Datasheet Si5540-BC Datasheet (Silicon Laboratories)

Page 1
Bottom View
PRELIMINARY DATA SHEET
SiPHY™ OC-192/STM-64 TRANSMITTER
Features
Si5540
Complete SONET/SDH transmitter for OC-192/STM-64 data rates with integrated 16:1 multiplexer and DSPLL
Data Rates Supported: OC-192/STM-64, 10GbE, and 10.7 Gbps FEC
Low Power Operation 0.6 W (typ)
Small Footprint: 99-Pin BGA Package (11 x 11mm)
DSPLL™ Based Clock Multiplier Unit w/ selectable loop filter bandwidths
based clock multiplier unit:
OIF SFI-4 Compliant Interface
Output Clock Powerdown
Operates with 155 or 622 MHz Reference Sources
Optional 3.3 V Supply Pin for LVTTL Compatible Outputs
Single 1.8 V Supply Operation
Applications
Sonet/SDH/ATM Routers
Add/Drop Multiplexers
Digital Cross Connects
Optical Transceiver Modules
Sone t / S D H Test E qu ipm en t
Description
The Si5540 is a fully integrated low-power transmitter for high-speed serial communication systems. It combines high speed clock generation with a 16:1 multiplexer to serialize data for OC-192/STM-64 applications. The Si5540 is based on Silicon Laboratories’ DSPLL filter components required by traditional clock multiplier units. In addition, selectable loop filter bandwidths are provided to ensure superior jitter performance while relaxing the jitter requirements on external clock distribution subsystems. Support for data streams up to 10.7 G bps is also provided for applications that employ forward error correction (FEC).
The Si5540 represents a new standard in low jitter, low power and small size for 10 Gbps serial transmitters. It operates from a single 1.8 V supply over the industrial t em perature range (–40°C to 85°C).
technology which eliminates the external loop
Si5364
Ordering Information:
See pa ge17.
Functional Block Diagram
REFSEL
REFC LK
TXLOL
BWSEL
TXCLKD SBL
TXCLKOUT
TXDOUT
Preliminary Rev. 0.31 8/ 01 Copyright © 2001 by Silicon Labora tories Si5540-DS031
This in formation applies to a product under devel opment. I ts characteristics and specifications are subject to change without notice.
2
TXCLK16IN
2
2
Bias
REXT
DSPLL
CMU
Reset
Control
RESET
TM
TXSQLCH
TXMSBSEL
÷
16:1
16
MUX
FIFOERR
REFRATE
2
32
FIFO
2
TXCLK16OUT
TXCLK16IN TXDIN[15:0]
FIFORST
Page 2
Si5540
2 Preliminary Rev. 0.31
Page 3
Si5540
TABLE OF CONTENTS

Section Page

Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
DSPLL™ Clock Multiplier Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Serialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Clock Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Bias Generation Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Differential Output Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Si5540 Pinout: 99-Pin BGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Pin Descriptions: Si5540 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Preliminary Rev. 0.31 3
Page 4
Si5540

