A data flow, respectively. Bits intermediate to 10
and 3 mask corresponding device input pins in order from most significant to least significant, as indicated in
Table 3. When the mask bit that corresponds to a particular device input has a logic 1 value, the device input
pin is masked from any PSA operation, i.e., that the state of the device input pin is ignored and has no effect
on the generated signature. Otherwise, when a mask bit has a logic 0 value, the corresponding device input
is not masked from the PSA operation.
sample inputs/toggle outputs (TOPSIP)
Data appearing at the selected device input pins is captured in the shift-register elements of the selected BSCs
on each rising edge of TCK. This data is updated in the shadow latches of the selected input BSCs and applied
to the inputs of the normal on-chip logic. Data in the shift-register elements of the selected output BSCs is
toggled on each rising edge of TCK, updated in the shadow latches, and applied to the associated device output
pins on each falling edge of TCK.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
13
Page 14
SN54ABT8952, SN74ABT8952
SCAN TEST DEVICES WITH
OCTAL REGISTERED BUS TRANSCEIVERS
SCBS121D – AUGUST 1992 – REVISED JUL Y 1996
pseudo-random pattern generation (PRPG)
A pseudo-random pattern is generated in the shift-register elements of the selected BSCs on each rising edge
of TCK, updated in the shadow latches, and applied to the associated device output pins on each falling edge
of TCK. This data also is updated in the shadow latches of the selected input BSCs and applied to the inputs
of the normal on-chip logic. Figures 4 and 5 illustrate the 16-bit linear-feedback shift-register algorithms through
which the patterns are generated. An initial seed value should be scanned into the BSR before performing this
operation. A seed value of all zeroes does not produce additional patterns.
Data appearing at the selected device input pins is compressed into a 16-bit parallel signature in the
shift-register elements of the selected BSCs on each rising edge of TCK. This data is updated in the shadow
latches of the selected input BSCs and applied to the inputs of the normal on-chip logic. Data in the shadow
latches of the selected output BSCs remains constant and is applied to the device outputs. Figures 6 and 7
illustrate the 16-bit linear-feedback shift-register algorithms through which the signature is generated. An initial
seed value should be scanned into the BSR before performing this operation.
SN54ABT8952, SN74ABT8952
SCAN TEST DEVICES WITH
OCTAL REGISTERED BUS TRANSCEIVERS
SCBS121D – AUGUST 1992 – REVISED JUL Y 1996
simultaneous PSA and PRPG (PSA/PRPG)
Data appearing at the selected device input pins is compressed into an 8-bit parallel signature in the
shift-register elements of the selected input BSCs on each rising edge of TCK. This data is updated in the
shadow latches of the selected input BSCs and applied to the inputs of the normal on-chip logic. At the same
time, an 8-bit pseudo-random pattern is generated in the shift-register elements of the selected output BSCs
on each rising edge of TCK, updated in the shadow latches, and applied to the associated device output pins
on each falling edge of TCK. Figures 8 and 9 illustrate the 8-bit linear-feedback shift-register algorithms through
which the signature and patterns are generated. An initial seed value should be scanned into the BSR before
performing this operation. A seed value of all zeroes does not produce additional patterns.
Data appearing at the selected device input pins is compressed into an 8-bit parallel signature in the
shift-register elements of the selected input BSCs on each rising edge of TCK. This data is updated in the
shadow latches of the selected input BSCs and applied to the inputs of the normal on-chip logic. At the same
time, an 8-bit binary count-up pattern is generated in the shift-register elements of the selected output BSCs
on each rising edge of TCK, updated in the shadow latches, and applied to the associated device output pins
on each falling edge of TCK. In addition, the shift-register elements of the opposite output BSCs count carries
out of the selected output BSCs extending the count to 16 bits. Figures 10 and 11 illustrate the 8-bit
linear-feedback shift-register algorithms through which the signature is generated. An initial seed value should
be scanned into the BSR before performing this operation.
SN54ABT8952, SN74ABT8952
SCAN TEST DEVICES WITH
OCTAL REGISTERED BUS TRANSCEIVERS
SCBS121D – AUGUST 1992 – REVISED JUL Y 1996
timing description
All test operations of the ’ABT8952 are synchronous to TCK. Data on the TDI, TMS, and normal-function inputs
is captured on the rising edge of TCK. Data appears on the TDO and normal-function output pins on the falling
edge of TCK. The T AP controller is advanced through its states (as shown in Figure 1) by changing the value
of TMS on the falling edge of TCK and then applying a rising edge to TCK.
