Datasheet Si5530-BC Datasheet (Silicon Laboratories)

Page 1
Preliminary Rev. 0.31 8/ 01 Copyright © 2001 by Silicon Labora tor ies Si5530-DS031
This information applies to a product under development. Its char acteristics and spe c ifications are subject to change without notice.
Si5530
SiPHY™ OC-192/STM-64 SONET/SDH RECEIVER
Features
Complete low power, high speed, receiver with integrated limiting amplifier, clock and data recovery (CDR), and 1:16 demultiplexer:
Applications
Description
The Si5530 is a fully integrated low-power receiver for high-speed serial communication systems. It combines post amplification, clock and data recovery, and a 1:16 deserialization as required in OC-192/STM-64 applications. Support for data streams up to 10.7 Gbps is also provided for applications that employ forward error correction (FEC). A fully integrated clock and data recovery unit with integrated loop filter ensures optimal jitter performance while reducing design complexity.
The Si5530 represents a new standard in low power and small size for high-speed serial receivers. It operates from a single 1.8 V supply over the industrial temperature range (–40°C to 85°C).
Functional Block Diagram
Data Rates Supported: OC-192/ STM-64, 10GbE, 10.7 Gbps FEC
Low Power Operation 0.6 W (typ)
Small Footprint 99-Pin BGA Package (11 x 11 mm)
Integrated Limiting Amplifier
Programmable Slicing Level and Sampling Phase
SFI-4 Compliant LVDS Low Speed Interface
Loss-of-Signal and Loss-of-Lock Detection
Lock-to-Reference Control
Optional 3.3 V Supply Pin for LVTTL Compatible Outputs
Single 1.8 V Supply Operation
Sonet/SDH/ATM Routers
Add/Drop Multiplexers
Digital Cross Connects
Optical Transceiver Modules
Sonet/SDH Test Equipment
RXDOUT[15:0]
RXCLK1 RXCLK2
RXCLK2DIV
1:16
DEMUX
RXSQLCH
RXMSBSE L
32
2
2
RXCLK2DSBL
RXDIN
REFCLK
Limiting
AMP
LOSLVL
LOS
LTR
CDR
2
2
SLICE_LVL
PHASE_ADJ RXLOL
REFRATE
RESET
Reset
Control
Voltage
Ref
VREF
Bias
REXT
÷
Ordering Information:
See pa ge16.
Si5364
Bottom View
PRELIMINARY DATA SHEET
Page 2
Si5530
2 Preliminary Rev. 0.31
Page 3
Si5530
Preliminary Rev. 0.31 3
TABLE OF CONTENTS
Section Page
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Limiting Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Loss-of-Signal Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Slicing Level Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Clock and Data Recovery (CDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Sample Phase Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Lock Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Lock-to-Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Deserialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Serial Input to Parallel Output Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Auxiliary Clock Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Data Squelch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Bias Generation Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Voltage Reference Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Si5530 Pinout: 99-Pin BGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Pin Descriptions: Si5530 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Page 4
Si5530
4 Preliminary Rev. 0.31
Electrical Specifications
Figure 1. Differential Volta ge Measurement (RXDIN, RXDOUT, RXCLK1, RXCLK2)
Figure 2. Data to Clock Delay
Figure 3. Rise/Fall Time Measurement
Table 1. Recommended Operating Conditions
Parameter Symbol Test Condition
Min
*
Typ
Max
*
Unit
Ambient Temperature T
A
–40 25 85 °C
LVTTL Output Supply Voltage V
DD33
1.71 3.47 V
Si5530 Supply Voltage V
DD
1.71 1.8 1.89 V
*Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.
T ypical values apply at nominal supply voltages and an oper ating temperature of 25°C unless otherwise stated.