Electrical Specifications

Table 1. Recommended Operating Conditions
Parameter Symbol Test Condition Min* Typ
Ambient Tem peratur e T LVTTL Output Supply Voltage V Si5540 Supply Voltage V
*Note: All minimum and maximum speci ficat i ons are guaranteed and apply across the recommended operating condi tions.
T ypi cal val ues appl y at nominal supply voltages and an operat in g temperature of 25
A
DD33
DD
–40 25 85 °C
1.71 3.47 V
1.71 1.8 1.89 V
°C unless otherwise stated.
Max*
Unit
V
SIGNAL +
Differential I/Os
V
ICM
SIGNAL –
, V
OCM
V
IS
Single Ended Voltage
(SIGNAL +) – (SIGNAL –)
Differential Voltage Swing
VID,VOD (V
= 2VIS)
ID
Differential Peak-to-Peak Voltage
t
Figure 1. Differential Voltage Measurement (TXDIN, TXDOUT, TXCLK16IN, TXCLK16OUT)
TXDOUT,
TXDIN
TXCLKOUT,
TXCLK16IN
All Differential IOs
t
su
t
hd
Figure 2. Data to Clock Delay
80% 20%
t
F
t
R
Figure 3. Rise/Fall Time Measurement
t
t
CH
CP
4 Preliminary Rev. 0.31
Page 5
Si5540
Table 2. DC Characteristics, VDD = 1.8 V
(VDD = 1.8 V ±5%, TA = –40°C to 85°C)
Parameter Symbol Test Condition Min Typ Max Unit
Supply Current I Power Dissipation P Common Mode Output Voltage
V
(TXDOUT,TXCLKOUT) Differential Output Voltage Swing
V
(TXDOUT, TX CLKOUT), Differential pk-pk L VPECL Input Voltage High (REFCLK) V L VPECL Input Voltage Low (REFCLK) V L VPECL Input Voltage Swing (REFCLK),
V
Differential pk-pk LVPECL Input Common Mode (REFCLK) V Input Impedance
R
(REFCLK, TXDIN, TXCLK16IN) L VDS Input High Voltage (TXDIN,
V
TXCLK16IN) L VDS Input Low Voltage (TXDIN,
TXCLK16IN) LVDS Input Voltage, Single Ended pk-pk
V
(TXDIN, TXCLK 1 6 IN)
DD
D
OCM
OD
IH IL ID
ICM
IN
IH
V
IL
ISE
See Figure 1 800 1000 1200 mV
Each in p ut to
common mode
333 TBD mA —0.6TBDW
.8 0.9 1.0 V
(pk-pk)
1.975 2.3 2.59 V
1.32 1.6 1.99 V 250 2600 mV
(pk-pk)
1.65 1.95 2.30 V
42 50 58
——2.4V
0.0 V
100 600 mV
(pk-pk)
LVDS Input Common Mode Voltage (TXDIN, TXCLK 1 6 IN)
LVDS Output High Voltage (TXCLK16OUT)
LVDS Output Low Voltage (TXCLK16OUT)
L VDS Output Voltage, Single Ended pk-pk (TXCLK16OUT)
LVDS Output Common Mode Voltage (TXCLK16OUT)
Output Short to GND (TXCLK16OUT, TXDOUT, TXCLKOUT)
Output Short to V
DD
(TXCLK16OUT, TXDOUT, TXCLKOUT) L VTTL Input Voltage Low
(TXCLK D S BL, FIFO R ST, TXSQLCH
, BWSEL, REFRATE, REFSEL, TXMSBSE L, RESET
)
V
V
V
V
V
I
I
V
ICM
OH
OL
OSE
OCM
SC–
SC+
IL2
100 Load Line-to-Line
100 Load Line-to-Line
100 Load
Line-to-Line, See
Figure 1
.8 2.0 2.4 V
TBD 1.475 V
0.925 TBD V
250 400 550 mV
(pk-pk)
1.125 1.20 1.275 V
—25TBDmA
TBD –100 µA
——0.8V
Preliminary Rev. 0.31 5
Page 6
Si5540
Table 2. DC Characteristics, VDD = 1.8 V (Continued)
(VDD = 1.8 V ±5%, TA = –40°C to 85°C)
Parameter Symbol Test Condition Min Typ M ax Unit
Input Voltage High (TXCLK D S BL, FIFO R ST, TXSQLCH
, BWSEL, REFRATE, REFSEL, TXMSBSE L, RESET
)
Input Low Current (TXCLK D S BL, FIFO R ST, TXSQLCH
, BWSEL, REFRATE, REFSEL, TXMSBSE L, RESET
)
Input Hi g h Curre n t (TXCLK D SBL, FIFORST, TXSQL C H
