Datasheet SK100E445PJ, SK100E445PJT, SK10E445PJ, SK10E445PJT Datasheet (Semtech Corporation)

Page 1
HIGH-PERFORMANCE PRODUCTS
1
www.semtech.com
Revision 1/February 21, 2001
SK10/100E445
4-Bit Serial/Parallel Converter
Description
Features
On-Chip Clock ÷ 4 and ÷8
2.0 Gb/s Data Rate Capability
Differential Clock and Serial Inputs
•V
BB
Output for Single-Ended Input Applications
Asynchronous Data Synchronization
Mode Select to Expand to 8-Bits
Internal 75 kΩ Input Pulldown Resistors
ESD Protection of >4000V
Extended 100E VEE Range of –4.2V to –5.46V
Fully Compatible with MC10/100E445
Available in 28-Pin PLCC Package
DQD
Q
Q
Q
Q3
Q2
Q1
Q0
SOUT
SOUT*
Q
Q
Q
Q
*
Q
Out
Q
CL/4*
CL/4
CL/8*
CL/8
0
¸
4
Out
¸
2
Out
Lat
ch
In
RESET
SYNC
CLK*
CLK
MODE
SEL
SINA*
SINA
SINB*
SINB
The SK10/100E445 is an integrated 4-bit serial-to­parallel data converter. The device is designed to operate for NRZ data rates of up to 2.0 Gb/s. The chip generates a divide by 4 and a divide by 8 clock for both 4-bit conversion and a two chip 8-bit conversion function. The conversion sequence was chosen to convert the first serial bit to Q0, the second to Q1, etc.
Two selectable serial inputs provide a loopback capability for testing purposes when the device is used in conjunction with the R446 parallel to serial converter.
The start bit for conversion can be moved using the SYNC input. A single pulse applied asynchronously for at least two input clock cycles shifts the start bit for conversion from Qn to Qn–1. For each additional shift required, an additional pulse must be applied to the SYNC input. Asserting the SYNC input will force the internal clock dividers to “swallow” a clock pulse, effectively shifting a bit from the Qn to the Qn–1 output (see Timing Diagram B).
The MODE input is used to select the conversion mode of the device. With the MODE input LOW, or open, the device will function as a 4-bit converter. When the mode input is driven HIGH, the data on the output will change on every eighth clock cycle, thus allowing for an 8-bit conversion scheme using two E445’s. When cascaded in an 8-bit conversion scheme, the devices will not operate at the 2.0 Gb/s data rate of a single device. Refer to the applications section of this data sheet for more information on cascading the E445.
For lower data rate applications, a VBB reference voltage is supplied for single-ended inputs. When operating at clock rates above 500 MHz, differential input signals are recommended. For single-ended inputs, the VBB pin is tied to the inverting differential input and bypassed via a 0.01 µF capacitor. The VBB provides the switching reference for the input differential amplifier. The V
BB
can also be used to AC couple an input signal.
Upon power-up, the internal flip-flops will attain a random state. To synchronize multiple E445’s in a system, the master reset must be asserted.
Page 2
2
www.semtech.com
HIGH-PERFORMANCE PRODUCTS
SK10/100E445
Revision 1/February 21, 2001
PIN Description
niPnoitcnuF
*ANIS,AniSAtupnIataDlaireSlaitnereffiD
*BNIS,BNISBtupnIataDlaireSlaitnereffiD
LESniProtceleStupnIlaireS
3Q-0QstuptuOataDlellaraP
*KLC,KLCstupnIkcolClaitnereffiD
*4/LC,4/LClaitnereffiD4tuptuOkcolC
*8/LC,8/LClaitnereffiD8tuptuOkcolC
EDOMtiB8/tiB-4edoMnoisrevnoC
HCNYStupnIgnizinorhcnySnoisrevnoC
edoMnoisrevnoCLEStupnIlaireS
LtiB-4HA
HtiB-8LB
Pin Names
Function Table
SOUT
SOUT*
V
CC
Q0
Q1
V
CC0
Q2
SINB
SINB*
SEL
V
EE
CLK
CLK*
V
BB
CL/8*
CL/8
V
CC0
CL/4
CL/4*
V
CC0
Q3
SINA
SINA*
SYNC
RESET
MODENCV
CCO
1
2
3
4
25 24 23 22 21 20 19
567891011
26
27
28
18
17
16
15
14
13
12
28 Lead PLCC
(Top View)
Pinout
Page 3
3
www.semtech.com
HIGH-PERFORMANCE PRODUCTS
SK10/100E445
Revision 1/February 21, 2001
Application Information
The SK10/100E445 is an integrated 4-bit serial-to­parallel data converter. The chip is designed to work with the E446 device to provide both transmission and receiving of a high speed serial data path. The E445 can convert up to a 2.0 GB/s NRZ data stream into 4-bit parallel data. The device also provides a divide by four clock output to be used to synchronize the parallel data with the rest of the system.
