Datasheet SN74ABT8245DW, SN74ABT8245DWR, SNJ54ABT8245FK, SNJ54ABT8245JT Datasheet (Texas Instruments)

Page 1
SN54ABT8245, SN74ABT8245
SCAN TEST DEVICES
WITH OCTAL BUS TRANSCEIVERS
SCBS124D – AUGUST 1992 – REVISED DECEMBER 1996
D
SCOPE
D
Compatible With the IEEE Standard
Family of Testability Products
1149.1-1990 (JTAG) Test Access Port and Boundary-Scan Architecture
D
Functionally Equivalent to ’F245 and ’ABT245 in the Normal-Function Mode
D
SCOPE
Instruction Set:
– IEEE Standard 1149.1-1990 Required
Instructions, Optional INTEST, CLAMP, and HIGHZ
– Parallel-Signature Analysis at Inputs
With Masking Option
– Pseudo-Random Pattern Generation
From Outputs – Sample Inputs/Toggle Outputs – Binary Count From Outputs – Even-Parity Opcodes
D
Two Boundary-Scan Cells per I/O for Greater Flexibility
D
State-of-the-Art
EPIC-ΙΙB
BiCMOS Design
Significantly Reduces Power Dissipation
D
Package Options Include Plastic Small-Outline Packages (DW), Ceramic Chip Carriers(FK), and Standard Ceramic DIPs (JT)
description
The ’ABT8245 scan test devices with octal bus transceivers are members of the Texas Instru­ments SCOPE testability integrated-circuit family. This family of devices supports IEEE Standard 1 149.1-1990 boundary scan to facilitate testing of complex circuit-board assemblies. Scan access to the test circuitry is accomplished via the 4-wire test access port (TAP) interface.
SN54ABT8245 . . . JT PACKAGE
SN74ABT8245 . . . DW PACKAGE
SN54ABT8245 . . . FK PACKAGE
A2
A1 OE NC
DIR
B1
B2
NC – No internal connection
DIR
B1 B2 B3 B4
GND
B5 B6 B7
B8 TDO TMS
5 6 7 8 9 10 11
12
(TOP VIEW)
1 2 3 4 5 6 7 8 9 10 11 12
(TOP VIEW)
A3A4A5
4
321
13 14
B4
B3
24 23 22 21 20 19 18 17 16 15 14 13
CC
NC
VA6A7
28 27 26
15 16 17 18
B5B6B7
NC
GND
OE A1 A2 A3 A4 A5 V A6 A7 A8 TDI TCK
CC
25 24 23 22 21 20 19
A8 TDI TCK NC TMS TDO B8
In the normal mode, these devices are functionally equivalent to the ’F245 and ’ABT245 octal bus transceivers. The test circuitry can be activated by the T AP to take snapshot samples of the data appearing at the device pins or to perform a self test on the boundary-test cells. Activating the TAP in normal mode does not affect the functional operation of the SCOPE octal bus transceivers.
Data flow is controlled by the direction-control (DIR) and output-enable (OE
) inputs. Data transmission is allowed from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at DIR. The output-enable (OE
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
SCOPE and EPIC-ΙΙB are trademarks of Texas Instruments Incorporated.
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
) input can be used to disable the device so that the buses are effectively isolated.
Copyright 1996, Texas Instruments Incorporated
On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
1
Page 2
SN54ABT8245, SN74ABT8245
OPERATION
SCAN TEST DEVICES WITH OCTAL BUS TRANSCEIVERS
SCBS124D – AUGUST 1992 – REVISED DECEMBER 1996
description (continued)
In the test mode, the normal operation of the SCOPE bus transceivers is inhibited and the test circuitry is enabled to observe and control the I/O boundary of the device. When enabled, the test circuitry can perform boundary-scan test operations as described in IEEE Standard 1149.1-1990.
Four dedicated test pins control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry performs other testing functions such as parallel-signature analysis (PSA) on data inputs and pseudo-random pattern generation (PRPG) from data outputs. All testing and scan operations are synchronized to the TAP interface.
The SN54ABT8245 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ABT8245 is characterized for operation from –40°C to 85°C.
FUNCTION TABLE
(normal mode)
INPUTS
OE DIR
L L B data to A bus L H A data to B bus
H X Isolation
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Page 3
functional block diagram
24
OE
1
DIR
SN54ABT8245, SN74ABT8245
SCAN TEST DEVICES
WITH OCTAL BUS TRANSCEIVERS
SCBS124D – AUGUST 1992 – REVISED DECEMBER 1996
Boundary-Scan Register
23
A1 B1
One of Eight Channels
Bypass Register
Boundary-Control
Register
V
TDI
TMS
TCK
CC
14
V
CC
12
13
Controller
Instruction Register
TAP
11
2
TDO
Pin numbers shown are for the DW and JT packages.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
3
Page 4
SN54ABT8245, SN74ABT8245 SCAN TEST DEVICES WITH OCTAL BUS TRANSCEIVERS
SCBS124D – AUGUST 1992 – REVISED DECEMBER 1996
Terminal Functions
TERMINAL
NAME
A1–A8 Normal-function A-bus I/O ports. See function table for normal-mode logic. B1–B8 Normal-function B-bus I/O ports. See function table for normal-mode logic.
DIR Normal-function direction-control input. See function table for normal-mode logic.
GND Ground
OE Normal-function output-enable input. See function table for normal-mode logic.
TCK
TDI
TDO
TMS V
CC
T est clock. One of four terminals required by IEEE Standard 1 149.1-1990. Test operations of the device are synchronous to TCK. Data is captured on the rising edge of TCK and outputs change on the falling edge of TCK.
T est data input. One of four terminals required by IEEE Standard 1 149.1-1990. TDI is the serial input for shifting data through the instruction register or selected data register. An internal pullup forces TDI to a high level if left unconnected.
T est data output. One of four terminals required by IEEE Standard 1 149.1-1990. TDO is the serial output for shifting data through the instruction register or selected data register.
Test mode select. One of four terminals required by IEEE Standard 1149.1-1990. TMS input directs the device through its TAP controller states. An internal pullup forces TMS to a high level if left unconnected.