, BWSEL, REFRATE, REFSEL, TXMSBSE L, RESET
)
Input Impedance (TXCLK D SBL, FIFORST, TXSQL C H
, BWSEL, REFRATE, REFSEL, TXMSBSE L, RESET
)
LVTTL Output Voltage Low (FIFOERR, TXLOL
)
LVTTL Output Voltage High (FIFOERR, TXLOL
)
V
V
V
I
I
R
OH2
IH2
IL
IH
IN
OL2
2.0 — V
——10µA
——10µA
10 k
VDD33 = 1.8 V 0.4 V VDD33 = 3.3 V 0.4 VDD33 = 1.8 V 1.4 V VDD33 = 3.3 V 2.4
6 Preliminary Rev. 0.31
Page 7
Si5540
Ta ble 3. AC Characteristics (TXCLK16OUT, TXCLK16IN, TXCLKOUT, TXDIN, TXDOUT)
(V
1.8 V ±5%, TA = –40°C to 85°C)
DD =
Parameter Symbol Test Condition Min T yp Max Unit
TXCLKOUT Frequency f
clkout
9.95 10.7 GHz TXCLKOUT Duty Cycle tch/tcp, Figure 2 45 55 % Output Rise Time
t
R
Figure 3 25 ps
(TXCLKOUT, TXDOUT) Output Fall Time
t
F
Figure 3 25 ps
(TXCLKOUT, TXDOUT) TXCLKOUT Setup to TXDOUT t
TXCLKOUT Hold From TXDOUT t
su hd
Output Return Loss 400 kHz–10 GHz
TXCLK16OUT Frequency f
CLKIN
Figure 2 25 ps Figure 2 25 ps
10 GHz–16 GHz
TBD TBD
— —
— —
Figure 2 622 667 MHz
dB dB
TXCLK16OUT Duty Cycle tch/tcp, Figure 2 40 60 % TXCLK16OUT Rise & Fall Times t TXDIN Setup to TXCLK16IN t TXDIN Hold from TXCLK16IN t TXCLK16IN Frequency f
, t
R DSIN DHIN
CLKIN
F
100 300 ps
300 ps
300 ps
622 667 MHz TXCLK16IN Duty Cycle tch/tcp, Figure 2 40 60 % TXCLK16IN Rise & Fall Times t
, t
R
F
100 300 ps
Table 4. AC Characteristics (Clock Multiplier Characteristics)
(VDD = 1.8 V ±5%, TA = –40°C to 85°C)
Parameter Symbol Test Condition Min Typ Max Unit
Jitter Generation—Deter m inis t ic J Jitter Generation—Ran dom J Jitter Transfer Bandwidth J
DET(PP)
GEN(RMS)
BW
Jitter Transfer Peaking 0.05 0.1 dB Acquisition Time T Input Reference Clock Frequency RC
Input Reference Clock Duty
RC
AQ
FREQ
DUTY
Cycle Input Reference Clock Frequency
RC
TOL
Tolerance
Note: Bellcore specifications: GR-1377-CORE, Issue 5, December 1998.
PRBS-23 0.020 TBD UI
—0.005TBDUI BWSEL = 0 12 kHz BWSEL = 1 50 kHz
Valid REFCLK 15 20 ms REFRATE = 1 622 667 MHz REFRATE = 0 155 167 MHz
40 60 %
–100 100 ppm
PP
RMS
Preliminary Rev. 0.31 7
Page 8
Si5540
Table 5. Ab so l u te M aximu m R atings
Parameter Symbol Value Unit
DC Supply Voltage V LVTTL Input Voltage V Differential Input Voltages V
DD
DD33
DIF
–0.5 to 3.0 V –0.5 to 3.6 V
–0.3 to (VDD+ 0.3) V Maximum Current any output PIN ±50 mA Operating Junctio n Temperature T Storage Temperature Rang e T Package Temperature
JCT
STG
–55 to 150 °C –55 to 150 °C
275 °C
(soldering 10 seconds ) ESD HBM To ler anc e (100 pf, 1.5 k
Note: Permanent device damage m ay occur if the above Absolute Maximum Rat ing s are exc eeded. Functional operation
should be restricted to the conditions as specified in the operational sect i ons of this dat a sheet. Exposure to absolute maximum rating conditi ons f or ext ended periods may affec t device r eliability.
)TBDV
Table 6. Thermal Ch ar acteristics
Parameter Symbol Test Condition Value Unit
Thermal Resistance Junction to Ambient ϕ
JA
Still Air 35 °C/W
8 Preliminary Rev. 0.31
Page 9