V
IS
VID,VOD (V
ID
= 2VIS)
Differential I/Os
Differential Voltage Swing
Single Ended Voltage
Differential Peak-to-Peak Voltage
SIGNAL +
SIGNAL –
(SIGNAL +) – (SIGNAL –)
V
ICM
, V
OCM
V
t
RXDOUT
RXCLK1
t
CP
t
CH
t
cq1
t
cq2
All Differential IOs
t
F
t
R
80% 20%
Page 5
Si5530
Preliminary Rev. 0.31 5
Table 2. D C Characteri sti cs
(VDD = 1.8 V ±5%, TA = –40°C to 85°C)
Parameter Symbol Test Condition Min Typ Max Unit
Supply Current I
DD
278 TBD mA
Power Dissipation P
D
—0.5 TBDW
Voltage Reference (VREF) V
REF
VREF driving
10 k
load
1.21 1.25 1.29 V
Common Mode Input Voltage (RXDIN) V
ICM
TBD 0.1 TBD V
Differential Input Voltage Swing (RXDIN) V
ID
See Figure 1 20 1.0 mV
(pk-pk)
L VPECL Input Voltage HIGH (REFCLK) V
IH
1.975 2.3 2.59 V
L VPECL Input Voltage LOW (REFCLK) V
IL
1.32 1.6 1.99 V
L VPECL Input Voltage Swing, Differential pk-pk (REFCLK)
V
ID
Figure 1 250 2400 mV
(pk-pk)
L VPECL Internally Generated Input Bias (REFCLK)
V
IB
1.65 1.95 2.3 V
L VDS Output High Voltage (RXDOUT, RXCLK1, RXCLK2)
V
OH1
100 Load Line-to-Line
TBD 1.475 mV
LVDS Output Low Voltage (RXDOUT, RXCLK1, RXCLK2)
V
OL1
100 Load Line-to-Line
0.925 TBD V
LVDS Output Voltage, Differential pk-pk (RXDOUT, RXCLK1, RXCLK2)
V
OSE
100 Load
Line-to-Line,
Figure 1
500 800 mV
(pk-pk)
LVDS Common Mode Voltage (RXDOUT, RXCLK1, RXCLK2)
V
CM
1.125 1.275 V
Output Short to GND (RXDOUT, RXCLK1, RXCLK2)
I
SC(–)
—25TBDmA
Output Short to V
DD
(RXDOUT, RXCLK1, RXCLK2)
I
SC(+)
TBD –100 µA
LVTTL Input Voltage Low (RXMSBSEL, RXCLK2DIV, RXCLK2DSBL,
RXSQLCH
, REFSE L , LTR, RESET)
V
IL2
VDD33 = 3.3 V 0.8 V VDD33 = 1.8 V 0.7
LVTTL Input Voltage High (RXMSBSEL, RXCLK2DIV, RXCLK2DSBL,
RXSQLCH
, REFSE L , LTR, RESET)
V
IH2
VDD33 = 3.3 V 2.0 V VDD33 = 1.8 V 1.7
LVTTL Input Low Current (RXMSBSEL, RXCLK2DIV, RXCLK2DSBL,
RXSQLCH
, REFSE L , LTR, RESET)
I
IL
——10µA
LVTTL Input High Current (RXMSBSEL, RXCLK2DIV, RXCLK2DSBL,
RXSQLCH
, REFSE L , LTR, RESET)
I
IH
——10µA
Page 6
Si5530
6 Preliminary Rev. 0.31
LVTTL Input Impedanc e (RXMSBSEL, RXCLK2DIV, RXCLK2DSBL,
RXSQLCH
, REFSE L , LTR, RESET)
R
IN
10 k
L VTTL Output Voltage Low (LOS
, RXLOL)
V
OL2
VDD33 = 1.8 V 0.4 V VDD33 = 3.3 V 0.4
L VTTL Output Voltage High (LOS
, RXLOL)
V
OH2
VDD33 = 1.8 V 1.4 V VDD33 = 3.3 V 2.4
Table 3. AC Characteristics (RXDIN, RXDOUT, RXCLK1, RXCLK2)
(VDD = 1.8 V ±5%, TA = –40°C to 85°C)
Parameter Symbol T est Condition Min Typ Max Unit
Output Clock Frequency (RXCLK1)
f
clkout
See Figure 2 622.08 667 MHz
Duty Cycle (RXCLK1, RXCLK2) tch/tcp, Figure 2 45 55 % Output Rise and Fall Times
(RXCLK1, RXCLK2,RXD O U T)
t
R,tF
Figure 3 50 ps
Data Invalid Prior to RXCLK1 t
cq1
Figure 2 200 ps
Data In v a l i d After RXC L K1 t
cq2
Figure 2 200 ps
Input Return Loss (RXIN) 400 kHz–10.0 GHz
10.0 GHz–16.0 GHz
18.7
TBD
— —
— —
dB dB
Slicing Adjust Dynam ic Ran ge SLICELVL = 200–800 mV –20 20 m V Slicing Level Offset
1
(referred to RXDIN)
SLICELVL = 200–800 mV –500 500
µV
Slicing Level Accuracy VSLICE –5 5 % Sampling Phase Adjustment
2
PHASEADJ = 200–800 mV -45
o
—45
o
LOS Threshold Dynamic Range LOSLVL = 200–800 mV 10 50 mV
pk-pk
LOS Threshold Offset
3
(referred to RXDIN)
LOSLVL = 200–800 mV –500 500
µV
LOS Threshold Accuracy VLOS –5 5 %
Note:
1. Slice level (referred to RXDIN) is calculated as follows: VSLICE = (SLICE_LVL – 0.4
VREF)/15.