Supply voltage
DESCRIPTION
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Page 5
SN54ABT8245, SN74ABT8245
SCAN TEST DEVICES
WITH OCTAL BUS TRANSCEIVERS
SCBS124D – AUGUST 1992 – REVISED DECEMBER 1996
test architecture
Serial-test information is conveyed by means of a 4-wire test bus or TAP that conforms to IEEE Standard 1 149.1-1990. Test instructions, test data, and test control signals all are passed along this serial-test bus. The TAP controller monitors two signals from the test bus, TCK and TMS. The TAP controller extracts the synchronization (TCK) and state control (TMS) signals from the test bus and generates the appropriate on-chip control signals for the test structures in the device. Figure 1 shows the TAP-controller state diagram.
The T AP controller is fully synchronous to the TCK signal. Input data is captured on the rising edge of TCK and output data changes on the falling edge of TCK. This scheme ensures data to be captured is valid for fully one-half of the TCK cycle.
The functional block diagram shows the IEEE Standard 1149.1-1990 4-wire test bus and boundary-scan architecture and the relationship among the test bus, the T AP controller, and the test registers. As illustrated, the device contains an 8-bit instruction register and three test-data registers: a 36-bit boundary-scan register, an 11-bit boundary-control register, and a 1-bit bypass register.
Test-Logic-Reset
TMS = H
TMS = L
TMS = L
Run-Test/Idle Select-DR-Scan
TMS = L
Capture-DR
TMS = L
Shift-DR
TMS = L
TMS = H
TMS = H
Exit1-DR
TMS = L
Pause-DR
TMS = L
TMS = H
Exit2-DR
TMS = H
TMS = HTMS = H
TMS = H TMS = H
TMS = L
TMS = L
Select-IR-Scan
TMS = H
TMS = L
Capture-IR
TMS = L
Shift-IR
TMS = L
TMS = H
TMS = H
Exit1-IR
TMS = L
Pause-IR
TMS = L
TMS = H
Exit2-IR
TMS = H
Update-DR
TMS = LTMS = H
Figure 1. TAP-Controller State Diagram
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Update-IR
TMS = LTMS = H
5
Page 6
SN54ABT8245, SN74ABT8245 SCAN TEST DEVICES WITH OCTAL BUS TRANSCEIVERS
SCBS124D – AUGUST 1992 – REVISED DECEMBER 1996
state diagram description
The T AP controller is a synchronous finite state machine that provides test control signals throughout the device. The state diagram shown in Figure 1 is in accordance with IEEE Standard 1149.1-1990. The TAP controller proceeds through its states based on the level of TMS at the rising edge of TCK.
As illustrated, the T AP controller consists of 16 states. There are six stable states (indicated by a looping arrow in the state diagram) and ten unstable states. A stable state is a state the TAP controller can retain for consecutive TCK cycles. Any state that does not meet this criterion is an unstable state.
There are two main paths through the state diagram: one to access and control the selected data register and one to access and control the instruction register. Only one register can be accessed at a time.
Test-Logic-Reset
The device powers up in the T est-Logic-Reset state. In the stable Test-Logic-Reset state, the test logic is reset and is disabled so that the normal logic function of the device is performed. The instruction register is reset to an opcode that selects the optional IDCODE instruction, if supported, or the BYP ASS instruction. Certain data registers also can be reset to their power-up values.
The state machine is constructed such that the T AP controller returns to the Test-Logic-Reset state in no more than five TCK cycles if TMS is left high. The TMS pin has an internal pullup resistor that forces it high if left unconnected or if a board defect causes it to be open circuited.
For the ’ABT8245, the instruction register is reset to the binary value 11111111, which selects the BYPASS instruction. Each bit in the boundary-scan register is reset to logic 0. The boundary-control register is reset to the binary value 00000000010, which selects the PSA test operation with no input masking.
Run-Test/Idle
The T AP controller must pass through the Run-T est/Idle state (from T est-Logic-Reset) before executing any test operations. The Run-Test/Idle state can also be entered following data-register or instruction-register scans. Run-Test/Idle is a stable state in which the test logic can be actively running a test or can be idle.
The test operations selected by the boundary-control register are performed while the T AP controller is in the Run-Test/Idle state.
Select-DR-Scan, Select-lR-Scan
No specific function is performed in the Select-DR-Scan and Select-lR-Scan states, and the T AP controller exits either of these states on the next TCK cycle. These states allow the selection of either data-register scan or instruction-register scan.
Capture-DR
When a data register scan is selected, the TAP controller must pass through the Capture-DR state. In the Capture-DR state, the selected data register can capture a data value as specified by the current instruction. Such capture operations occur on the rising edge of TCK, upon which the T AP controller exits the Capture-DR state.
Shift-DR
Upon entry to the Shift-DR state, the data register is placed in the scan path between TDI and TDO and, on the first falling edge of TCK, TDO goes from the high-impedance state to an active state. TDO enables to the logic level present in the least-significant bit of the selected data register.
While in the stable Shift-DR state, data is serially shifted through the selected data register on each TCK cycle. The first shift occurs on the first rising edge of TCK after entry to the Shift-DR state (i.e., no shifting occurs during the TCK cycle in which the T AP controller changes from Capture-DR to Shift-DR or from Exit2-DR to Shift-DR). The last shift occurs on the rising edge of TCK, upon which the TAP controller exits the Shift-DR state.
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Page 7
SN54ABT8245, SN74ABT8245
SCAN TEST DEVICES
WITH OCTAL BUS TRANSCEIVERS
SCBS124D – AUGUST 1992 – REVISED DECEMBER 1996
Exit1-DR, Exit2-DR
The Exit1-DR and Exit2-DR states are temporary states end a data-register scan. It is possible to return to the Shift-DR state from either Exit1-DR or Exit2-DR without recapturing the data register.
On the first falling edge of TCK after entry to Exit1-DR, TDO goes from the active state to the high-impedance state.
Pause-DR
No specific function is performed in the stable Pause-DR state, in which the TAP controller can remain indefinitely. The Pause-DR state suspends and resumes data-register scan operations without loss of data.