Functional Description

Si5540
The Si5540 is a fully integrated, low power, SONET/ SDH transmitter for OC-192/STM-64 applications. It combines a high performance clock multiplier unit (CMU) with a 16:1 serializer that has a low-speed interface compliant with the Optical Interface Forum (OIF) SFI-4 standard.
The CMU uses a phase-locked loop (PLL) architecture based on Silicon Laboratories’ proprietary DSPLL technology. This technology is used to generate u ltra­low jitter clock and data outputs that provide significant margin to the SONET/SDH specificati ons. The DSPLL architecture also utilizes a digitally implemented loop filter that eliminates the need for external loop filter components. As a result, sensitive noise coupling nodes that typically cause degraded jitter performance in crowded PCB environments are removed .
The DSPLL also reduces the complexity and performance requirements of reference clock distribution strategies for OC-192/STM-64 optical port cards. This is possible because the DSPLL provides selectable wideband and narrowband loop filter settings that allow the user to set the jitter attenuation characteristics of the CMU t o accommodate reference clock sources that have a high jitter content. Unlike traditional analog PLL implementations, the loop filter bandwidth is controlled by a digital filter inside the DSPLL and can be changed without any modification to external components.

DSPLL™ Clock Multiplier Unit

The Si5540’s clock multiplier unit (CMU) uses Silicon Laboratories’ proprietary DSPLL technology to generate a low jitter, high frequency clock source capable of producing a high speed serial clock and data output with significant margin to the SONET/SDH specifications. This is achieved by using a digital signal processing (DSP) algorithm to replace the loop filter commonly found in analog PLL design s. This algorithm processes the phase detector error term and generates a digital control value to adjust the frequency of the voltage controlled oscillat or (VCO). B ecause external loop filter components are not required, sensitive noise entry points are eliminated, thus making the DSPLL less susceptible to board-level noise sources. Therefore, SONET/SDH jitter compliance is easier to attain in the application.
Programm able Loop Filt er B andwidth
The digital loop filter in the Si5530 provides two bandwidth settings that support either wideband or narrowband jitter transfer characteristics. The filter
bandwidth is selected via t he BWSEL control input. In traditional P LL implementation s, changing the loop filter bandwidth would require changing the values of external loop filter co mpo nents.
In narrowband mode, a loop filter cutoff of 12 kHz is provided. This set ting makes the Si5540 more tolerant of jitter on th e reference clock source. As a re sult, the complexity of the clock distribution circuitry used to generate the physical layer reference clocks can be simplified without compromising jitter margin to the SONET/SDH specific ati on.
In wideband mode, the loop filter provides a cutoff of 50 kHz. This setting i s desirable in applications where the reference clock is provided by a low jitter source like the Si5364 Clock Synchronization IC or Si5320 Precision Clock Multiplier/Jitter Attenuator IC. This allows the DSPLL to more closely track the precision reference source resulting in the best possible jitter performance.

Reference Clock

The CMU within the Si5530 i s designed to operat e with reference c lock sourc es that ar e eith er 1/16t h or 1/64th the desired output data rate. The CMU will support operation with data rates between 9.9 Gbps and
10.7 Gbps and the reference clock should be scaled accordingly. For example, to support 10.66 Gbps operation the reference clock source would be approximately 167 MHz or 666 MHz. The REFRATE input pin is used to configure the device for operation with one of the two supported reference clock submultiples of the data rate.
The Si5540 supports operation with two selectable reference c lock s our ces . The first configuration uses an externally provided reference clock that is input via REFCLK. The second configuration uses the parallel data clock, TXCLK16IN, as the reference clock source. When using TXCLK16IN as the reference source, the narrowband loop filter setting may be preferable to remove jitter that may be present on the data clock. The selection of reference clock configuration is controlled via the REFSEL input. The Si5540 will drive the TXLOL output high to indicate the DSPLL has locked to the selected reference sou rce.