A simple timing example is shown in Figure 12. In this example, the TAP controller begins in the
T est-Logic-Reset state and is advanced through its states as necessary to perform one instruction-register scan
and one data-register scan. While in the Shift-IR and Shift-DR states, TDI is used to input serial data, and TDO
is used to output serial data. The T AP controller is then returned to the Test-Logic-Reset state. Table 5 details
the operation of the test circuitry during each TCK cycle.
Table 5. Explanation of Timing Example
TCK
CYCLE(S)
1Test-Logic-Reset
2Run-Test/Idle
3Select-DR-Scan
4Select-IR-Scan
5Capture-IR
6Shift-IR
7–13Shift-IR
14Exit1-IRTDO becomes inactive (goes to the high-impedance state) on the falling edge of TCK.
15Update-IRThe IR is updated with the new instruction (BYPASS) on the falling edge of TCK.
16Select-DR-Scan
17Capture-DR
18Shift-DR
19–20Shift-DRThe binary value 101 is shifted in via TDI, while the binary value 010 is shifted out via TDO.
21Exit1-DRTDO becomes inactive (goes to the high-impedance state) on the falling edge of TCK.
22Update-DRIn general, the selected data register is updated with the new data on the falling edge of TCK.
23Select-DR-Scan
24Select-IR-Scan
25Test-Logic-ResetTest operation completed
TAP STATE
AFTER TCK
DESCRIPTION
TMS is changed to a logic 0 value on the falling edge of TCK to begin advancing the TAP controller toward
the desired state.
The IR captures the 8-bit binary value 10000001 on the rising edge of TCK as the TAP controller exits the
Capture-IR state.
TDO becomes active and TDI is made valid on the falling edge of TCK. The first bit is shifted into the TAP
on the rising edge of TCK as the TAP controller advances to the next state.
One bit is shifted into the IR on each TCK rising edge. With TDI held at a logic 1 value, the 8-bit binary value
11111111 is serially scanned into the IR. At the same time, the 8-bit binary value 10000001 is serially scanned
out of the IR via TDO. In TCK cycle 13, TMS is changed to a logic 1 value to end the IR scan on the next
TCK cycle. The last bit of the instruction is shifted as the TAP controller advances from Shift-IR to Exit1-IR.
The bypass register captures a logic 0 value on the rising edge of TCK as the TAP controller exits the
Capture-DR state.
TDO becomes active and TDI is made valid on the falling edge of TCK. The first bit is shifted into the TAP
on the rising edge of TCK as the TAP controller advances to the next state.
Maximum power dissipation at TA = 55°C (in still air) (see Note 2):DL package 0.7 W. . . . . . . . . . . . . . . . . . .
Storage temperature range, T
†
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.
For more information, refer to the
NOTE 3: Unused pins (input or I/O) must be held high or low to prevent them from floating.
PRODUCT PREVIEW information concerns products in the formative or
design phase of development. Characteristic data and other
specifications are design goals. Texas Instruments reserves the right to
change or discontinue these products without notice.
PRODUCT PREVIEW information concerns products in the formative or
design phase of development. Characteristic data and other
specifications are design goals. Texas Instruments reserves the right to
change or discontinue these products without notice.
20
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Page 21
UNIT
tsuSetup time
ns
thHold time
ns
UNIT
SN54ABT8952, SN74ABT8952
SCAN TEST DEVICES WITH
OCTAL REGISTERED BUS TRANSCEIVERS
SCBS121D – AUGUST 1992 – REVISED JUL Y 1996
timing requirements over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (normal mode) (see Figure 13)
SN54ABT8952SN74ABT8952
MINMAXMINMAX
f
clock
t
w
timing requirements over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (test mode) (see Figure 13)
f
clock
t
w
t
su
t
h
t
d
t
r
*On products compliant to MIL-PRF-38535, this parameter is not production tested.
