Datasheet SiHFBF20S, IRFBF20L, SiHFBF20L DataSheet (Vishay)

Page 1
D2PAK (TO-263)
G
D
S
I2PAK (TO-262)
Vishay Siliconix
Power MOSFET
PRODUCT SUMMARY
VDS (V) 900
()V
R
DS(on)
Q
(Max.) (nC) 38
g
Q
(nC) 4.7
gs
Q
(nC) 21
gd
Configuration Single
= 10 V 8.0
GS
D
FEATURES
Halogen-free According to IEC 61249-2-21 Definition
• Surface Mount (IRFBF20S, SiHFBF20S)
Low-Profile Through-Hole (IRFBF20L, SiHFBF20L)
Available in Tape and Reel (IRFBF20S, SiHFBF20S)
• Dynamic dV/dt Rating
• 150 °C Operating Temperature
•Fast Switching
• Fully Avalanche Rated
• Compliant to RoHS Directive 2002/95/EC
DESCRIPTION
Third generation Power MOSFETs form Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.
2
The D
G
PAK is a surface mount power package capabel of the accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible on-resistance in any existing surface mount package. The
2
D
S
N-Channel MOSFET
PAK is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0 W in a typical surface mount application. The through-hole version (IRFBF20L, SiHFBF20L) is available for low-profile applications.
ORDERING INFORMATION
Package D2PAK (TO-263) D2PAK (TO-263) D2PAK (TO-263) I2PAK (TO-262) Lead (Pb)-free and Halogen-free SiHFBF20S-GE3 SiHFBF20STRL-GE3
Lead (Pb)-free
IRFBF20SPbF IRFBF20STRLPbF SiHFBF20S-E3 SiHFBF20STL-E3
Note
a. See device orientation.
a
SiHFBF20STRR-GE3a SiHFBF20L-GE3
a
IRFBF20STRRPbFa IRFBF20LPbF
a
SiHFBF20STR-E3
a
SiHFBF20L-E3
ABSOLUTE MAXIMUM RATINGS (TC = 25 °C, unless otherwise noted)
PARAMETER SYMBOL LIMIT UNIT
Drain-Source Voltage
Gate-Source Voltage
Continuous Drain Current V
Pulsed Drain Current Linear Derating Factor 0.43 W/°C
Single Pulse Avalanche Energy
Repetitive Avalanche Current
Repetitive Avalanche Energy
Maximum Power Dissipation
Peak Diode Recovery dV/dt
Operating Junction and Storage Temperature Range
Soldering Recommendations (Peak Temperature) for 10 s
Mounting Torque 6-32 or M3 screw 10 N
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
= 50 V; starting TJ = 25 °C, L = 117 mH, Rg = 25 , IAS = 1.7 A (see fig. 12).
b. V
DD
c. I
1.7 A, dI/dt 70 A/μs, VDD VDS, TJ 150 °C.
SD
d. 1.6 mm from case. e. Uses IRFBF20, SiHFBF20 data and test conditions.
* Pb containing terminations are not RoHS compliant, exemptions may apply
Document Number: 91121 S11-1053-Rev. B, 30-May-11 1
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT
e
a,e
e
V
DS
VGS
T
= 25 °C
at 10 V
GS
C
T
= 100 °C
C
I
D
IDM
c, e
b, e
a
a
T
= 25 °C
C
= 25 °C
T
A
E
AS
I
AR
E
AR
P
D
dV/dt 1.5 V/ns
T
, T
J
stg
900
± 20
1.7
1.1
6.8
180 mJ
1.7 A
5.4 mJ
54
3.1
- 55 to + 150
d
300
V
A
W
°C
www.vishay.com
This document is subject to change without notice.
www.vishay.com/doc?91000
Page 2
Vishay Siliconix
THERMAL RESISTANCE RATINGS
PARAMETER SYMBOL TYP. MAX. UNIT
Maximum Junction-to-Ambient (PCB Mounted, steady-state)
a
Maximum Junction-to-Case R
Note
a. When mounted on 1" square PCB ( FR-4 or G-10 material).