Serialization

The Si5540 includes serialization circuitry that combines a FIFO wit h a parallel to serial shift register. Low speed data on the parallel input bus, T XDIN[15:0], is latched into the FIFO on the rising edge of TXCLK16IN. The data in the FIFO is clocked into the
Preliminary Rev. 0.31 9
Page 10
Si5540
shift register by an output clock, TXCLK16 OUT, that is produced by dividing down the high speed transmit clock, TXCLKOUT , by a factor of 16. The TXCLK16OUT clock output is provided to su ppor t 16 bit word trans fe rs between the Si5540 and upstream devices using a counter clocking scheme. The high-speed serial data stream is clocked out of the shift register using TXCLKOUT.
Input FIFO
The Si5540 integrates a FIFO to decouple data transferred into the FIFO via TXCLK16IN from data transferred into th e s hift r egister via TXCLK16O UT. The FIFO is eight parallel words deep and accommodates any static phase delay tha t may be i ntroduc ed between TXCLK16OUT and TXCLK16IN in counter clocking schemes. Further, the FIFO will accommodat e a phase drift or wander between TXCLK16IN and TXCLK16OUT of up to three parallel data words.
The FIFO circuitry indicates an overflow or underflow condition by ass erting FIFOERR high. This ou tput can be used to recenter the FIFO read/write pointers by tieing it directly to the FIFORST input. The Si5540 w ill also recenter the read/ write pointers after the device’s power on reset, external reset via RESET time the DSPLL transitions from an out of lock state to a locked state (TXLOL
Parallel Input To Serial Output Relationship
The Si5540 provides the c apability to select the order in which data on the par allel input b us is transmi tted seri­ally. Data on this bus can be transmitted MSB first or LSB first depending on the setting of TXMSBSEL. If TXMSBSEL is tied low, TXDIN0 is transmitted first fol­lowed in order by TXDIN1 through TXDIN15. If TXMSB­SEL is tied high, TXDIN15 is transmitted first followed in order by TXDIN14 th ro ugh TXDIN0. This feat ur e s im pli­fies board rout ing when I Cs are mounte d on bot h sides of the PCB.
Transmit Data Squelch
To prev ent the transmission of corrupted data into the network, the Si5540 provides a control pin that can be used to force the high speed data output, TXDOUT, to 0. By driving TXSQLCH
transitions from low to high).
low TXDOUT will be forced to 0.
, and each

Clock Disable

The Si5540 provides a clock disable pin, T XCLKDSBL, that is used to disable the high -speed serial data clock output, TXCLKOUT. When the TXCLKDSBL pin is asserted, the positive and negative terminals of CLK­OUT are tied to 1.5 V through 50 This feature is used to reduce power consumption in applications that do not use the high speed transmit data clock.
on-chip resistors.

Bias Generation Circuitry

The Si5540 makes use of an external resistor to set internal bias currents. The external resistor allows pr e­cise generation of bias currents which significantly reduces power consumption versus traditional imple­mentations that use an internal resistor. The bias gener­ation circuitry requires a 3.09 k connected between REXT and GND.
(1%) resistor

Reset

A device reset can be forced by holding the RESET pin low for at least 1 input FIFO point er s r ese t a nd t he digital control c ir c uit ry initializes. When RESET transitions high to start normal operation, the DSPLL will be calibrat ed.
10 Preliminary Rev. 0.31
µs. When RESET is as serted low, the
Page 11
Si5540

Differential Output Circuitry

The Si5540 utilizes a current-mode logic (CML) architecture to drive the high speed serial output clock and data on TXCLKOUT and TXDOUT. An example of output term ination with ac coupling is shown in Figure 4. In applic ati ons where direct dc coup ling is possi ble, t he 250 nF capacitor s may be om itted. The differ ential peak-to -peak volta ge swing of the CML architecture is list ed in Table 2 on page 5.
50
1.5 V
50
24 mA
250 nF
250 nF
Zo = 50
Zo = 50
VDD
50
50
VDD
Figure 4. CML Output Driver Termination (TXCLKOUT, TXDOUT)
Preliminary Rev. 0.31 11
Page 12
Si5540