The E445 features multiplexed dual serial inputs to provide test loop capability when used in conjunction with the E446. Figure 1 illustrates the loop test architecture. The architecture allows for the electrical testing of the link without requiring actual transmission over the serial data path medium. The SINA serial input of the E446 has an extra buffer delay and should be used as the loopback serial input.
Figure 1. Loopback Test Architecture
The E445 features a differential serial output and a divide by 8 clock output to facilitate the cascading of two devices to build a 1:8 demultiplexer. Figure 2 illustrates the architecture for a 1:8 demultiplexer using two E445’s; the timing diagram for this configuration can be found in Figure 6. Notice the serial outputs (SOUT of the lower order converter feed the serial inputs of the higher order device. This feedthrough of the serial inputs bounds the upper end of the frequency of operation. The clock to serial output propagation delay plus the setup time of the serial input pins must fit into a single clock period for the cascade architecture to function properly. Using the worst case values for these two parameters from the datasheet, TPD CLK to SOUT = 1150 ps and tS for SIN = –100 ps, yields a minimum period of 1050 ps or a clock frequency of 950 MHz.
The clock frequency is significantly lower than that of a single converter. To increase this frequency, some games can be played with the clock input of the higher order E445. By delaying the clock feeding the second E445 relative to the clock of the first E445, the frequency of operation can be increased. The delay between the two clocks can be increased until the minimum delay of clock to serial out would potentially cause a serial bit to be swallowed (Figure 3).
Figure 2. Cascaded 1:8 Converter Architecture
With a minimum delay of 800 ps on this output, the clock for the lower order E445 cannot be delayed more than 800 ps relative to the clock of the first E445 with­out potentially missing a bit of information. Because the setup time on the serial input pin is negative, coinci­dent excursions on the data and clock inputs of the E445 will result in correct operation.
Figure 3. Cascade Frequency Limitation
PARALLEL
DATA
PARALLEL
DATA
TO SERIAL
MEDIUM
FROM SERIAL
MEDIUM
SOUT
SOUT*
SINA
SINA*
SERIAL
INPUT
DATA
SIN SIN*
SOUT
SOUT*
E445a
Q3 Q2 Q1 Q0
Q7 Q6 Q5 Q4
SIN SIN*
E445b
Q3 Q2 Q1 Q0
Q3 Q2 Q1 Q0
CLOCK
CLOCK*
CLOCK
Tpd CLK to SOUT
PARALLEL OUTPUT DATA
800 ps
100 ps
115 0 ps
CLOCK A
CLOCK B
Tpd CLK to SOUT
800 ps
1150 ps
Page 4
4
www.semtech.com
HIGH-PERFORMANCE PRODUCTS
SK10/100E445
Revision 1/February 21, 2001
Application Information (continued)
Perhaps the easiest way to delay the second clock relative to the first is to take advantage of the differential clock inputs on the E445. By connecting the clock for the second E445 to the complimentary clock input pin, the device will clock a half a clock period after the first E445 (Figure 5). Utilizing this simple technique will raise the potential conversion frequency up to 1.4 GHz. The divide
by eight clock of the second E445 should be used to synchronize the parallel data to the rest of the system as the parallel data of the two E445’s will no longer by synchronized. This skew problem between the outputs can be worked around as the parallel information will be static for eight more clock pulses.