SPECIFICATIONS (TJ = 25 °C, unless otherwise noted)
PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT
Static
Drain-Source Breakdown Voltage V
V
Temperature Coefficient VDS/TJ Reference to 25 °C, ID = 1 mA - 1.1 - mV/°C
DS
Gate-Source Threshold Voltage V
Gate-Source Leakage I
Zero Gate Voltage Drain Current I
Drain-Source On-State Resistance R
Forward Transconductance g
Dynamic
Input Capacitance C
Reverse Transfer Capacitance C
Total Gate Charge Q
Gate-Drain Charge Q
Turn-On Delay Time t
Rise Time t
Turn-Off Delay Time t
Fall Time t
R
thJA
thJC
DS
GS(th)
V
GSS
-40 °C/W
-2.3
VGS = 0, ID = 250 μA 900 - - V
VDS = VGS, ID = 250 μA 2.0 - 4.0 V
= ± 20 V - - ± 100 nA
GS
VDS = 900 V, VGS = 0 V - - 100
DSS
VGS = 10 V ID = 1.0 A
DS(on)
fs
iss
-55-
oss
-18-
rss
g
--4.7
gs
--21
gd
d(on)
r
-56-
d(off)
-32-
f
V
= 720 V, VGS = 0 V, TJ = 125 °C - - 500
DS
VDS = 50 V, ID = 1.0 A
VGS = 0 V,
V
= 25 V,
DS
f = 1.0 MHz, see fig. 5
b
b
--8.0
0.6 - - S
- 490 -
--38
= 1.7 A, VDS = 360 V,
I
V
GS
= 10 V
D
see fig. 6 and 13
b
-8.0-
V
= 450 V, ID = 1.7 A,
DD
R
= 18 , VGS = 10 V, see fig. 10
g
b
-21-
μA
pFOutput Capacitance C
nC Gate-Source Charge Q
ns
www.vishay.com Document Number: 91121 2 S11-1053-Rev. B, 30-May-11
This document is subject to change without notice.
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT
www.vishay.com/doc?91000
Page 3
S
D
G
Vishay Siliconix
SPECIFICATIONS (TJ = 25 °C, unless otherwise noted)
PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current I
Pulsed Diode Forward Current
a
Body Diode Voltage V
Body Diode Reverse Recovery Time t
Body Diode Reverse Recovery Charge Q
Forward Turn-On Time t
S
I
SM
SD
rr
rr
on
MOSFET symbol showing the integral reverse p - n junction diode
TJ = 25 °C, IS = 1.7 A, VGS = 0 V
TJ = 25 °C, IF = 1.7 A, dI/dt = 100 A/μs
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width  300 μs; duty cycle  2 %. c. Uses IRFBF20/SiHFBF20 data and test conditions.
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)
b
--1.7
--6.8
--1.5V
- 350 530 ns
b
- 0.85 1.3 μC
A
Fig. 1 - Typical Output Characteristics Fig. 2 - Typical Output Characteristics
Document Number: 91121 www.vishay.com S11-1053-Rev. B, 30-May-11 3
This document is subject to change without notice.
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT
www.vishay.com/doc?91000
Page 4
Vishay Siliconix
Fig. 3 - Typical Transfer Characteristics
Fig. 4 - Normalized On-Resistance vs. Temperature
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
www.vishay.com Document Number: 91121 4 S11-1053-Rev. B, 30-May-11
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT
This document is subject to change without notice.
www.vishay.com/doc?91000
Page 5
V
DS
90 %
10 %
V
GS
t
d(on)
t
r
t
d(off)
t
f
Vishay Siliconix
Fig. 7 - Typical Source-Drain Diode Forward Voltage
Fig. 8 - Maximum Safe Operating Area
Fig. 9 - Maximum Drain Current vs. Case Temperature
R
D.U.T.
D
+
V
-
DD
V
DS
V
GS
R
g
10 V
Pulse width 1 µs Duty factor 0.1 %
Fig. 10a - Switching Time Test Circuit
Fig. 10b - Switching Time Waveforms
Document Number: 91121 www.vishay.com S11-1053-Rev. B, 30-May-11 5
This document is subject to change without notice.
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT
www.vishay.com/doc?91000
Page 6
Vishay Siliconix
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
L
V
Var y tp to obtain required I
AS
DS
t
p
R
g
D.U.T.
I
AS
+
V
DD
-
V
DS
10 V
t
p
0.01 Ω
I
AS
Fig. 12a - Unclamped Inductive Test Circuit Fig. 12b - Unclamped Inductive Waveforms
V
DS
V
DD
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
www.vishay.com Document Number: 91121 6 S11-1053-Rev. B, 30-May-11
This document is subject to change without notice.
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT
www.vishay.com/doc?91000
Page 7
Q
GS
Q
GD
Q
G
V
G
Charge
10 V
P.W.
Period
dI/dt
Diode recovery
dV/dt
Ripple ≤ 5 %
Body diode forward drop
Re-applied voltage
Reverse recovery current
Body diode forward
current
V
GS
= 10 Va
I
SD
Driver gate drive
D.U.T. l
SD
waveform
D.U.T. V
DS
waveform
Inductor current
D =
P.W.
Period
+
-
+
+
+
-
-
-
Peak Diode Recovery dV/dt Test Circuit
V
DD
dV/dt controlled by R
g
Driver same type as D.U.T.
I
SD
controlled by duty factor “D”
D.U.T. - device under test
D.U.T.
Circuit layout considerations
Low stray inductance
Ground plane
Low leakage inductance
current transformer
R
g
Note
a. V
GS
= 5 V for logic level devices
V
DD
Vishay Siliconix
Current regulator
Same type as D.U.T.
50 kΩ
0.2 µF
12 V
V
GS
3 mA
0.3 µF
D.U.T.