2. Sample Phase Offset is calcul ated as follows: PHASE OFFSET = 45° (PHASEADJ – 0.4
VREF)/0.3
3. LOS Threshold voltage (r eferred to RXDIN) is calculated as follows: VLOS = 30mV + (LOS_LVL – 0.4
VREF)/15.
Table 2. DC Characteristics (Continued)
(VDD = 1.8 V ±5%, TA = –40°C to 85°C)
Parameter Symbol Test Condition Min Typ Max Unit
Page 7
Si5530
Preliminary Rev. 0.31 7
Table 4. A C Characteri sti cs (PLL Cha r acteristics)
(VDD = 1.8 V ± 5%, TA = –40°C to 85°C)
Parameter Symbol T est Condition Min Typ Max Unit
Jitter Tolerance J
TOL(PP)
f = 2.4 kHz 15 30 UI
PP
f = 24 kHz 1.5 3.0 UI
PP
f = 400 kHz 1.5 3.0 UI
PP
f = 4 MHz 0.15 0.3 UI
PP
Acquisition Time T
AQ
——20 µs
Input Reference Clock Frequency RC
FREQ
REFRATE= 1 622 667 MHz REFRATE= 0 155 167 MHz
Reference Clock Duty Cycle RC
DUTY
40 50 60 %
Reference Clock Frequency Tolerance
RC
TOL
–100 100 ppm
Frequency Difference at which Receive PLL goes out of Lock (REFCLK compared to the divided down VCO clock)
LOL TBD 600 1000 ppm
Frequency Difference at which Receive PLL goes into Lock (REFCLK compared to the divided down VCO clock)
LOCK TBD 300 TBD ppm
Note: Bellcore specifications: GR-1377-CORE, Issue 5, December 1998.
Table 5. A b so l u te M aximum R atings
Parameter Symbol Value Unit
DC Supply Voltage V
DD
–0.5 to TBD V
LVTTL Input Voltage V
DD33
–0.5 to 3.6 V
Differential Input Voltages V
DIF
–0.3 to (VDD+ 0.3) V Maximum Current any output PIN ±50 mA Operating Junction Temperature T
JCT
–55 to 150 °C
Storage Temperature Range T
STG
–55 to 150 °C
Package Temperature (soldering 10 seconds)
275
°C
ESD HBM Tolerance (100 pf, 1.5 k
)TBDV
Note: Permanent device damage m ay occur if the above Absolute Maximum Ratings are exceeded. Func ti onal operation
should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum rating condit ions for extended periods may affect device re li ability.
Table 6. Thermal Ch ar acteristics
Parameter Symbol Test Condition Value Unit
Thermal Resistance Junction to Ambient ϕ
JA
Still Air 38 °C/W
Page 8
Si5530
Preliminary Rev. 0.31 8
Functional Description
The Si5530 is a high performance, low power, fully integrated receiver for SONET/SDH applications operating at OC-192/ST M-64 data rate s. It saves board space by integrating a limiting amplifier, clock and data recovery unit, and a demultiplexer into a small 99-pin BGA package. Further space savings are realized because no external loop filter components are required to support CDR operation. The Si5530 also provides a low-speed LVDS interface that is compliant to the Optical Interface Forums SFI-4 standard.
To support long haul transmission applications, operation at data rates up to 10.7 Gbps is support ed to accommodate forward error correction (FEC). In addition, programmable data slicing and sampling phase adjustment a re provided to support bit- error-rate (BER) optimization.
Limiting Amplifier
The Si5530 incorporates a high sensitivity limiting amplifier with sufficient gain to directly accept the output of transimpedance amplifiers. High sensitivity is achieved by using a digital calibration algorithm to cancel out amplifier offsets. This algorithm achieves superior offset cancellation by using statistical averaging to remove noise that can degrade more traditional calibra tion routines.
