Datasheet SMCJ5348, SMCJ5349, SMCJ5350, SMCJ5351, SMCJ5352 Datasheet (MCC)

...
Page 1
SMCJ5348
0.060”
PAD LAYOUT
H
E
F
MCC
omponents 21201 Itasca Street Chatsworth
  !"# $% !"#
THRU
SMCJ5388
Features
l Surface Mount Application l 11 thru 200 Volt Voltage Range l Built-in strain relief l Glass passivated junction l Low inductance
Mechanical Data
over passivated junction
l Terminals solderable per MIL-STD-750, Method 2026 l Standard Packaging: 16mm tape(EIA-481) l Maximum temperature for soldering: 260 l Plastic package has Underwriters Laboratory
Flammability Classification 94V-O
Maximum Ratings @ 25oC Unless Otherwise Specified
DC Power
P
D
5.0W
Dissipation Peak forwar d
I
See Fig.5 (Note:1 ,2)
FSM
Surge Curr ent
8.3ms sin gle half Operation And
TJ, T
-55oC to
STG
Storage Temperature
NOTES:
2
1. Mounted on 8.0mm copper pads to each terminal.
2. 8.3ms single half sine-wave, or equivalent square wave,
o
C for 10 seconds.
+150 oC
(Note: 1 )
Silicon
5.0 Watt
Zener Diodes
DO-214AB
(SMCJ) (LEAD FRAME)
G
A
B
DIMENSIONS
INCHES MM
DIM MIN MAX MIN MAX NOTE
A .079 .103 2.00 2.62 B .108 .128 2.75 3.25 C .002 .008 0.051 0.203 D .006 .012 0.152 0.305 E .030 .050 0.76 1.27 F ..305 .320 7.75 8.13 G .260 .280 6.60 7.11 H .220 .245 5.59 6.22
SUGGESTED SOLDER
C
duty cycle = 4 pulses per minute maximum.
0.121”
www.mccsemi.com
Page 2
ELECTRICAL CHARACTERISTICS (TA=25¢Junless otherwise noted, VF=1.2 Max @
IF=1A for all types
.
Maximum ZenerImpedanceMax reverseLeakage Curren
t
@ V
R
Volts
Type No.(Note 1.)NominalZener
Voltage
Vz @
I
Z
T
volts(Note 2.)Testcurrent
I
Z
T
m
A
Z
Z
T
@
I
Z
T
Ohms(Note 2.)
Z
Z
k
@
I
Z
K
= 1mAOhms(Note 2.)
I
R
ANon & ASuffixB-Suffi
x
MaxSurg
e
Current
Ir Amps(Note 3.)MaxVoltag
e
Regulatio
n
Vz, Volts(Note 4.)MaximumRegulato
r
Current
I
Z
M
mA(Note 5.)DeviceMarking
Code1
1
12131
4
125
100100100
2.5
2.52.52.5
125
1251007
5521188.69.410.
1
8.4
9.19.910.
687.576.7
0.2
5
0.250.250.2
5
430
395365340
348
B
349B350B351B15161
7
1
8
1975757
0
6
5
652.52.52.5
2.5
3757575
7
5
75110.5
0.5
0.510.811.512.2
1
3
13.711.512.212.
9
13.
7
14.46.365.8
5.5
5.30.250.30.3
5
0.4
0.431529528
0
265
250352B353B354B
355
B
356B202
2
2
4
2527655
0
5
0
505033.
5
3.5
45757
5
100
1101200.50.
5
0.5
0.50.514.415.
8
17.
3
1819.415.216.
7
18.
2
1920.65.14.
7
4.4
4.34.10.40.45
0.5
5
0.550.6237216
198
190176357B358
B
359
B
360B361
B
2
8
30333
6
395
0
40403
0
306
81011
14130
140150160
1700.
5
0.50.50.5
0.520.1
21.623.825.
9
28.121.
2
22.825.127.
4
29.73.9
3.73.53.3
3.10.
6
0.60.60.6
5
0.65170
158144132
122362B
363B364B365
B
366
B
434
7
5
1
5660302
5
2
5
2020202
5
2
7
354019021
0
230
2803500.50.
5
0.5
0.50.53133.
8
36.
7
40.34332.735.
8
38.
8
42.645.52.82.
7
2.5
2.32.20.70.
8
0.9
11.211010
0
9
3
8679367B368
B
369
B
370B371
B
6
2
68758
2
872
0
20201
5
154
2
44456
5
75400
500620720
7600.
5
0.50.50.5
0.544.6
49545
9
6347.
1
51.75662.