+
V
DS
-
Fig. 13a - Basic Gate Charge Waveform Fig. 13b - Gate Charge Test Circuit
I
G
Current sampling resistors
I
D
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91121
Document Number: 91121 www.vishay.com S11-1053-Rev. B, 30-May-11 7
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT
Fig. 14 - For N-Channel
.
This document is subject to change without notice.
www.vishay.com/doc?91000
Page 8
TO-263AB (HIGH VOLTAGE)
(Datum A)
34
E
L1
4
D
L2
4
C
1
B
B
C
3
2
B
B
Package Information
Vishay Siliconix
A
A
5
H
Detail A
B
A
c2
Gauge plane
0° to
L
L3
L4
Detail “A” Rotated 90° CW scale 8:1
H
B
Seating plane
A1
2 x e
Lead tip
2 x b2
2 x b
0.010 A B
MM
Plating
(c)
Section B - B and C - C
c
± 0.004 B
5
b1, b3
(b, b2)
Scale: none
M
Base metal
c1
A
E
D1
4
5
E1
View A - A
4
MILLIMETERS INCHES MILLIMETERS INCHES
DIM. MIN. MAX. MIN. MAX. DIM. MIN. MAX. MIN. MAX.
A 4.06 4.83 0.160 0.190 D1 6.86 - 0.270 -
A1 0.00 0.25 0.000 0.010 E 9.65 10.67 0.380 0.420
b 0.51 0.99 0.020 0.039 E1 6.22 - 0.245 -
b1 0.51 0.89 0.020 0.035 e 2.54 BSC 0.100 BSC
b2 1.14 1.78 0.045 0.070 H 14.61 15.88 0.575 0.625
b3 1.14 1.73 0.045 0.068 L 1.78 2.79 0.070 0.110
c 0.38 0.74 0.015 0.029 L1 - 1.65 - 0.066
c1 0.38 0.58 0.015 0.023 L2 - 1.78 - 0.070
c2 1.14 1.65 0.045 0.065 L3 0.25 BSC 0.010 BSC
D 8.38 9.65 0.330 0.380 L4 4.78 5.28 0.188 0.208
ECN: S-82110-Rev. A, 15-Sep-08 DWG: 5970
Notes
1. Dimensioning and tolerancing per ASME Y14.5M-1994.
2. Dimensions are shown in millimeters (inches).
3. Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body at datum A.
4. Thermal PAD contour optional within dimension E, L1, D1 and E1.
5. Dimension b1 and c1 apply to base metal only.
6. Datum A and B to be determined at datum plane H.
7. Outline conforms to JEDEC outline to TO-263AB.
Document Number: 91364 www.vishay.com Revision: 15-Sep-08 1
Page 9
I2PAK (TO-262) (HIGH VOLTAGE)
(Datum A)
E
L1
Package Information
Vishay Siliconix
A
A
B
c2
A
E
D
L2
0.010 A B
Lead tip
B
2 x e
M
Seating
plane
C
C
B
M
3 x b2
3 x b
L
A1
A
E1
Section A - A
Plating
c
b1, b3
(b, b2)
Section B - B and C - C
Scale: None
c
D1
Base metal
c1
MILLIMETERS INCHES MILLIMETERS INCHES
DIM. MIN. MAX. MIN. MAX. DIM. MIN. MAX. MIN. MAX.
A 4.06 4.83 0.160 0.190 D 8.38 9.65 0.330 0.380
A1 2.03 3.02 0.080 0.119 D1 6.86 - 0.270 -
b 0.51 0.99 0.020 0.039 E 9.65 10.67 0.380 0.420
b1 0.51 0.89 0.020 0.035 E1 6.22 - 0.245 -
b2 1.14 1.78 0.045 0.070 e 2.54 BSC 0.100 BSC
b3 1.14 1.73 0.045 0.068 L 13.46 14.10 0.530 0.555
c 0.38 0.74 0.015 0.029 L1 - 1.65 - 0.065
c1 0.38 0.58 0.015 0.023 L2 3.56 3.71 0.140 0.146
c2 1.14 1.65 0.045 0.065
ECN: S-82442-Rev. A, 27-Oct-08 DWG: 5977
Notes
1. Dimensioning and tolerancing per ASME Y14.5M-1994.
2. Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm per side. These dimensions are measured at the outmost extremes of the plastic body.
3. Thermal pad contour optional within dimension E, L1, D1, and E1.
4. Dimension b1 and c1 apply to base metal only.
Document Number: 91367 www.vishay.com Revision: 27-Oct-08 1
Page 10
RECOMMENDED MINIMUM PADS FOR D2PAK: 3-Lead
0.420
(10.668)
0.635 (16.129)
0.355
AN826
Vishay Siliconix
(9.017)
Return to Index
0.135
(3.429)
0.200
(5.080)
Recommended Minimum Pads
Dimensions in Inches/(mm)
0.050
(1.257)
0.145
(3.683)
Document Number: 73397 11-Apr-05
www.vishay.com
1
Page 11
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
Revision: 13-Jun-16
1
Document Number: 91000
Loading...