The limiting amplifier provides sufficient gain to fully saturate with input signals that are less than 20 mV peak-to-peak differentia l. In addition, input signals that exceed 1 V peak-to-peak differen tial will not cause any performance degradation.
Loss-of-Signal Detection
The limiting am plifie r incl udes circ uitry t hat g enerates a loss-of-signal (LOS
) alarm when the input signal amplitude on RXDIN falls below an externally control led threshold. The Si5530 can be configured to drive the LOS
output low when the differential input amplitude drops below a threshold set between ~10 mV and 50 mV pk-pk differential. Approximately 3 dB of hysteresis prevents unnecessa ry switc hing on LOS
.
The LOS threshold is set by applying a voltage between
0.20 V and 0.80 V to the LOSLVL input. The voltage present on LOSLVL maps to an input signal threshold as follows:
V
LOS
is the differential pk-pk LOS threshold referred to
the RXDIN input, V
LOSLVL
is the voltage applied to the
LOSLVL pin, and VREF is reference voltage output on
the VREF pin. The LOS detection circuitry is disabled by tieing the
LOSLVL input to the supply (VDD). T his forces the LOS output high.
Slicing Level Adjustment
To support applications that require BER optimization, the limiting amplifier provides circuitry that supports adjustment of t he 0/1 decision threshold (slicing l evel) over a range of ±20 mV when referred to the RXDIN input. The slicing level is set by applying a voltage between 0.20 V and 0.80 V to the SLICELVL input. The voltage present o n SLICELV L sets the slicing level as follows:
V
LEVEL
is the slicing l evel referred to the RXDI N input,
V
SLICE
is the voltage applied to the SLICE_LVL pin, and
VREF is reference voltage output on the VREF pin. The slicing lev el adjustment may be disabled by tiei ng
the SLCLVL input to the supply (VDD). When slicing is disabled, the slicing offset is set to 0.0 V relative to internally biased input common mode voltage for RXDIN.
Clock and Data Recovery (CDR)
The Si5530 uses an integrated CDR to recover clock and data from a non-return to zero (NRZ) signal input on RXDIN. The recovered data clock is used to regenerate the incoming data by sam pling the output of the limi ting amplifier at the center of the NRZ bit period. The recovered clock and data is then deserial ized by a 1: 16 demultiplexer and output via a LVDS compatible low speed interface (RXDOUT[15:0], RXCLK1, and RXCLK2).
Sample Phase Adjustment
In applications where it is not desirable t o recover d ata by sampling in the center of the data eye, the Si5530 supports adjustment of the CDR sampling phase across the NRZ data period. When sample phase adjustment is enabled, the sampling instant used for data recovery can be moved over a range of ±45
° relative to the center
of the incoming NRZ bit period. Adjustment of the sampling phase is de sirable when data eye distortions are introduced by the transmission medium.
The sample phas e is s et by applying a voltage betwe en
0.20 V and 0.80 V t o the PHASEADJ input. The voltage present on PHASEADJ maps to sam ple phase off set as follows:
V
LOS
V
LOSLVL
0.4xVR EF
()
15
--------------------------------------------------------------- 30 mV+=
V
LEVEL
V
SLICE
0.4xVREF
()
15
---------------------------------------------------------- -
=
Page 9
Si5530
9 Preliminary Rev. 0.31
Phase Offset is the sa mpling off set in deg rees from the center of the data eye, V
PHASE
is the voltage applie d to the PHASEADJ pin, and VREF is reference voltage output on the VREF pin. A positive phase offset will adjust the sampli ng point to lead the de fault samp ling point at the center of the data eye, and a negative phase offset will adjust the sampling point to lag the default sampling point.
Data recovery using a sampling phase offset is disabled by tieing t he PHASEADJ input to the suppl y (VDD). Thi s forces a default phase offset of 0
° to be used for data
recovery.
Lock Detect
The Si5530 provides lock-detect circuitr y that indicates whether the PLL has achieved frequency lock with the incoming data. This circuit compares the frequen cy of a divided down version of the recovered clock with the frequency of the s upplied reference c lock (REFCLK). If the recovered clo ck freque ncy deviat es from that o f the reference clock by the amount specified in Table 4 on page 7, the PLL is declared out of lock, and the loss-of­lock (RXLOL
) pin is assert ed. In this s tate, the PLL will try to reacquire lock with the incoming data stream. During reacquisition, the recovered clock frequency (RXCLK1 and RXCLK2) will drift over a 1% range relative to the supplied reference clock. The RXLOL output will remain asserted until the recovered clock frequency is within the REFCLK frequency by the amount specified in T able 4 on page 7.