Update-DR
If the current instruction calls for the selected data register to be updated with current data, then such update occurs on the falling edge of TCK following entry to the Update-DR state.
Capture-IR
When an instruction-register scan is selected, the TAP controller must pass through the Capture-IR state. In the Capture-IR state, the instruction register captures its current status value. This capture operation occurs on the rising edge of TCK, upon which the TAP controller exits the Capture-IR state.
For the ’ABT8245, the status value loaded in the Capture-IR state is the fixed binary value 10000001.
Shift-IR
Upon entry to the Shift-IR state, the instruction register is placed in the scan path between TDI and TDO and, on the first falling edge of TCK, TDO goes from the high-impedance state to an active state. TDO enables to the logic level present in the least-significant bit of the instruction register.
While in the stable Shift-IR state, instruction data is serially shifted through the instruction register on each TCK cycle. The first shift occurs on the first rising edge of TCK after entry to the Shift-IR state (i.e., no shifting occurs during the TCK cycle in which the TAP controller changes from Capture-IR to Shift-IR or from Exit2-IR to Shift-IR). The last shift occurs on the rising edge of TCK, upon which the T AP controller exits the Shift-IR state.
Exit1-IR, Exit2-IR
The Exit1-IR and Exit2-IR states are temporary states that end an instruction-register scan. It is possible to return to the Shift-IR state from either Exit1-IR or Exit2-IR without recapturing the instruction register.
On the first falling edge of TCK after entry to Exit1-IR, TDO goes from the active state to the high-impedance state.
Pause-IR
No specific function is performed in the stable Pause-IR state, in which the TAP controller can remain indefinitely. The Pause-IR state suspends and resumes instruction-register scan operations without loss of data.
Update-IR
The current instruction is updated and takes effect on the falling edge of TCK following entry to the Update-IR state.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
7
Page 8
SN54ABT8245, SN74ABT8245 SCAN TEST DEVICES WITH OCTAL BUS TRANSCEIVERS
SCBS124D – AUGUST 1992 – REVISED DECEMBER 1996
register overview
With the exception of the bypass register, any test register can be thought of as a serial-shift register with a shadow latch on each bit. The bypass register differs in that it contains only a shift register. During the appropriate capture state (Capture-IR for instruction register, Capture-DR for data registers), the shift register can be parallel loaded from a source specified by the current instruction. During the appropriate shift state (Shift-IR or Shift-DR), the contents of the shift register are shifted out from TDO while new contents are shifted in at TDI. During the appropriate update state (Update-IR or Update-DR), the shadow latches are updated from the shift register.
instruction register description
The instruction register (IR) is eight bits long and tells the device what instruction is to be executed. Information contained in the instruction includes the mode of operation (either normal mode, in which the device performs its normal logic function, or test mode, in which the normal logic function is inhibited or altered), the test operation to be performed, which of the three data registers is to be selected for inclusion in the scan path during data-register scans, and the source of data to be captured into the selected data register during Capture-DR.
T able 3 lists the instructions supported by the ’ABT8245. The even-parity feature specified for SCOPE devices is supported in this device. Bit 7 of the instruction opcode is the parity bit. Any instructions that are defined for SCOPE devices but are not supported by this device default to BYPASS.
During Capture-IR, the IR captures the binary value 10000001. As an instruction is shifted in, this value is shifted out via TDO and can be inspected as verification that the IR is in the scan path. During Update-IR, the value that has been shifted into the IR is loaded into shadow latches. At this time, the current instruction is updated, and any specified mode change takes effect. At power up or in the Test-Logic-Reset state, the IR is reset to the binary value 11111111, which selects the BYPASS instruction.
The IR order of scan is shown in Figure 2.
Bit 7 Parity (MSB)
Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1
Bit 0
(LSB)
TDOTDI
Figure 2. Instruction Register Order of Scan
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Page 9
SN54ABT8245, SN74ABT8245
SCAN TEST DEVICES
WITH OCTAL BUS TRANSCEIVERS
SCBS124D – AUGUST 1992 – REVISED DECEMBER 1996
data register description
boundary-scan register
The boundary-scan register (BSR) is 36 bits long. It contains one boundary-scan cell (BSC) for each normal-function input pin, two BSCs for each normal-function I/O pin (one for input data and one for output data), and one BSC for each of the internally decoded output-enable signals (OEA and OEB). The BSR is used 1) to store test data that is to be applied internally to the inputs of the normal on-chip logic and/or externally to the device output pins, and/or 2) to capture data that appears internally at the outputs of the normal on-chip logic and/or externally at the device input pins.
The source of data to be captured into the BSR during Capture-DR is determined by the current instruction. The contents of the BSR can change during Run-Test/Idle as determined by the current instruction. At power up or in Test-Logic-Reset, the value of each BSC is reset to logic 0.
When external data is to be captured, the BSCs for signals OEA and OEB capture logic values determined by the following positive-logic equations:
OEA = OE
externally, these BSCs control the drive state (active or high-impedance) of their respective outputs. The BSR order of scan is from TDI through bits 35–0 to TDO. T able 1 shows the BSR bits and their associated
device pin signals.
DIR, and OEB = OE DIR
. When data is to be applied
Table 1. Boundary-Scan Register Configuration
BSR BIT
NUMBER
35 OEB 31 B8-I 23 B8-O 15 A8-I 7 A8-O 34 OEA 30 B7-I 22 B7-O 14 A7-I 6 A7-O 33 DIR 29 B6-I 21 B6-O 13 A6-I 5 A6-O 32 OE 28 B5-I 20 B5-O 12 A5-I 4 A5-O –– –– 27 B4-I 19 B4-O 11 A4-I 3 A4-O –– –– 26 B3-I 18 B3-O 10 A3-I 2 A3-O –– –– 25 B2-I 17 B2-O 9 A2-I 1 A2-O –– –– 24 B1-I 16 B1-O 8 A1-I 0 A1-O
DEVICE
SIGNAL
BSR BIT
NUMBER
DEVICE
SIGNAL
BSR BIT
NUMBER
DEVICE
SIGNAL
BSR BIT
NUMBER
DEVICE
SIGNAL
BSR BIT
NUMBER
DEVICE
SIGNAL
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
9
Page 10
SN54ABT8245, SN74ABT8245 SCAN TEST DEVICES WITH OCTAL BUS TRANSCEIVERS
SCBS124D – AUGUST 1992 – REVISED DECEMBER 1996
boundary-control register
The boundary-control register (BCR) is 1 1 bits long. The BCR is used in the context of the RUNT instruction to implement additional test operations not included in the basic SCOPE instruction set. Such operations include PRPG, PSA with input masking, and binary count up (COUNT). Table 4 shows the test operations decoded by the BCR.