Si5540 Pinout: 99 BGA

10 123456789
TXDIN[12]– TXDIN[12]+ TXDIN[14]– TXDIN[14]+ REFCLK– REFCLK+ TXSQLCH
TXDIN[10]+ TXDIN[11]+ TXDIN[13]– TXDIN[13]+ TXDIN[15]– TXDIN[15]+ TXCLKDSBL REFSEL
TXDIN[10]– TXDIN[11]– GND GND GND GND RESET VDD33 GND TXCLKOUT+
TXDIN[8]+ TXDIN[9]+ GND VDD VDD VDD VDD
TXDIN[8]– TXDIN[9]– GND VDD VDD VDD VDD
TXDIN[6]+
TXDIN[6]–
TXDIN[7]+
TXDIN[7]–
GND VDD VDD VDD VDD
GND VDD VDD VDD VDD
RSVD_ VDD33
RSVD_
GND
RSVD_
GND
RSVD_
GND
RSVD_
GND
REFRATE
RSVD_ VDD33
GND TXCLKOUT–
GND GND
GND TXDOUT+
GND TXDOUT–
GND
A
B
C
D
E
F
G
TXDIN[4]+ TXDIN[5]+ GND GND GND GND GND BWSEL NC GND
TXDIN[4]–
TXDIN[2]+
TXDIN[5]–
TXDIN[2]–
TXDIN[3]+ TXDIN[3]– TXDIN[1]+ TXDIN[1]– TXMSBSEL
TXDIN[0]+ TXDIN[0]–
TXCLK16
IN+
TXCLK16
IN–
Bottom View
Figure 5. Si5540 Pin Configuration (Bottom View)
12 Preliminary Rev. 0.31
TXCLK16
OUT+
RSVD_
GND
TXCLK16
OUT–
TXLOL REXT
FIFORST FIFOERR
H
J
K
Page 13
Si5540
10123456789
A
B
GND
REFRATE
RSVD_ VDD33
C
D
E
F
G
TXDOUT–
GNDTXCLKOUT–
GNDGND
GNDTXDOUT+
GND
RSVD_ VDD33
RSVD_
GND
RSVD_
GND
RSVD_
GND
RSVD_
GND
TXDIN[12]–TXDIN[12]+TXDIN[14]–TXDIN[14]+REFCLK-REFCLK+TXSQLCH
TXDIN[10]+TXDIN[11]+TXDIN[13]–TXDIN[13]+TXDIN[15]–TXDIN[15]+TXCLKDSBLREFSEL
GNDGNDGNDGNDRESETVDD33GNDTXCLKOUT+
GNDVDDVDDVDDVDD
VDDVDDVDD
VDDVDDVDD
VDDVDD
VDD
VDD
TXDIN[11]–
TXDIN[10]–
TXDIN[8]+TXDIN[9]+
TXDIN[8]–TXDIN[9]–GND
TXDIN[6]+TXDIN[7]+GNDVDD
TXDIN[6]–TXDIN[7]–GNDVDD
H
J
K
REXT
FIFOERR
TXLOL
FIFORST
RSVD_
GND
TXCLK16
OUT–
GNDBWSELNCGND
TXMSBSEL
TXCLK16
OUT+
TXCLK16
IN–
GNDGND
TXCLK16
IN+
TXDIN[4]+TXDIN[5]+GNDGND
TXDIN[4]–TXDIN[5]–TXDIN[3]+TXDIN[3]–TXDIN[1]+TXDIN[1]–
TXDIN[2]–TXDIN[0]+TXDIN[0]–
TXDIN[2]+
Top View
Figure 6. Si5540 Pin Configuration (Transparent Top View)
Preliminary Rev. 0.31 13
Page 14
Si5540