Figure 7. Extended Frequency 1:8 Demultiplexer
Figure 8. Timing Diagram A: 1:8 Serial to Parallel Conversion
SERIAL
INPUT
DATA
SIN SIN*
SOUT
SOUT*
E445a
Q3 Q2 Q1 Q0
Q7 Q6 Q5 Q4
SIN SIN*
E445b
Q3 Q2 Q1 Q0
Q3 Q2 Q1 Q0
CLOCK
CLOCK*
CLOCK A
CLOCK B
Tpd CLK to SOUT
PARALLEL OUTPUT DATA
800 ps
100 ps
1150 ps
Dn-4
Dn-3 Dn-2 Dn-1 Dn Dn+1 Dn+2
Dn+3
Dn-4
Dn-3 Dn-2 Dn-1 Dn Dn+1 Dn+2
Dn+3
CLK
SIN
Q0
SOUTa
Dn-4
Dn-3 Dn-2 DnÐ1DnDn+1
SOUTa
CL/8a
CL/8b
CL/4a
CL/4b
Dn–4
Q1 Dn–3
Q2 Dn–2
Q3 Dn–41
Q4 (Q0 a)
Q5 (Q1 a)
Q6 (Q2 a)
Q7 (Q3 a)
Dn
Dn+1
Dn+2
Dn+3
Page 5
5
www.semtech.com
HIGH-PERFORMANCE PRODUCTS
SK10/100E445
Revision 1/February 21, 2001
Package Information
PIN Descriptions
MIDNIMXAMNIMXAM
A584.0594.023.2175.21
B584.0594.023.2175.21
C561.0081.002.475.4
E090.0011.092.297.2
F310.0910.033.084.0
G050.0CSB72.1CSB
H620.0230.066.018.0
J020.0--15.0--
K520.0--46.0--
R054.0654.034.1185.11
U054.0654.034.1185.11
V240.0840.070.112.1
W240.0840.070.112.1
X240.0650.070.124.1
Y--020.0--05.0
Z2
o
01
o
2
o
01
o
1G014.0034.024.0129.01
1K040.0--20.1--
MILLIMETERS
INCHES
NOTES:
1. Datums -L-, -M-, and -N- determined where top of lead shoulder exits plastic body at mold parting line.
2. DIM G1, true position to be measured at Datum -T-, Seating Plane.
3. DIM R and U do not include mold flash. Allowable mold flash is 0.010 (0.250) per side.
4. Dimensioning and tolerancing per ANSI Y14.5M, 1982.
5. Controlling Dimension: Inch.
6. The package top may be smaller than the package bottom by up to 0.012 (0.300). Dimensions R and U are determined at the outermost extremes of the plastic body exclusive of mold flash, tie bar burrs, gate burrs and interlead flash, but including any mismatch between the top and bottom of the plastic body.
7. Dimension H does not include Dambar protrusion or intrusion. The Dambar protrusion(s) shall not cause the H dimension to be greater than 0.037 (0.940). The Dambar intrusion(s) shall not cause the H dimension to be smaller than 0.025 (0.635).
L
M
N
28 1
V
W
Y BRK
D
D
Z
0.007 (0.180) T L – M N
S
S
0.007 (0.180) T L – M N
M
S
S
J
A
R
EE
C
G1
G
0.004 (0.100)
–T–
SEATING PLANE
VIEW S
0.010 (0.250) T L – M N
S
S
M
++
+
S
K
K1
H
F
0.007 (0.180) T L – M N
M
S
0.007(0.180) T L – M N
M
S
S
S
+
+
Z
X
U
B
G1
0.007 (0.180) T L - M N
S
S
0.007 (0.180) T L - M N
M
S
S
0.010 (0.250) T L - M N
S
S
M
S
VIEW S
Page 6
6
www.semtech.com
HIGH-PERFORMANCE PRODUCTS
SK10/100E445
Revision 1/February 21, 2001
tinUnoitidnoC
lobmyScitsiretcarahCniMpyTxaMniMpyTxaMniMpyTxaM
I
NI
)ffiD(tnerruCtupnI
)ES(
051-051
051
051-051
051
051-051
051
Aµ Aµ
V
HO
tnerruChgiHtuptuO
)ylnOTUOS(
5201-038-5201-038-5201-038-V 1etoN
V
BB
egatloVecnerefeRtuptuO83.1-62.1-83.1-62.1-83.1-62.1-V
I
EE
tnerruCylppuSrewoP451581451581771112Am
SK10E445 DC Electrical Characteristics
(VEE = VEE(min) to VEE(max); VCC = VCCO = GND)
tinUnoitidnoC
lobmyScitsiretcarahCniMpyTxaMniMpyTxaMniMpyTxaM
I
NI
)ffiD(tnerruCtupnI
)ES(
051-051
051
051-051
051
051-051
051
Aµ Aµ
V
HO
tnerruChgiHtuptuO
)ylnOTUOS(
0201-097-089-067-019-076-V 1etoN
V
BB
egatloVecnerefeRtuptuO83.1-72.1-53.1-52.1-13.1-91.1-V
I
EE
tnerruCylppuSrewoP451581451581451581Am
Note 1: The maximum VOH limit was relaxed from standard ECL due to the high frequency output design. All other outputs
are specified with the standard 10E and 100E VOH levels.
