Page 1
SKM 200 GB 174 D
Absolute Maximum Ratings
Ω
case
4)
1)
= 25 °C
Symbol Conditions
V
CES
V
CGR
I
I
CN
C;
I
CM
V
GES
P
tot
Tj, (T
stg
V
isol
humidity
climate
Inverse Diode
IF = –I
C
IFM = –I
I
FSM
I2t
= 20 k
R
GE
T
= 25/80 °C
case
= 25/80 °C; tp = 1 ms
T
case
per IGBT, T
)
AC, 1 min.
IEC 60721-3-3
IEC 68 T.1
8)
T
= 25/80 °C
case
= 25/80 °C; tp = 1 ms
T
CM
case
= 10 ms; sin.; Tj = 150 °C
t
p
t
= 10 ms; Tj = 150 °C
p
Characteristics
Symbol Conditions
V
(BR)CES
V
GE(th)
I
CES
I
GES
V
CEsat
g
fs
C
CHC
C
ies
C
oes
C
res
L
CE
t
d(on)
t
r
t
d(off)
t
f
E
on
E
off
Inverse Diode
VF = V
VF = V
V
TO
r
t
I
RRM
Q
rr
Thermal ch aracteristics
R
thjc
R
thjc
R
thch
VGE = 0, IC = 6 mA
V
= VCE, IC = 5 mA
GE
= 0 Tj = 25 °C
V
GE
= V
V
CE
= 20 V, VCE = 0
V
GE
I
= 150 A VGE = 15 V;
C
= 200 A Tj = 25 (125) °C
I
C
= 20 V, IC = 150 A
V
CE
per IGBT
V
GE
V
CE
f = 1 MHz
V
CC
V
GE
IC = 150 A, ind. load
R
Gon
Tj = 125 °C (VCC = 900 V/1200 V)
= 60 nH (VCC = 900 V/1200 V)
L
S
8)
IF = 150 A VGE = 0 V;
EC
= 200 A Tj = 25 (125) °C
I
EC
F
= 125 °C
T
j
T
= 125 °C
j
= 150 A; Tj = 25 (125) °C
I
F
IF = 150 A; Tj = 25 (125) °C
per IGBT
per diode D
per module
1)
= 125 °C
CESTj
= 0
= 25 V
= 1200 V
= –15 V / +15 V
= 10
Ω
= R
Goff
3)
2)
2)
Values
Units
1700
1700
250 / 175
500 / 350
± 20
1250
–40 ... +150 (125)
3400
class 3K7/IE32
40/125/56
300 / 200
500 / 350
1450
10500
V
V
A
A
V
W
°C
V
A
A
A
A2s
min. typ. max. Units
≥
V
4,5
54
CES
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
5,5
0,1
4
–
2,8(3,2)
3,1(3,8)
75
–
11
1,5
0,5
–
80
60
900
80
70/115
45/75
2,0(1,8)
2,2(2,0)
1,3
4
75(140)
20(40)
–
–
–
–
6,5
0,4
–
100
3,3(3,6)
–
–
0,7
–
–
–
20
–
–
–
–
–
–
2,4
2,6
1,5
5
–
–
0,10
0,15
0,038
V
V
mA
mA
nA
V
V
S
nF
nF
nF
nF
nH
ns
ns
ns
ns
mWs
mWs
V
V
V
m
A
µ
°C/W
°C/W
°C/W
Ω
C
SEMITRANS® M
Low Loss IGBT Modules
SKM 200 GB 174 D
Features
•
N channel, homogeneous Silicon
structure (NPT- Non p unchthrough IGBT)
•
Low inductance case
•
High short circuit capability,
self limiting
•
Fast & soft inverse CAL diodes
•
Isolated copper baseplate using
DCB Direct Copper Bonding
•
Large clearance (13 mm) and
creepage distances (20 mm)
Typical Applications
•
AC inverter drives on mains
575 - 750 V
•
DC bus voltage 750 - 1200 VDC
•
Public transport (auxiliary syst.)