Lock-to-Reference
In applications where it is desirable to main tain a stable output clock during an alarm condition like loss-of­signal, the lock-t o-referen ce input (LTR
) can be used to
force a stable output clock . When LTR
is asserted, the CDR is prevented from acquiring the data signal and the CDR will lock the RXCLKOUT1 and RXCLKOUT2 outputs to the provided REFCLK. In typical applications, the LOS
output would be tied to the LTR input to force a
stable output clock.
Reference Clock
The CDR within the S i5530 uses a reference clock to center the PLL fre quency so that it is close e nough to the data frequency to achieve lock. The device is designed to oper ate with reference clock so urces that are either 1/16th or 1/64th the input data rate. The Si5530 will operate with data streams between
9.9 Gbps and 10.7 Gbps and the reference clock should
be scaled accordingly. For example, to support
10.66 Gbps operation the REFCLK frequencies would be approximately 166 MHz or 666 MH z. The REFRATE input pin is us ed to configure the device for op eration with one of the two supported reference clock submultiples of the data rate.
Deserialization
The Si5530 uses a 1:16 dem ult ipl ex er to deserialize the high-speed input . The deserialized data is out put on a 16-bit parallel data bus RXDOUT[15:0] synchronous with the rising edge of RXCLK1. This clock output is derived by dividing down the recovered clock by a factor of 16.
Serial Input to Parallel Output Relationship
The Si5530 provides the capabi lit y to se lect the order in which the receiv ed s erial data is m apped t o the paralle l output bus RXDOUT[15:0]. The mapping of the receive bits to the output data word is controlled by the RXMSBSEL input. If RXMSBSEL is tied low, the first bit received is output on RXDOUT0 and the followi ng bits are output in order on RXDOUT1 through RXDOUT15. If RXMSBSEL is tied high, the first bit received is output on RXDOUT15, and the following bits are output in order on RXDOUT14 through RXDOUT0.
Auxiliary Clock Output
To support the widest range of system timing configurations, a second clock output is provided on RXCLK2. This output can be configured to provide a clock that is a 1/1 6th or 1/64th submultiple of the high speed recovered clock. The divide factor used to generate RXCLK2 is controlled via the RXCLKDIV2 input as described in "Pin Descriptions: Si5530" on page 13. In application s whic h do not us e RXC LK2 , this output can be powered down by forcing the RSCLK2DSBL input high.
Data Squelch
During some system error conditions, such as LOS, it may be desirable to force the receive data output to zero in order to avoid propagation of erroneous data into the downstream electronics. In these applications , the Si5530 provides a data squelching control input, RXSQLCH
. When this input is active low, the data on
RXDOUT will be forced to 0.
PhaseOffset
45°xV
PHASE
0.4xVREF
()
0.30
--------------------------------------------------------------------------
=
Page 10
Si5530
Preliminary Rev. 0.31 10
Bias Generation Circuitry
The Si5530 makes use of an external resistor to set internal bias currents. The external resistor allows precise generation of bias currents which significantly reduces power consumption versus traditional implementations that us e an internal resistor. The bias generation circuitry requires a 3.09 k
(1%) resistor
connected between REXT and GND.
Vo ltage Ref er en ce Outp ut
The Si5530 provides an output voltage reference that can be used by an external circuit to set the LOS threshold, slicing level, or sampling pha se adjust. One possible implementation would use a resistor divider to set the control voltage for LOSLVL, SLICELVL, or PHASEADJ. A second alternative would use a DAC to set the control voltage. Using this approach, VREF would be used to establish the range of a DAC output. The reference voltage is nominall y 1.25 V.