Pin Descr i p tio ns : Si 554 0

Pin Number(s) P in Name I/O Signal Level Description
H3 BWSEL I LVTTL
K1 FIFOERR O LVTTL
K2 FIFORST I LVTTL
B1, C5–8, C2, D8, D2, E8, E1–2, F8,
F2, G8, G2 , H4–
8, H1
H2 NC
A5–6 REFCLK+,
GND GND
REFCLK–
I LVPECL
Bandwidth Select DSPL L.
This input selects loop bandwidth of the DSPLL. BWSEL = 0: Loop bandwidth set to 12 kHz BWSEL = 1: Loop bandwidth set to 50 kHz.
FIFO Error.
This output is driven high when a FIFO over­flow/underflow has occurred. This output will stick high until reset by asserting FIFORST.
FIFO Reset.
This input, when asserted high , resets the read/ write FIFO pointers to their initial state.
GND.
No Connect.
Reserved for device testing; leav e electrically unconnected.
Differential Reference Clock.
The reference clock sets the operating fre­quency of the PLL used to generate the output clock frequency. The Si5540 will operate with reference clock frequencies that ar e eith er 1/ 16th or 1/64th the output clock rate.
A2 REFRATE I LVTTL
B3 REFSEL I LVTTL
C4 RESET
14 Preliminary Rev. 0.31
ILVTTL
Reference Frequency Select.
This input configures the CMU to operate with one of two possible reference clock freq uen­cies. When REFRA TE = 1, the CMU will oper­ate with a reference that is 1/16th the output clock rate. When REFRATE = 0, the CMU will operate with a reference that is 1/64th the out­put clock rate.
Reference Clock Selection.
This inputs selects the reference clock source used by the CMU. When REFSEL = 0, the low speed data input clock, TXCLK16IN, is used as the CMU reference. When REFSEL = 1, the ref­erence clock provided on REFCLK is used.
Device Reset.
Forcing this input low for at least 1 µs will cause a device reset. For normal operation, this pin should be held high.
Page 15
Pin Number(s) P in Name I/O Signal Level Description
Si5540
J1 REXT
D3, E3, F3, G3 , J3RSVD_GND
A3, B2 RSVD_VDD33
K5–6 TXCLK16IN–,
TXCLK16IN+
K3–4 TXCLK16OUT+,
TXCLK16OUT–
B4 TXCLKDSBL I LVTTL
ILVDS
OLVDS
External Bias Resistor.
This resistor is used by onboard circu itry to establish bias currents within the device. This pin must be connected to GND through a
3.09 k
Ω (1%) resistor.
Reserved Tie to Ground.
Must tie directly to GND for proper operation.
Reserved Tie to VDD33.
Must tie directly to VDD33 for proper operat ion.
Differential Data Clock Input.
The rising edge of this input clocks data present on TXDIN into the device.
Divided Down Output Clock.
This clock output is generated by dividing down the high speed output clock, TXCLKOUT, by a factor of 16. It is intended for use in counter clocking schemes that transfer data between the system ASIC and the Si5540.
High Speed Clock Disable.
When this input is high, the outpu t driv er for TXCLKOUT is disabled. In applications that do not require the output data clock, the output clock driver should be disabled to save power.
C1, D1 TXCLKOUT+,
TXCLKOUT–
A7–10, B5–10, C9–10, D9–10, E9–10, F9–10,
G9–10, H9–10,
J5–10, K7–10
F1, G1 TXDOUT+,
J2 TXLOL
TXDIN[15:0]–,
TXDIN[15:0]+
TXDOUT–
OCML
ILVDS
OCML
OLVTTL
High Speed Clock Output.
The high speed output clock, TXCLKOUT , is generated by the PLL in the clock multip lier unit. It’s frequency is nominally 16 or 64 times the selected reference source.
Differential Parallel Data Input.
The 16-bit data word present on these pins is multiplexed into a high speed serial stream and output on TXDOUT . The data on these inputs is clocked into the device by the rising edge of TXCLKIN.
Differential High Speed D ata Output.
The 16-bit word input on TXDIN[15:0] is multi ­plexed into a high speed serial stream that is output on these pins. This output is updated by the rising edge of TXCLKOUT.
CMU Loss-of-Lock.
The output is asserted low when the CMU is not phase locked to the selected referenc e s our ce.
Preliminary Rev. 0.31 15
Page 16
Si5540
Pin Number(s) P in Name I/O Signal Level Description
J4 TXMSBSEL I LVTTL
A4 TXSQLCH
D4–7, E4–7, F4–7, G4–7,
C3 VD D33 VDD33 1.8 V or 3.3 V
VDD VDD 1.8 V
ILVTTL
Data Bus Transmit Order.
For TXMSBSEL = 0, data on TXDIN[0] is trans­mitted first followed by TXDIN[1] through TXDIN[15]. For TXMSBSEL = 1, TXDIN[15] is transmit ted first followed by TXDIN[14] through TXDIN[0].
Transmit Data Squelch.
If TXSQLCH is asserted low, the output data stream on TXDOUT will be forced to 0. If TXSQLCH
Supply Voltage.
Nominally 1.8 V.
Digita l Out put Suppl y.
Must be tied to either 1.8 V or 3.3 V. When tied to 3.3 V, LVTTL compa ti ble output vol tag e swings on TXLOL ported.
= 1, TX squelching is turned off.
and FIFOERR are sup-
16 Preliminary Rev. 0.31
Page 17