•
Switching (not for linear use)
1)
T
= 25 °C, unless otherwise
case
specified
2)
IF = – IC, VR = 1200 V,
/dt = 1500 A/µs, VGE = 0 V
–di
F
4)
Option V
„H4“ - on request
8)
CAL = Controlled Axial Lifetime
Technology
AC
= 4000V/1 min add suf fix
isol
8)
© by SEMIKRON 000828 B 6 – 61
Page 2
SKM 200 GB 174 D
1600
W
1400
1200
1000
800
600
400
200
P
tot
0
0 20 40 60 80 100 120 140 160
T
C
Fig. 1 Rated power dissipation P
300
mW
200
100
E
0
0 1 02 03 04 05 06 0
R
G
tot
m200g174.xls - 1
°C
400
mWs
300
200
100
E
0
0 100 200 300 400
I
C
= f (TC) Fig. 2 Turn-on /-off energy = f (IC)
m200g174.xls - 3
E
on
E
off
Ω
= 125 °C
T
j
= 1200 V
V
CE
V
= ± 15 V
GE
I
= 150 A
C
1000
A
100
10
1
I
C
0,1
V
CE
1 10 100 1000 10000
m200g174.xls - 2
E
on
E
off
A
m200g174.xls - 4
t
p=25µs
100µs
1ms
10ms
(DC)
V
= 125 °C
T
j
= 1200 V
V
CE
V
= ± 15 V
GE
R
= 10
G
1 pulse
T
= 25 °C
C
≤
150 °C
Tj
Not for
linear use
Ω
Fig. 3 Turn-on /-off energy = f (RG) Fig. 4 Maximum safe operating area (SOA) IC = f (VCE)
2,5
2
1,5
1
0,5
I
Cpuls/IC
0
0 500 1000 1500 2000
V
CE
di/dt=1000A/µs
3000 A/µs
5000 A/µs
m200g174.xls - 5
V
≤
150 °C
Tj
= ± 15 V
V
GE
R
= 10
Goff
IC = 150 A
Ω
12
10
8
6
4
2
I
CSC/IC
0
0 400 800 1200 1600 2000
V
CE
di/dt=1000A/µs
3000 A/µs
5000 A/µs
allowed number s of
short circuits: <1000
time between short
circuits: >1s
Fig. 5 Turn-off safe operating area (RBSOA) Fig. 6 Safe operating area at short circuit I
m200g174.xls - 6
V
≤
Tj
= ± 15 V
V
GE
≤
tsc
L
< 50 nH
ext
= 150 A
I
C
= f (VCE)
C
150 °C
10 µs
B 6 – 62 000828 © by SEMIKRON
Page 3
SKM 200 GB 174 D
400
300
200
300
A
200
100
I
C
0
0 2 04 06 08 01 0 01 2 01 4 01 6 0
T
C
Fig. 8 Rated current vs. temperature I
m200g174.xls - 9
A
V
17V
15V
13V
11V
9 V
GE
=
400
A
300
200
VGE=
17V
15V
13V
11V
9V
m200g174.xls - 8
°C
= f (TC)
C
m200g174.xls - 10
T
= 150 °C
j
≥ 15 V
V
GE
100
I
C
0
0123456
V
CE
V
100
I
C
0
V
0123456
C
V
Fig. 9 Typ. output characteristi c, tp = 250 µs; Tj = 25 °C Fig. 10 Typ. output characteristic, tp = 250 µs; Tj = 125 °C
m200g174.xls - 12
V
P
= V
cond(t)
V
V
typ.: r
max.: r
= V
CEsat(t)
CE(TO)(Tj)
CE(Tj)
CE(Tj)
valid for V
· I
CEsat(t)
CE(TO)(Tj)
C(t)
+ r
CE(Tj)
· I
C(t)
≤ 1,6 + 0,001 (Tj –25) [V]
= 0,008 + 0,00002 (Tj –25) [Ω]
= 0,011 + 0,000017 (Tj –25) [Ω]
= + 15 [V]; IC ≥ 0,3 I
GE
+2
–1
Cn
400
A
300
200
100
I
C
0
0 2 4 6 8 10 12 14
V
GE
Fig. 11 Saturation characteristic (IGBT)
Calculation elements and equations Fig. 12 Typ. transfer characteristic, t
= 250 µs; VCE = 20 V
p
© by SEMIKRON 000828 B 6 – 63
Page 4
SKM 200 GB 174 D
20
V
16
12
8
4
V
GE
0
Q
0 400 800 1200
Gate
800
m200g174.xls - 13
1200V
nC
I
Cpuls
= 150 A
100
nF
10
1
0
C
0
V
0 1 02 03 0
CE
Fig. 13 Typ. gate charge characteristic Fig. 14 Typ. capacitances vs.V
10000
ns
1000
m200g174.xls - 15
t
doff
= 125 °C
T
j
= 1200 V
V
CC
V
= ± 15 V
GE
R
= 10
G
10000
ns
Ω
1000
m200g174.xls - 14
C
CE
m200g174.xls - 16
ies
t
C
C
doff
oes
res
V
VGE = 0 V
f = 1 MHz
T
= 125 °C
j
= 1200 V
V
CC
V
= ± 15 V
GE
I
= 150 A
C
t
f
100
tdon
t
tr
10
0 100 200 300 400
I
C
Fig. 15 Typ. switching times vs. I
400
Tj = 125°C typ.