During Capture-DR, the contents of the BCR are not changed. At power up or in Test-Logic-Reset, the BCR is reset to the binary value 00000000010, which selects the PSA test operation with no input masking.
The BCR order of scan is from TDI through bits 10–0 to TDO. T able 2 shows the BCR bits and their associated test control signals.
Table 2. Boundary-Control Register Configuration
BCR BIT
NUMBER
10 MASK8 6 MASK4 2 OPCODE2
9 MASK7 5 MASK3 1 OPCODE1 8 MASK6 4 MASK2 0 OPCODE0 7 MASK5 3 MASK1 –– ––
TEST
CONTROL
SIGNAL
BCR BIT
NUMBER
TEST
CONTROL
SIGNAL
BCR BIT
NUMBER
TEST
CONTROL
SIGNAL
bypass register
The bypass register is a 1-bit scan path that can be selected to shorten the length of the system scan path, thereby reducing the number of bits per test pattern that must be applied to complete a test operation.
During Capture-DR, the bypass register captures a logic 0. The bypass register order of scan is shown in Figure 3.
Bit 0
TDOTDI
Figure 3. Bypass Register Order of Scan
10
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Page 11
SN54ABT8245, SN74ABT8245
SCAN TEST DEVICES
WITH OCTAL BUS TRANSCEIVERS
SCBS124D – AUGUST 1992 – REVISED DECEMBER 1996
instruction-register opcode description
The instruction-register opcodes are shown in Table 3. The following descriptions detail the operation of each instruction.
Table 3. Instruction-Register Opcodes
BINARY CODE
BIT 7 BIT 0
MSB LSB
00000000 EXTEST/INTEST Boundary scan Boundary scan Test 10000001 BYPASS 10000010 SAMPLE/PRELOAD Sample boundary Boundary scan Normal 0000001 1 INTEST/EXTEST Boundary scan Boundary scan Test 10000100 BYPASS 00000101 BYPASS 00000110 HIGHZ Control boundary to high impedance Bypass Modified test 100001 11 CLAMP Control boundary to 1/0 Bypass Test 10001000 BYPASS 00001001 RUNT Boundary run test Bypass Test 00001010 READBN Boundary read Boundary scan Normal 1000101 1 READBT Boundary read Boundary scan Test 00001 100 CELLTST Boundary self test Boundary scan Normal 10001 101 TOPHIP Boundary toggle outputs Bypass Test 10001 110 SCANCN Boundary-control register scan Boundary control Normal 00001 111 SCANCT Boundary-control register scan Boundary control Test All others BYP ASS Bypass scan Bypass Normal
Bit 7 is used to maintain even parity in the 8-bit instruction.
The BYPASS instruction is executed in lieu of a SCOPE instruction that is not supported in the ’ABT8245.
SCOPE OPCODE DESCRIPTION
‡ ‡
SELECTED DATA
REGISTER
Bypass scan Bypass Normal
Bypass scan Bypass Normal Bypass scan Bypass Normal
Bypass scan Bypass Normal
MODE
boundary scan
This instruction conforms to the IEEE Standard 1149.1-1990 EXTEST and INTEST instructions. The BSR is selected in the scan path. Data appearing at the device input pins is captured in the input BSCs, while data appearing at the outputs of the normal on-chip logic is captured in the output BSCs. Data that has been scanned into the input BSCs is applied to the inputs of the normal on-chip logic, while data that has been scanned into the output BSCs is applied to the device output pins. The device operates in the test mode.
bypass scan
This instruction conforms to the IEEE Standard 1149.1-1990 BYPASS instruction. The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. The device operates in the normal mode.
sample boundary
This instruction conforms to the IEEE Standard 1149.1-1990 SAMPLE/PRELOAD instruction. The BSR is selected in the scan path. Data appearing at the device input pins is captured in the input BSCs, while data appearing at the outputs of the normal on-chip logic is captured in the output BSCs. The device operates in the normal mode.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
11
Page 12
SN54ABT8245, SN74ABT8245 SCAN TEST DEVICES WITH OCTAL BUS TRANSCEIVERS
SCBS124D – AUGUST 1992 – REVISED DECEMBER 1996
control boundary to high impedance
This instruction conforms to the IEEE Standard 1149.1a-1993 HIGHZ instruction. The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. The device operates in a modified test mode in which all device I/O pins are placed in the high-impedance state, the device input pins remain operational, and the normal on-chip logic function is performed.
control boundary to 1/0
This instruction conforms to the IEEE Standard 1149.1a-1993 CLAMP instruction. The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. Data in the input BSCs is applied to the inputs of the normal on-chip logic, while data in the output BSCs is applied to the device output pins. The device operates in the test mode.
boundary run test
The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. The device operates in the test mode. The test operation specified in the BCR is executed during Run-Test/Idle. The five test operations decoded by the BCR are: sample inputs/toggle outputs (TOPSIP), PRPG, PSA, simultaneous PSA and PRPG (PSA/PRPG), and simultaneous PSA and binary count up (PSA/COUNT).
boundary read
The BSR is selected in the scan path. The value in the BSR remains unchanged during Capture-DR. This instruction is useful for inspecting data after a PSA operation.
boundary self test
The BSR is selected in the scan path. All BSCs capture the inverse of their current values during Capture-DR. In this way , the contents of the shadow latches can be read out to verify the integrity of both shift-register and shadow-latch elements of the BSR. The device operates in the normal mode.
boundary toggle outputs
The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. Data in the shift-register elements of the selected output BSCs is toggled on each rising edge of TCK in Run-T est/Idle, updated in the shadow latches, and applied to the associated device output pins on each falling edge of TCK in Run-Test/Idle. Data in the selected input BSCs remains constant and is applied to the inputs of the normal on-chip logic. Data appearing at the device input pins is not captured in the input BSCs. The device operates in the test mode.
boundary-control register scan
The BCR is selected in the scan path. The value in the boundary-control register remains unchanged during Capture-DR. This operation must be performed before a boundary run test operation to specify which test operation is to be executed.