Clock frequencyCLKAB or CLKBA01000100MHz
Pulse durationCLKAB or CLKBA high or low33ns
p
Clock frequencyTCK050050MHz
Pulse durationTCK high or low55ns
Setup time
Hold time
Delay timePower up to TCK↑50*50ns
Rise timeVCC power up1*1µs
A before CLKAB↑ or B before CLKBA↑4.54.5
CLKEN before CLK↑4.54.5
A after CLKAB↑ or B after CLKBA↑00
CLKEN after CLK↑00
SN54ABT8952SN74ABT8952
MINMAXMINMAX
A, B, CLK, CLKEN, or OE before TCK↑55
TDI before TCK↑
TMS before TCK↑66
A, B, CLK, CLKEN, or OE after TCK↑00
TDI after TCK↑
TMS after TCK↑00
66
00
ns
ns
PRODUCT PREVIEW information concerns products in the formative or
design phase of development. Characteristic data and other
specifications are design goals. Texas Instruments reserves the right to
change or discontinue these products without notice.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
21
Page 22
SN54ABT8952, SN74ABT8952
(INPUT)
(OUTPUT)
CLKAB or CLKBA
B or A
ns
OEAB
OEBA
B or A
ns
OEAB
OEBA
B or A
ns
(INPUT)
(OUTPUT)
TCK↓
A or B
ns
TCK↓
TDO
ns
TCK↓
A or B
ns
TCK↓
TDO
ns
TCK↓
A or B
ns
TCK↓
TDO
ns
SCAN TEST DEVICES WITH
OCTAL REGISTERED BUS TRANSCEIVERS
SCBS121D – AUGUST 1992 – REVISED JUL Y 1996
switching characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (normal mode) (see Figure 13)
VCC = 5 V,
TA = 25°C
MINTYPMAXMINMAXMINMAX
34.65.436.536.3
2.53.84.62.55.52.55.3
24.14.925.925.8
2.54.75.52.57.12.56.9
2.55.36.12.57.52.57.3
34.55.336.336.1
PARAMETER
f
max
t
PLH
t
PHL
t
PZH
t
PZL
t
PHZ
t
PLZ
FROM
CLKA or B100130100100MHz
or
or
TO
switching characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (test mode) (see Figure 13)
PRODUCT PREVIEW information concerns products in the formative or
design phase of development. Characteristic data and other
specifications are design goals. Texas Instruments reserves the right to
change or discontinue these products without notice.
22
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Page 23
From Output
Under Test
Input
CL = 50 pF
(see Note A)
1.5 V1.5 V
VOLTAGE WAVEFORMS
PULSE DURATION
500 Ω
LOAD CIRCUIT
t
w
SN54ABT8952, SN74ABT8952
SCAN TEST DEVICES WITH
OCTAL REGISTERED BUS TRANSCEIVERS
SCBS121D – AUGUST 1992 – REVISED JUL Y 1996
PARAMETER MEASUREMENT INFORMATION
7 V
500 Ω
S1
Open
GND
3 V
0 V
Timing Input
Data Input
TESTS1
t
PLH/tPHL
t
PLZ/tPZL
t
PHZ/tPZH
t
1.5 V1.5 V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
su
Open
Open
1.5 V
t
7 V
3 V
0 V
h
3 V
0 V
Input
t
PLH
Output
t
PHL
Output
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf≤ 2.5 ns.
D. The outputs are measured one at a time with one transition per measurement.
1.5 V1.5 V
1.5 V
VOLTAGE WAVEFORMS
Figure 13. Load Circuit and Voltage Waveforms
t
PHL
1.5 V
t
PLH
1.5 V1.5 V
3 V
0 V
V
V
V
V
OH
OL
OH
OL
Output
Control
Output
Waveform 1
S1 at 7 V
(see Note B)
Output
Waveform 2
S1 at Open
(see Note B)
1.5 V
t
PZL
t
PLZ
1.5 V
t
t
PZH
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
PHZ
1.5 V
VOLTAGE WAVEFORMS
1.5 V
VOL + 0.3 V
VOH – 0.3 V
3 V
0 V
3.5 V
V
OL
V
OH
[
0 V
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
23
Page 24
IMPORTANT NOTICE
T exas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty . Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICA TIONS USING SEMICONDUCT OR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICA TIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERST OOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright 1998, Texas Instruments Incorporated
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.