VERY LOW SWITCHING LOSSES
LOW FORWARD VOLTAGE DROP BIPOLAR
DEVICE
LOW PEAK FO RWARD VOL T AGE FOR TELE-
COM TRANSIENT OPERATI ON SUCH AS IN
LIGHTING PROTECTION CIRCUITS
DESCRIPTION
Single chip rectifier suited to Switch Mode Power
Supplies and high frequency DC to DC converters.
Packaged in SMB, this surface mount device is
intended for use in low voltage, high frequency
inverters, free wheeling and polarity protection
applications.
SMB
(JEDEC DO-214AA )
ABSOLUTE RATINGS
(limiting values)
SymbolParameterValueUnit
V
RRM
I
F(RMS)
I
F(AV)
Repetitive peak reverse voltage
RMS forward current
Average forward current
Tlead=140°C
200V
8A
1A
δ = 0.5
I
FSM
Surge non repetitive forward current
tp=10ms
60A
sinusoidal
T
stg
T
j
October 1999 - Ed: 4A
Storage and junction temperature range
Maximum operating junction temperature
- 65 to + 150
150°C
°
C
1/5
Page 2
SMBYW01-200
THERMAL RESISTANCE S
SymbolParameterValueUnit
Rth (j-l)
Junction to lead
13
STATIC ELECTRICAL CHARACTER ISTICS
SymbolParametersTest ConditionsMin.Typ.Max.Unit
*
V
F
**
I
R
Pulse test : * tp = 380 µs, δ < 2 %
Forward voltage dropT
Reverse leakage currentT
** tp = 5 ms, δ < 2 %
= 25°CI
j
= 150°CI
T
j
= 25°CV
j
T
= 125°C
j
= 1 A
F
= 1 A
F
= V
R
0.650.71
RRM
180400
0.9V
3
To evaluate the maximum conduction losses use the following equation :
P = 0.58 x I
+ 0.118 x I
F(AV)
F2(RMS )
RECOVERY CHARACTE RISTICS
°
C/W
µ
A
SymbolTest ConditionsMin.Typ.Max.Unit
t
rr
t
fr
V
FP
Tj = 25°CIF = 0.5 A Irr = 0.25 A IR = 1A25ns
I
= 1 A dIF/dt = - 50 A/µs VR = 30V2535
F
Tj = 25°CIF = 1A dIF/dt = 100 A/µs 25ns
Tj = 25°CIF = 1A dIF/dt = 100 A/µs 5V
2/5
Page 3
SMBYW01-200
Fig. 1:
Average forward power dissipation versus
average forward current .
PF(av)(W)
1.0
0.9
δ = 0.05
δ = 0.1
δ = 0.2
δ = 0.5
0.8
0.7
0.6
δ = 1
0.5
0.4
0.3
0.2
0.1
0.0
0.00.20.40.60.81.01.2
Fig. 3:
Average forward current versus ambient
IF(av) (A)
temperature (δ=0.5).
IF(av)(A)
1.2
1.0
0.8
Rth(j-a)=Rth(j-l)
Fig. 2:
Peak curren t ver su s f o rm f a ct or.
IM(A)
10
9
8
7
6
5
4
3
2
1
0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
P=1.5W
P=1.0W
P=0.5W
P=0.25W
δ
Fig. 4:
Non repetitive surge peak forward current
versus overload duration.
IM(A)
8
7
6
Ta=25°C
0.6
Rth(j-a)=100°C/W
0.4
0.2
Tamb(°C)
0.0
0255075100125150
Fig. 5:
Variation of thermal impedance junction to
ambient versus pulse duration (recommended pad
layout, epoxy FR4, e(Cu)=35µm).
Zth(j-a)(°C/W)
1.00
δ = 0.5
δ = 0.2
δ = 0.1
0.10
Single pulse
0.01
1E-21E-11E+01E+11E+2 5E+2
tp(s)
5
Ta=50°C
4
3
2
1E-31E-21E-11E+0
Fig 6:
Forward voltage drop versus forward current
Ta=75°C
t(s)
(maximum values).
VFM(V)
50.00
10.00
1.00
0.10
0.01
0.00.40.81.21.62.02.4
Tj=125°C
Tj=25°C
IFM(A)
3/5
Page 4
SMBYW01-200
Fig. 7:
Junction capacitance versus reverse
voltage applied (typical values).
C(pF)
12
10
8
6
4
2
0
110100200
Fig. 9:
Reverse reco very time v ersus dI
trr(ns)
100
90
80
70
60
50
40
30
20
10
0
020406080 100 120 140 160 180 200
VR(V)
dIF/dt(A/µs)
F=1MHz
Tj=25°C
/dt.
F
IF=IF(av)
90% confidence
Tj=125°C
Fig. 8:
Reverse rec overy curr ent ver sus dI
IRM(A)
6
IF=IF(av)
90% confidence
5
Tj=125°C
4
3
2
1
0
020406080 100 120 140 160 180 200
Fig. 10:
100
Reverse recovery charges versus dI
Qrr(nC)
90
80
70
60
50
40
30
20
10
0
020406080 100 120 140 160 180 200
dIF/dt(A/µs)
dIF/dt(A/µs)
/dt .
F
F
IF=IF(av)
90% confidence
Tj=125°C
/dt.
Fig. 11:
Dynamic parameters versus junction
temperature.
Qrr;IRM[Tj] / Qrr;IRM[Tj=125°C]
1.25
1.00
0.75
0.50
0.25
0255075100125150
4/5
IRM
Qrr
Tj(°C)
Fig. 12:
Thermal resistance junction to ambient
versus copper surface under each lead (Epoxy
printed circuit board FR4, copper thickness: 35µm)
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of
use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by
implication or otherwi se under any patent o r p atent righ ts of STMic roelectronic s. Speci fications m entioned i n this publi cation are subject to
change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical c omp onents i n l i fe s upport devices or systems without expres s w ri tte n approval of STMicroelectronics.
The ST logo is a registered trad emark of STMicroelectr onics