12
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Page 13
SN54ABT8245, SN74ABT8245
SCAN TEST DEVICES
WITH OCTAL BUS TRANSCEIVERS
SCBS124D – AUGUST 1992 – REVISED DECEMBER 1996
boundary-control-register opcode description
The BCR opcodes are decoded from BCR bits 2 – 0 as shown in Table 4. The selected test operation is performed while the RUNT instruction is executed in the Run-Test/Idle state. The following descriptions detail the operation of each BCR instruction and illustrate the associated PSA and PRPG algorithms.
Table 4. Boundary-Control Register Opcodes
BINARY CODE
BIT 2 BIT 0
MSB LSB
X00 Sample inputs/toggle outputs (TOPSIP) X01 Pseudo-random pattern generation/16-bit mode (PRPG) X10 Parallel-signature analysis/16-bit mode (PSA)
011 Simultaneous PSA and PRPG/8-bit mode (PSA/PRPG) 111 Simultaneous PSA and binary count up/8-bit mode (PSA/COUNT)
It should be noted, in general, that while the control input BSCs (bits 35–32) are not included in the sample, toggle, PSA, PRPG, or COUNT algorithms, the output-enable BSCs (bits 35–34 of the BSR) do control the drive state (active or high impedance) of the selected device output pins. It also should be noted that these BCR instructions are only valid when the device is operating in one direction of data flow (that is, OEA ≠ OEB). Otherwise, the bypass instruction is operated.
DESCRIPTION
PSA input masking
Bits 10–3 of the BCR specify device input pins to be masked from PSA operations. Bit 10 selects masking for device input pin A8 during A-to-B data flow or for device input pin B8 during B-to-A data flow. Bit 3 selects masking for device input pins A1 or B1 during A-to-B or B-to-A data flow, respectively. Bits intermediate to 10 and 3 mask corresponding device input pins, in order, from most significant to least significant, as indicated in Table 3. When the mask bit that corresponds to a particular device input has a logic 1 value, the device input pin is masked from any PSA operation, meaning that the state of the device input pin is ignored and has no effect on the generated signature. Otherwise, when a mask bit has a logic 0 value, the corresponding device input is not masked from the PSA operation.
sample inputs/toggle outputs (TOPSIP)
Data appearing at the selected device input pins is captured in the shift-register elements of the selected BSCs on each rising edge of TCK. This data is updated in the shadow latches of the selected input BSCs and applied to the inputs of the normal on-chip logic. Data in the shift-register elements of the selected output BSCs is toggled on each rising edge of TCK, updated in the shadow latches, and applied to the associated device output pins on each falling edge of TCK.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
13
Page 14
SN54ABT8245, SN74ABT8245 SCAN TEST DEVICES WITH OCTAL BUS TRANSCEIVERS
SCBS124D – AUGUST 1992 – REVISED DECEMBER 1996
pseudo-random pattern generation (PRPG)
A pseudo-random pattern is generated in the shift-register elements of the selected BSCs on each rising edge of TCK, updated in the shadow latches, and applied to the associated device output pins on each falling edge of TCK. This data also is updated in the shadow latches of the selected input BSCs and, thereby , applied to the inputs of the normal on-chip logic. Figures 4 and 5 illustrate the 16-bit linear-feedback shift-register algorithms through which the patterns are generated. An initial seed value should be scanned into the BSR before performing this operation. Note that a seed value of all zeroes does not produce additional patterns.
A8-I
A7-I A6-I A5-I A4-I A3-I A2-I A1-I
=
B8-O
B7-O B6-O B5-O B4-O B3-O B2-O B1-O
Figure 4. 16-Bit PRPG Configuration (OEA = 0, OEB = 1)
B8-I
=
A8-O
B7-I B6-I B5-I B4-I B3-I B2-I B1-I
A7-O A6-O A5-O A4-O A3-O A2-O A1-O
Figure 5. 16-Bit PRPG Configuration (OEA=1, OEB= 0)
14
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Page 15
SN54ABT8245, SN74ABT8245
SCAN TEST DEVICES
WITH OCTAL BUS TRANSCEIVERS
SCBS124D – AUGUST 1992 – REVISED DECEMBER 1996
parallel-signature analysis (PSA)
Data appearing at the selected device input pins is compressed into a 16-bit parallel signature in the shift-register elements of the selected BSCs on each rising edge of TCK. This data is then updated in the shadow latches of the selected input BSCs and applied to the inputs of the normal on-chip logic. Data in the shadow latches of the selected output BSCs remains constant and is applied to the device outputs. Figures 6 and 7 illustrate the 16-bit linear-feedback shift-register algorithms through which the signature is generated. An initial seed value should be scanned into the BSR before performing this operation.