2
662.1
21.91.8
1.71.35
1.51.61.8
276
70635
8
54.5372
B
373B374B375
B
376
B
91100
110
120130151
2
1
2
1010759
0
125
17019076080
0
100
0
115012500.50.
5
0.5
0.50.565.57
2
79.
2
86.493.669.27
6
83.
6
91.298.81.61.
5
1.4
1.31.22.22.
5
2.5
2.52.552.547.
5
4
3
39.536.6377B378
B
379
B
380B381
B
140
15016017018
0
190
8
888
5
523
0
33035038043
0
4501500
150016501750175
0
18500.5
0.50.50.50.
5
0.510
1
10811512213
0
13710
6
11412212913
7
1441.
2
1.11.11
1
0.92.
5
333
4
534
31.629.42826.
4
25382
B
383B384B385B386
B
387
B
200548018500.51441520.9523.6388
B
SMCJ5348 thru SMCJ5388
MCC
SMCJ5348 SMCJ5349 SMCJ5350 SMCJ5351
SMCJ5352 SMCJ5353 SMCJ5354 SMCJ5355
SMCJ5356 SMCJ5357
SMCJ5358 SMCJ5359 SMCJ5360 SMCJ5361
SMCJ5362 SMCJ5363 SMCJ5364 SMCJ5365 SMCJ5366
SMCJ5367 SMCJ5368 SMCJ5369 SMCJ5370 SMCJ5371
SMCJ5372 SMCJ5373 SMCJ5374 SMCJ5375 SMCJ5376
SMCJ5377 SMCJ5378 SMCJ5379 SMCJ5380 SMCJ5381
SMCJ5382 SMCJ5383
SMCJ5384 SMCJ5385
SMCJ5386 SMCJ5387 SMCJ5388
£g
£G
NOTE:
1. TOLERANCE AND VOLTAGE DESIGNATION - The JEDEC type numbers shown indicate a tolerance of ¡Ó 10% with guaranteed limits on only Vz, IR, Ir, and VF as shown in the electrical characteristics table. Units with guaranteed
limits on all seven parameters are indicated by suffix “B” for ¡Ó5% tolerance.
2. ZENER VOLTAGE (Vz) AND IMPEDANCE (ZZT & ZZK) - Test conditions for Zener voltage and impedance are as follows; Iz is applied 40 ¡Ó 10 ms prior to reading. Mounting contacts are located from the inside edge of mounting clips to the body of the diode.(TA=25 ¢J
¡Ï¢· ¡Ð¢±
¢J).
www.mccsemi.com
Page 3
SMCJ5348 thru SMCJ5388
3. SURGE CURRENT (Ir) - Surge current is specified as the maximum allowable peak, non-recurrent square-wave current with a pulse width, PW, of 8.3 ms. The data given in Figure 5 may be used to find the maximum surge current for a quare wave of any pulse width between 1 ms and 1000ms by plotting the applicable points on logarithmic paper. Examples of this, using the 6.8v and 200V zeners, are shown in Figure 6. Mounting
contact located as specified in Note 3. (TA=25 ¢J
4. VOLTAGE REGULATION (£GVz) - Test conditions for voltage regulation are as follows: Vz measurements are made at 10% and then at 50% of the Iz max value listed in the electrical characteristics table. The test currents are the
same for the 5% and 10% tolerance devices. The test current time druation for each Vz measurement is 40 ¡Ó 10 ms. (TA=25 ¢J
5. MAXIMUM REGULATOR CURRENT (IZM) - The maximum current shown is based on the maximum voltage of a 5% type unit. Therefore, it applies only to the B-suffix device. The actual IZM for any device may not exceed the value of 5 watts divided by the actual Vz of the device. TL=75 ¢J at maximum from the device body.
¡Ï¢·
¢J). Mounting contact located as specified in Note2.
¡Ð¢±
¡Ï¢· ¡Ð¢±
¢J).
MCC
APPLICATION NOTE: Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended: Lead Temperature, TL, should be determined from:
TL = £cLAPD + T
£c
and PD is the power dissipation. Junction T emperature, TJ , may be found from:
£GTJL is the increase in junction temperature above the lead temperature and may be found from Figure 3 for a train of power pulses or from Figure 4 for dc power.
For worst-case design, using expected limits of Iz, limits
is the lead-to-ambient thermal resistance (¢J/W)
LA
TJ = TL + £GT
£GT
= £cJLP
JL
A
JL
D
of PD and the extremes of TJ(£GTJ) may be estimated. Changes in voltage, Vz, can then be found from:
£GV = £cVZ£GT
£c
, the zener voltage temperature coefficient, is fount
VZ
from Figures 2. Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly be the zener resistance. For best regulation, keep current excursions as low as possible. Data of Figure 3 should not be used to compute surge capability. Surge limitations are given in Figure 5. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots resulting in device degradation should the limits of Figure. 5 be exceeded.