TA = 0oC TA = +25oC TA = +85oC
SK100E445 DC Electrical Characteristics
(VEE = VEE(min) to VEE(max); VCC = VCCO = GND)
TA = 0oC
TA = +25
o
C
TA = +85
o
C
DC Characteristics
Page 7
7
www.semtech.com
HIGH-PERFORMANCE PRODUCTS
SK10/100E445
Revision 1/February 21, 2001
Note: 1. For Standard ECL DC Specifications, refer to the ECL Logic Family Standard DC Specification Data Sheet.
2. For part ordering description, see HPP Part Ordering Information Data Sheet.
AC Characteristics
SK10/100E445 AC Electrical Characteristics
(VEE = VEE(min) to VEE(max); VCC = VCCO = GND)
lobmyScitsiretcarahCniMpyTxaMniMpyTxaMniMpyTxaMtinUnoitidnoC
f
xam
ycneuqerFnoisrevnoCmumixaM0.20.20.2
s/BG
ZRN
t
HLP
t
LHP
tuptuOotyaleDnoitagaporP
QotKLC
TUOSotKLC 4/LCotKLC 8/LCotKLC
0051
008
0011 0011
0081
579
5231 5231
0012 0511 0051 0051
0051
008
0011 0011
0081
579
5231 5231
0012 0511 0051 0051
0051
008
0011 0011
0081
579
5231 5231
0012 0511 0051 0051
sp sp sp sp
t
s
emiTputeS
BNIS,ANIS
LES
001-
0
052­002-
001-
0
052­002-
001-
0
052­002-
sp sp
t
h
emiTdloH
LES,BNIS,ANIS054003054003054003sp
t
RR
emiTyrevoceRteseR005003005003005003sp
t
WP
htdiWesluPmuminiM
RM,KLC004004004sp
t
rt,f
semiTllaF/esiR
TUOS
8/LC.4/LC
nQ
031 002 073
522 524 094
072 025 007
031 002 073
522 524 094
072 025 007
031 002 073
522 524 094
072 025 007
sp sp sp
%08-%02
TA = 0oC TA = +25oC TA = +85oC
Timing Diagram A. 1:4 Serial to Parallel Conversion
Dn-4
Dn-3
Dn-4
Dn-2 Dn-1 DnDnDn+1 Dn+2
Dn+3
Dn-4
Dn-3 Dn-2 Dn-1 Dn Dn+1 Dn+2
Dn+3
Dn-3
Dn+1
Dn-2
Dn+2
Dn-1
Dn+3
CLK
SIN
RESET
Q0
Q1
Q2
Q3
SOUT
CL/4
CL/8
Page 8
8
www.semtech.com
HIGH-PERFORMANCE PRODUCTS
SK10/100E445
Revision 1/February 21, 2001
Ordering Information
edoCgniredrODIegakcaPegnaRerutarepmeT
JP544E01KSCCLP-82lairtsudnI
TJP544E01KSCCLP-82lairtsudnI
JP544E001KSCCLP-82lairtsudnI
TJP544E001KSCCLP-82lairtsudnI
AC Characteristics (continued)
Timing Diagram B. 1:4 Serial to Parallel Conversion with SYNC Pulse
Dn-4
Dn-3
Dn-4
Dn-2 Dn-1 Dn
Dn+1
Dn+1 Dn+2 Dn+3
Dn+4
Dn-4
Dn-3 Dn-2 Dn-1 Dn Dn+1 Dn+2
Dn+3
Dn-3
Dn+2
Dn-2
Dn+3
Dn-1 Dn+4
Dn+4
CLK
SIN
RESET
SYNC
Q0
Q1
Q2
Q3
SOUT
CL/4
CL/8
Division Headquarters 10021 Willow Creek Road San Diego, CA 92131 Phone: (858) 695-1808 FAX: (858) 695-2633
Marketing Group
1111 Comstock Street
Santa Clara, CA 95054
Phone: (408) 566-8776
FAX: (408) 727-8994
Semtech Corporation
High-Performance Products Division
Contact Information
Loading...