=
=
=
MASKX
MASKX
A8-I
B8-O
A7-I A6-I A5-I A4-I A3-I A2-I A1-I
B7-O B6-O B5-O B4-O B3-O B2-O B1-O
Figure 6. 16-Bit PSA Configuration (OEA = 0, OEB = 1)
B8-I
B7-I B6-I B5-I B4-I B3-I B2-I B1-I
=
A8-O
A7-O A6-O A5-O A4-O A3-O A2-O A1-O
Figure 7. 16-Bit PSA Configuration (OEA = 1, OEB = 0)
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
15
Page 16
SN54ABT8245, SN74ABT8245 SCAN TEST DEVICES WITH OCTAL BUS TRANSCEIVERS
SCBS124D – AUGUST 1992 – REVISED DECEMBER 1996
simultaneous PSA and PRPG (PSA/PRPG)
Data appearing at the selected device input pins is compressed into an 8-bit parallel signature in the shift-register elements of the selected input BSCs on each rising edge of TCK. This data is then updated in the shadow latches of the selected input BSCs and applied to the inputs of the normal on-chip logic. At the same time, an 8-bit pseudo-random pattern is generated in the shift-register elements of the selected output BSCs on each rising edge of TCK, updated in the shadow latches, and applied to the associated device output pins on each falling edge of TCK. Figures 8 and 9 illustrate the 8-bit linear-feedback shift-register algorithms through which the signature and patterns are generated. An initial seed value should be scanned into the BSR before performing this operation. Note that a seed value of all zeroes does not produce additional patterns.
A8-I
MASKX
=
A7-I A6-I A5-I A4-I A3-I A2-I A1-I
=
=
=
MASKX
B8-O
B7-O B6-O B5-O B4-O B3-O B2-O B1-O
Figure 8. 8-Bit PSA/PRPG Configuration (OEA = 0, OEB = 1)
B8-I
A8-O
B7-I B6-I B5-I B4-I B3-I B2-I B1-I
A7-O A6-O A5-O A4-O A3-O A2-O A1-O
Figure 9. 8-Bit PSA/PRPG Configuration (OEA = 1, OEB = 0)
16
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Page 17
SN54ABT8245, SN74ABT8245
SCAN TEST DEVICES
WITH OCTAL BUS TRANSCEIVERS
SCBS124D – AUGUST 1992 – REVISED DECEMBER 1996
simultaneous PSA and binary count up (PSA/COUNT)
Data appearing at the selected device input pins is compressed into an 8-bit parallel signature in the shift-register elements of the selected input BSCs on each rising edge of TCK. This data is then updated in the shadow latches of the selected input BSCs and applied to the inputs of the normal on-chip logic. At the same time, an 8-bit binary count-up pattern is generated in the shift-register elements of the selected output BSCs on each rising edge of TCK, updated in the shadow latches, and applied to the associated device output pins on each falling edge of TCK. In addition, the shift-register elements of the opposite output BSCs are used to count carries out of the selected output BSCs and, thereby, extend the count to 16 bits. Figures 10 and 11 illustrate the 8-bit linear-feedback shift-register algorithms through which the signature is generated. An initial seed value should be scanned into the BSR before performing this operation.
A8-I
MASKX
A7-I A6-I A5-I A4-I A3-I A2-I A1-I
=
=
=
=
MASKX
MSB LSB
B8-O
B7-O B6-O B5-O B4-O B3-O B2-O B1-O
Figure 10. 8-Bit PSA/COUNT Configuration (OEA = 0, OEB = 1)
B8-I
MSB LSB
A8-O
B7-I B6-I B5-I B4-I B3-I B2-I B1-I
A7-O A6-O A5-O A4-O A3-O A2-O A1-O
Figure 11. 8-Bit PSA/COUNT Configuration (OEA = 1, OEB = 0)
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
17
Page 18
SN54ABT8245, SN74ABT8245 SCAN TEST DEVICES WITH OCTAL BUS TRANSCEIVERS
SCBS124D – AUGUST 1992 – REVISED DECEMBER 1996
timing description
All test operations of the ’ABT8245 are synchronous to TCK. Data on the TDI, TMS, and normal-function inputs is captured on the rising edge of TCK. Data appears on the TDO and normal-function output pins on the falling edge of TCK. The T AP controller is advanced through its states (as illustrated in Figure 1) by changing the value of TMS on the falling edge of TCK and then applying a rising edge to TCK.
A simple timing example is shown in Figure 12. In this example, the TAP controller begins in the T est-Logic-Reset state and is advanced through its states as necessary to perform one instruction-register scan and one data-register scan. While in the Shift-IR and Shift-DR states, TDI is used to input serial data, and TDO is used to output serial data. The T AP controller is then returned to the T est-Logic-Reset state. Table 5 explains the operation of the test circuitry during each TCK cycle.
Table 5. Explanation of Timing Example
TCK
CYCLE(S)
1 Test-Logic-Reset 2 Run-Test/Idle
3 Select-DR-Scan 4 Select-IR-Scan
5 Capture-IR
6 Shift-IR
7–13 Shift-IR
14 Exit1-IR TDO becomes inactive (goes to the high-impedance state) on the falling edge of TCK. 15 Update-IR The IR is updated with the new instruction (BYPASS) on the falling edge of TCK. 16 Select-DR-Scan
17 Capture-DR
18 Shift-DR
19–20 Shift-DR The binary value 101 is shifted in via TDI, while the binary value 010 is shifted out via TDO.
21 Exit1-DR TDO becomes inactive (goes to the high-impedance state) on the falling edge of TCK. 22 Update-DR In general, the selected data register is updated with the new data on the falling edge of TCK. 23 Select-DR-Scan 24 Select-IR-Scan 25 Test-Logic-Reset Test operation completed
TAP STATE
AFTER TCK
DESCRIPTION
TMS is changed to a logic 0 value on the falling edge of TCK to begin advancing the TAP controller toward the desired state.
The IR captures the 8-bit binary value 10000001 on the rising edge of TCK as the TAP controller exits the Capture-IR state.
TDO becomes active and TDI is made valid on the falling edge of TCK. The first bit is shifted into the TAP on the rising edge of TCK as the TAP controller advances to the next state.
One bit is shifted into the IR on each TCK rising edge. With TDI held at a logic 1 value, the 8-bit binary value 11111111 is serially scanned into the IR. At the same time, the 8-bit binary value 10000001 is serially scanned out of the IR via TDO. In TCK cycle 13, TMS is changed to a logic 1 value to end the IR scan on the next TCK cycle. The last bit of the instruction is shifted as the TAP controller advances from Shift-IR to Exit1-IR.
The bypass register captures a logic 0 value on the rising edge of TCK as the TAP controller exits the Capture-DR state.
TDO becomes active and TDI is made valid on the falling edge of TCK. The first bit is shifted into the TAP on the rising edge of TCK as the TAP controller advances to the next state.