J
www.mccsemi.com
Page 4
TL, LEAD TEMPERATURE (¢J)
0
VZ, ZENER VOLTAGE @IZT (VOLTS
)
D = 0.50.20.10.050.020.01D = 0NOTE BELOW 0.1 SECOND,THERMAL RESPONSECURVE IS APPLICABLE TOANY LEAD LENGTH (L)DUTY CYCLE, D = t1 / t2SINGLE PULS
E£GTJL =£KJL(t)PPKREPETITIVE PULSES£GTJL =£KJL(t,D)PPK
TIME (SECONDS
)
2
L, LEAD LENGTH TO HEAT SINK (INCH
)
NOMINAL VZ(V
)
PD
C
£c
IR
SMCJ5348 thru SMCJ5388
RATING AND CHARACTERISTICS CURVES
MCC
TEMPERATURE COEFFICIENTS
300 200
8
6
4
2
0
, MAXIUMU POWER DISSIPATION (WATTS)
0 20 40 60 80 100 120 140 160
L = LEAD LENGTH TO
(SEE FIGURE 5)
HEAT SINK
100
50 30 20
RANGE
10
£c VZ, TEMPERATURE
OEFFICIENT (mA/¢J_@IZT
5
0 20 40 60 80 100 120 140 160 180 200 22
Fig. 1-POWER TEMPERATURE DERATING CURVE Fig. 2-TEMPERATURE COEFFICIENT-RANGE FOR UNITS
6 TO 220 VOLTS
30 20
10
7 5
3 2
LEAD(¢J/W)
1
0.7
JL(t,D), TRANSIENT THERMAL
0.5
RESISTANCE JUNCTION-TO-
0.3
0.0001 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10
Fig. 3-TYPICAL THERMAL RESPONSE
40
40
30
20
10
RESISTANCE (¢J/W)
0
0 0.2
JL, JUNCTION-TO -LEAD THERMAL
MCUNTE ON 8.0mm COPPER PADS TO EACH TERMINAL
0.4 0.6
0.8 1
20 10
4 2 1
0.4
0.2
0.1
, PEAK SURGE CURRENT (AMPS)
3 4 6 8 10 20 30 40 60 80 100 200
PW = 1000ms*
SINE / SQUARE WAVE PW = 100ms*
PW = 1ms*
PW = 8.3ms*
Fig. 4-TYPICAL THERMAL RESISTANCE Fig. 5-MAXIMUM NON-REPETITIVE SURGE
CURRENT VERSUS NOMINAL ZENER
VOLT AGE (SEE NOTE 3)
www.mccsemi.com
Page 5
VZ, ZENER VOLTAGE (VOLTS
)
100
0
VZ, ZENER VOLTAGE (VOLTS)
1000
VZ, ZENER VOLTAGE (VOLTS
)
SMCJ5348 thru SMCJ5388
RATING AND CHARACTERISTICS CURVES
ZENER VOLTAGE VERSUS ZENER CURRENT
(FIGURES 7,8, AND 9)
30 20
10
5
2
1
0.5
0.2
0.1 1 10 100 1000
PLOTTED FROM INFORMATION
GIVEN IN FIGURE 6
VZ = 200V
VZ = 6.8V
MCC
TC = 25
1000
100
10
1
IZ, ZENER CURRENT (mA)
0.1 1 2 3 4 5 6 7 8 9 10
¢J
T = 25
¢J
Fig. 6-PEAK SURGE CURRENT VERSUS PULSE
WIDTH(SEE NOTE 3)
T = 25
¢J
100
10
1
IZ, ZENER CURRENT (mA)
0.1 10 20 30 40
70
Fig. 8-ZENER VOLTAGE VERSUS ZENER CURRENT
VZ = 11 THRU 75 VOLTS
Fig. 7-ZENER VOLTAGE VERSUS ZENER CURRENT
VZ = 6.8 THRU 10 VOLTS
100
10
1
IZ, ZENER CURRENT (mA)
0.1 80 100 120 140 160 180
200 220
Fig. 9-ZENER VOLTAGE VERSUS ZENER CURRENT
VZ = 82 THRU 200 VOLTS
*** Data of Figure 3 should not be used to compute surge capability. Surge limitations are given in Figure 5. They are
lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots resulting in device degradation should the limits of Figure. 5 be exceeded
www.mccsemi.com
Loading...