Ordering Guide

Si5540
Table 7. Ordering Guide
Part Number Package Temperature
Si5540-BC 99 B GA –40°C to 85°C
Preliminary Rev. 0.31 17
Page 18
Si5540

Package Ou tlin e

Figure 7 illustrates t he package details for the S i5540. Table 8 lists the values for the dimens ions shown in the illustration.
A1 Ball Pad
Corner
A1 Ball Pad
Corner
D
A
A1
E
b
A2
Seating
Plane
10987654321
e
1.00 Ref
1.00 Ref
A B C D E F G H J K
e
Bottom ViewTop View Side View
Figure 7. 99-Ball Grid Array (BGA)
Table 8. Package Diagram Di mensions
Symbol Millimeters
Min Nom Max
A 1.30 1.40 1.50 A1 0.31 0.36 0.41 A2 0.65 0.70 0.75
b 0.46
D—11.00—
E—11.00—
e 1.00
18 Preliminary Rev. 0.31
Page 19
NOTES:
Si5540
Preliminary Rev. 0.31 19
Page 20
Si5540

Contact Informati on

Silicon Laboratori es Inc.
4635 Boston Lane Austin, TX 78735 Tel: 1+(512) 416-8500 Fax: 1+(512) 416-9669 Toll Free: 1+(877) 444-3032
Email: productinfo @ silabs.com Internet : w ww.silabs .com
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without noti c e. Silico n Laborator ies assumes no responsibilit y fo r errors and omissio ns, and disc laims responsibilit y for any consequences resulting from the use of in form ation inclu ded her ein. Addit ionall y, Si licon Labor atories assu mes no re sponsib ility for the fu nction ing of undes cribed fea tures or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep ­resent ation or gu ara ntee rega rding the suit abilit y of its pro duct s for any particul ar purp ose, nor does Silicon Lab orat ories as sume an y liabili ty arisin g out of the ap plic at ion or use of any prod uct or circ uit , and sp eci fic ally dis clai ms an y and al l liab i lity , incl udi ng without lim it ation co nse­quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life , or for any other applica ti on in which the failure of the Sil icon Laboratories produ ct could create a situation where per­sonal inj ury or death may occur . Should Buyer purchase or use Silicon Laboratories prod ucts for any such unintended or unauthorized ap­plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.
Silico n Laborator ies, Silicon Labs , SiPHY, and DSPLL are trademarks of Sili con Labor atories In c. Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.
20 Preliminary Rev. 0.31
Loading...