18
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Page 19
ООООО
ООООО
TCK
TMS
TDO
SN54ABT8245, SN74ABT8245
SCAN TEST DEVICES
WITH OCTAL BUS TRANSCEIVERS
SCBS124D – AUGUST 1992 – REVISED DECEMBER 1996
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
TDI
TAP
Controller
State
Run-Test/Idle
Test-Logic-Reset
Select-DR-Scan
Capture-IR
Select-IR-Scan
Shift-IR
3-State (TDO) or Don’t Care (TDI)
Exit1-IR
Update-IR
Capture-DR
Select-DR-Scan
Shift-DR
Exit1-DR
Update-DR
Select-IR-Scan
Select-DR-Scan
Figure 12. Timing Example
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage range, VCC –0.5 V to 7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage range, VI (except I/O ports) (see Note 1) –0.5 V to 7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage range, V
Voltage range applied to any output in the high state or power-off state, VO –0.5 V to 5.5 V. . . . . . . . . . . . .
Current into any output in the low state, I Input clamp current, I
Output clamp current, I
Maximum power dissipation at TA = 55°C (in still air) (see Note 2): DW package 1.7 W. . . . . . . . . . . . . . . . .
Storage temperature range, T
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings can be exceeded if the input and output clamp-current ratings are observed.
2. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils. For more information, refer to the
Book
, literature number SCBD002.
(I/O ports) (see Note 1) –0.5 V to 5.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I
: SN54ABT8245 96 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
O
SN74ABT8245 128 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(V
< 0) –18 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IK
I
(V
< 0) –50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OK
O
–65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
stg
Package Thermal Considerations
application note in the
ABT Advanced BiCMOS T echnology Data
Test-Logic-Reset
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
19
Page 20
SN54ABT8245, SN74ABT8245
UNIT
PARAMETER
TEST CONDITIONS
UNIT
V
V
V
V
I
CC
,
A
,
V
CC
5.5 V,
orts
I
CC
,,
1.5
1.5
1.5
mA
SCAN TEST DEVICES WITH OCTAL BUS TRANSCEIVERS
SCBS124D – AUGUST 1992 – REVISED DECEMBER 1996
recommended operating conditions (see Note 3)
SN54ABT8245 SN74ABT8245
MIN MAX MIN MAX
V
CC
V
IH
V
IL
V
I
I
OH
I
OL
t/∆v Input transition rise or fall rate 10 10 ns/V T
A
NOTE 3: Unused pins (input or I/O) must be held high or low to prevent them from floating.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)
* On products compliant to MIL-PRF-38535, this parameter does not apply. †
All typical values are at VCC = 5 V.
The parameters I
§
Not more than one output should be tested at a time, and the duration of the test should not exceed 1 second.
This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
Supply voltage 4.5 5.5 4.5 5.5 V High-level input voltage 2 2 V Low-level input voltage 0.8 0.8 V Input voltage 0 V High-level output current –24 –32 mA Low-level output current 48 64 mA
Operating free-air temperature –55 125 –40 85 °C
TA = 25°C SN54ABT8245 SN74ABT8245
MIN TYP†MAX MIN MAX MIN MAX
V
IK
OH
OL
I
I
IH
I
IL
I
OZH
I
OZL
I
OZPU
I
OZPD
I
off
I
CEX
§
I
O
I
CC
CC
C
i
C
io
C
o
VCC = 4.5 V, II = –18 mA –1.2 –1.2 –1.2 V VCC = 4.5 V, IOH = – 3 mA 2.5 2.5 2.5 VCC = 5 V, IOH = – 3 mA 3 3 3 VCC = 4.5 V, IOH = – 24 mA 2 2 VCC = 4.5 V, IOH = – 32 mA 2* 2 VCC = 4.5 V, IOL = 48 mA 0.55 0.55 VCC = 4.5 V, IOL = 64 mA 0.55* 0.55
V
= 5.5 V,
VI = VCC or GND VCC = 5.5 V, VI = V
VCC = 5.5 V, VI = GND TDI, TMS –40 –160 –40 –160 –40 –160 µA
VCC = 5.5 V, VO = 2.7 V 50 50 50 µA
VCC = 5.5 V, VO = 0.5 V –50 –50 –50 µA VCC = 0 to 2 V, VO = 0.5 V or 2.7 V ±50 ±50 ±50 µA VCC = 2 V or 0, VO = 0.5 V or 2.7 V ±50 ±50 ±50 µA VCC = 0, VI or VO 4.5 V ±100 ±100 µA VCC = 5.5 V, VO = 5.5 V Outputs high 50 50 50 µA VCC = 5.5 V, VO = 2.5 V –50 –100 –180 –50 –180 –50 –180 mA
V
= 5.5 V IO = 0, VI = VCC or GND
V
= 5.5 V, One input at 3.4 V, Other inputs at VCC or GND
VI = 2.5 V or 0.5 V Control inputs 3 pF VO = 2.5 V or 0.5 V A or B ports 10 pF VO = 2.5 V or 0.5 V TDO 8 pF
and I
OZH
OZL
A or B p
include the input leakage current.