A
T
= 25°C typ.
j
Tj =125°C max.
300
Tj = 25°C max.
200
100
I
F
A
C
m200g174.xls - 17
t
don
t
r
100
t
f
t
10
R
0 1 02 03 04 05 06 0
G
Ω
Fig. 16 Typ. switching times vs. gate resistor R
m200g174.xls - 18
RG =
5Ω
10Ω
20Ω
30Ω
51Ω
mJ
E
40
30
20
10
offD
G
0
V
F
0123
V
0
0 100 200 300 400
I
F
A
Fig. 17 Typ. CAL diode forward characteristic Fig. 18 Diode turn-off energy dissipation per pulse
B 6 – 64 000828 © by SEMIKRON
Page 5
SKM 200 GB 174 D
0,1
K/W
0,01
0,001
0,0001
Z
thJC
0,00001
0,00001 0,0001 0,001 0,01 0,1 1
t
p
m200g174.xls - 19
D=0,50
0,20
0,10
0,05
0,02
0,01
single pulse
s
Fig. 19 Transient thermal impedance of IGBT
Z
= f (tp); D = tp / tc = tp · f
thJC
400
A
300
m200g174.xls - 22
R
G
5Ω
V
= 1200 V
CC
T
= 125 °C
j
V
= ± 15 V
GE
= 150 A
I
F
1
K/W
0,1
0,01
0,001
Z
thJC
0,0001
0,00001 0,0001 0,001 0,01 0,1 1
t
p
m200g174.xls - 20
D=0,5
0,2
0,1
0,05
0,02
0,01
single pulse
Fig. 20 Transient thermal impedance of
400
A
300
inverse CAL diodes Z
RG=
5Ω
10Ω
= f (tp); D = tp / tc = tp · f
thJC
m200g174.xls - 23
s
V
= 1200 V
CC
T
= 125 °C
j
V
= ± 15 V
GE
= 150 A
I
F
10Ω
200
20Ω
30Ω
100
I
RR
0
I
0 100 200 300 400
F
51Ω
A
Fig. 22 Typ. CAL diode peak reverse recovery
current I
80
µC
60
40
20
= f (IF; RG)
RR
10Ω
20Ω
RG=
50 A
5Ω
150 A
100 A
m200g174.xls - 24
IF=
300 A
200 A
V
= 1200 V
CC
= 125 °C
T
j
V
= ± 15 V
GE
51Ω
di
30Ω
/dt
F
20Ω
A/µs
200
100
I
RR
0
0 2000 4000 6000
Fig. 23 Typ. CAL diode peak reverse recovery
current IRR = f (di/dt)
Q
rr
0
0 2000 4000 6000
/dt
di
F
A/µs
Fig. 24 Typ. CAL diode recovered charge
© by SEMIKRON 000828 B 6 – 65
Page 6
SKM 200 GB 174 D
SEMITRANS 3
Case D 56
UL Recognized
File no. E 63 532
SKM 200 GB 174 D
Dimensions in mm
Case outline and circuit diagram
Mechanical Data
Symbol Conditions
M
1
M
2
a
w
to heatsink, SI Units (M6)
to heatsink, US Units
for terminals, SI Units (M6)
for terminals, US Units
Values Units
min. typ. max.
3
27
2,5
22
–
–
–
–
–
–
–
–
5
44
5
44
5x9,81
325
Nm
lb.in.
Nm
lb.in.
m/s
g
This is an ele ctrost atic d ischarg e
sensitive device (ESDS).
Please observe the international
standard IEC 747-1, Chapter IX.
Twelve devices are supplied in one
SEMIBOX D without mounting
hardware, which can be ordered
2
separately under Ident No.
33321100 (for 10 SEMITRANS 3).
This technical information specifies semiconductor de vi ce s but promises no characteristics. No w arran ty or g uara nte e expressed or
implied is made regarding delivery, performance or suitability.
B 6 – 66 000828 © by SEMIKRON