DIR, OE, TCK ±1 ±1 ±1 A or B ports ±100 ±100 ±100 TDI, TMS 10 10 10 µA
CC
Outputs high 0.9 2 2 2 Outputs low 30 38 38 38 Outputs disabled 0.9 2 2 2
CC
0 V
CC
V
µ
mA
20
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Page 21
UNIT
A or B
B or A
ns
OE
B or A
ns
OE
B or A
ns
A or B
B or A
ns
OE
B or A
ns
OE
B or A
ns
SN54ABT8245, SN74ABT8245
SCAN TEST DEVICES
WITH OCTAL BUS TRANSCEIVERS
SCBS124D – AUGUST 1992 – REVISED DECEMBER 1996
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (test mode) (see Figure 13)
SN54ABT8245 SN74ABT8245
MIN MAX MIN MAX
f
clock
t
w
t
su
t
h
t
d
t
r
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (normal mode) (see Figure 13)
PARAMETER
Clock frequency TCK 0 50 0 50 MHz Pulse duration TCK high or low 5 5 ns
A or B or DIR or OE before TCK 7 5
Setup time
Hold time
Delay time Power up to TCK 50* 50 ns Rise time VCC power up 1* 1 µs
FROM
(INPUT)
t
PLH
t
PHL
t
PZH
t
PZL
t
PHZ
t
PLZ
TDI before TCK TMS before TCK 6 6 A or B or DIR or OE after TCK 0 0 TDI after TCK TMS after TCK 0 0
TO
(OUTPUT)
6 6
0 0
SN54ABT8245
VCC = 5 V,
TA = 25°C
MIN TYP MAX
2 3.5 4.6 2 5.8 2 3.4 4.5 2 5.5
2.5 4.5 5.8 2.5 6.9 3 5.2 6.6 3 8.1 3 6.1 7.6 3 8.9 3 5.5 6.9 3 8
MIN MAX
ns
ns
UNIT
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (normal mode) (see Figure 13)
SN74ABT8245
PARAMETER
t
PLH
t
PHL
t
PZH
t
PZL
t
PHZ
t
PLZ
FROM
(INPUT)
TO
(OUTPUT)
VCC = 5 V,
TA = 25°C
MIN TYP MAX
2 3.5 4.3 2 4.8 2 3.4 4.2 2 5.1
2.5 4.5 5.5 2.5 6.8 3 5.2 6 3 7.5 3 6.1 7.1 3 8.4 3 5.5 6.6 3 7.5
MIN MAX
UNIT
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
21
Page 22
SN54ABT8245, SN74ABT8245
TCK
A or B
ns
TCK
TDO
ns
TCK
A or B
ns
TCK
TDO
ns
TCK
A or B
ns
TCK
TDO
ns
FROM
TO
TCK
A or B
ns
TCK
TDO
ns
TCK
A or B
ns
TCK
TDO
ns
TCK
A or B
ns
TCK
TDO
ns
SCAN TEST DEVICES WITH OCTAL BUS TRANSCEIVERS
SCBS124D – AUGUST 1992 – REVISED DECEMBER 1996
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (test mode) (see Figure 13)
SN54ABT8245
PARAMETER
f
max
t
PLH
t
PHL
t
PLH
t
PHL
t
PZH
t
PZL
t
PZH
t
PZL
t
PHZ
t
PLZ
t
PHZ
t
PLZ
FROM
(INPUT)
TCK 50 90 50 MHz
TO
(OUTPUT)
VCC = 5 V,
TA = 25°C
MIN TYP MAX
3.5 8 9.5 3.5 12.5 3 7.7 9 3 12
2.5 4.3 5.5 2.5 7
2.5 4.2 5.5 2.5 7
4.5 8.2 9.8 4.5 12.5
4.5 9 10.5 4.5 13.5
2.5 4.3 5.5 2.5 7
2.5 4.9 6.3 2.5 7.8
3.5 8.4 11.2 3.5 14.2 3 8 10.5 3 13.5 2 5.9 7 2 9 3 5 6.5 3 8
MIN MAX
UNIT
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (test mode) (see Figure 13)
SN74ABT8245
VCC = 5 V,
TA = 25°C
3 7.7 9 3 11.5
3 8 10.5 3 13 3 5.9 7 3 8.5 3 5 6.5 3 7.5
MIN MAX
UNIT
PARAMETER
f
max
t
PLH
t
PHL
t
PLH
t
PHL
t
PZH
t
PZL
t
PZH
t
PZL
t
PHZ
t
PLZ
t
PHZ
t
PLZ
FROM TO
(INPUT)
FROM
(INPUT) (OUTPUT)
TCK 50 90 50 MHz
(OUTPUT)
TO
MIN TYP MAX
3.5 8 9.5 3.5 12
2.5 4.3 5.5 2.5 6.5
2.5 4.2 5.5 2.5 6.5
4.5 8.2 9.5 4.5 12
4.5 9 10.5 4.5 13
2.5 4.3 5.5 2.5 6.5
2.5 4.9 6 2.5 7
3.5 8.4 10.5 3.5 13.5
22
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Page 23
From Output
Under Test
(see Note A)
Input
CL = 50 pF
PARAMETER MEASUREMENT INFORMATION
500
500
LOAD CIRCUIT
t
w
1.5 V 1.5 V
VOLTAGE WAVEFORMS
PULSE DURATION
S1
3 V
0 V
7 V
Open
GND
Timing Input
Data Input
SN54ABT8245, SN74ABT8245
SCAN TEST DEVICES
WITH OCTAL BUS TRANSCEIVERS
SCBS124D – AUGUST 1992 – REVISED DECEMBER 1996
TEST S1
t
PLH/tPHL
t
PLZ/tPZL
t
PHZ/tPZH
t
su
1.5 V 1.5 V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
Open
Open
1.5 V
t
7 V
3 V
0 V
h
3 V
0 V
Input
t
PLH
Output
t
PHL
Output
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr 2.5 ns, tf≤ 2.5 ns. D. The outputs are measured one at a time with one transition per measurement.
1.5 V 1.5 V
1.5 V
VOLTAGE WAVEFORMS
Figure 13. Load Circuit and Voltage Waveforms
t
PHL
1.5 V
t
PLH
1.5 V1.5 V
3 V
0 V
V
V
V
V
OH
OL
OH
OL
Output
Control
Output
Waveform 1
S1 at 7 V
(see Note B)
Output
Waveform 2
S1 at Open
(see Note B)
1.5 V
t
PZL
t
PLZ
1.5 V
t
t
PZH
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
PHZ
1.5 V
VOLTAGE WAVEFORMS
1.5 V
VOL + 0.3 V
VOH – 0.3 V
3 V
0 V
3.5 V
V
OL
V
OH
[
0 V
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
23
Page 24
IMPORTANT NOTICE
T exas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty . Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.
CERTAIN APPLICA TIONS USING SEMICONDUCT OR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICA TIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERST OOD TO BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright 1998, Texas Instruments Incorporated
Loading...