Page 11
Si5530
Preliminary Rev. 0.31 11
Si5530 Pinout: 99 BGA
Figure 4. Si5530 Pin Configuration (Bottom View)
Bottom View
RXDOUT[4]+ RXDOUT[2]– RXDOUT[2]+ RXDOUT[0]– RXDOUT[0]+ RXCLK[1]– RXCLK[1]+
RXCLK2
DSBL
REXT
RXDOUT[4]– RXDOUT[3]– RXDOUT[3]+ RXDOUT[1]– RXDOUT[1]+ RXCLK[2]– RXCLK[2]+ NC VREF SLICELVL
RXDOUT[6]+ RXDOUT[5]+ GND GND GND GND GND
RSVD_
GND
LOSLVL PHASEADJ
RXDOUT[6]– RXDOUT[5]– GND VDD VDD VDD VDD RXSQLCH GND GND
RXDOUT[8]+ RXDOUT[7]+ GND VDD VDD VDD VDD
RSVD_
GND
GND RXDIN+
RXDOUT[8]– RXDOUT[7]– GND VDD VDD VDD VDD
RSVD_
GND
GND RXDIN–
RXDOUT[10]+ RXDOUT[9]+ GND VDD VDD VDD VDD
RSVD_ VDD33
GND GND
RXDOUT[10]– RXDOUT[9]– GND GND GND GND GND VDD33
RSVD_
GND
LTR
RXDOUT[12]+ RXDOUT[11]+ RXDOUT[11]– RXDOUT[13]+ RXDOUT[13]– RXDOUT[15]+ RXDOUT[15]– REFRATE
RSVD_ VDD33
RXLOL
RXDOUT[14]+ RXDOUT[14]– REFCLK+ REFCLK–
RSVD_
GND
RXMSBSEL RXCLK2DIV RESET LOS
RXDOUT[12]–
10 123456789
A
K
J
G
H
F
E
D
C
B
Page 12
Si5530
12 Preliminary Rev. 0.31
Figure 5. Si5530 Pin Configuration (Transparent Top View)
G
VDD
E
Top View
RXDOUT[4]+RXDOUT[2]–RXDOUT[2]+RXDOUT[0]–RXDOUT[0]+RXCLK[1]–RXCLK[1]+
RXCLK2
DSBL
REXT
RXDOUT[4]–RXDOUT[3]–RXDOUT[3]+RXDOUT[1]–RXDOUT[1]+RXCLK[2]–RXCLK[2]+NCVREFSLICELVL
RXDOUT[6]–
RXDOUT[8]+RXDOUT[7]+
RXDOUT[8]–RXDOUT[7]–GND
RXDOUT[10]+RXDOUT[9]+GND
RXDOUT[10]–RXDOUT[9]–GNDGNDGND
RXDOUT[12]+RXDOUT[11]+RXDOUT[11]–RXDOUT[13]+RXDOUT[13]–
RXDOUT[14]+RXDOUT[14]–REFCLK+REFCLK–
RSVD_
GND
RXMSBSELRXCLK2DIV
RXDOUT[12]–
10123456789
A
H
B
RXDOUT[15]+RXDOUT[15]–REFRATE
RSVD_ VDD33
RXLOL
J
GNDGNDVDD33
RSVD_
GND
LTR
VDDVDDVDD
RSVD_ VDD33
GNDGND
VDDVDDVDDVDD
RSVD_
GND
GNDRXDIN–
F
VDDVDDVDDVDD
RSVD_
GND
GNDRXDIN+ GND
RXDOUT[5]–GNDVDDVDDVDDVDDRXSQLCHGNDGND
D
RXDOUT[5]+GNDGNDGNDGNDGND
RSVD_
GND
LOSLVLPHASEADJ
C
RXDOUT[6]+
K
RESETLOS
Page 13
Si5530
Preliminary Rev. 0.31 13
Pin Descr ip t io ns : Si 553 0
Pin Number(s) Name I/O Signal Level Description
C4–8, D8, D1–
2, E8 , E2, F8,
F2, G8, G1–2,
H4–8
GND GND
GND.
K1 LOS OLVTTL
Loss-of-Signal.
This output is driven low when the peak-to-pea k signal amplitude is below thres hold s et via LOSLVL.
C2 LOSLVL I
LOS Thresh ol d Lev el.
Applying an analog voltage to this pin allows adjustment of the Threshold used to declare LOS. Tieing this input high disables LOS detec­tion and forces the LOS
output high.
H1 LTR
ILVTTL
Lock-to-Reference.
This input forces a stable output clock by locking RXCLK1 and RXCLK2 to the provided refer­ence. Driving LTR low activates this feature.
B3 NC
No Connect.
Reserved for device testing leave elec t r ic ally unconnected.
C1 PHASEADJ I
Sampling Phase Adjust.
Applying an analog voltage to this pin allows adjustment of the sampling phase across the data eye. Tieing this input high nominally centers the sampling phase.
K6–7 REFCLK–,
REFCLK+
I LVPECL
Differential Reference Clock.
The reference clock sets the initial operating fre­quency used by the onboard PLL for clock and data recovery. The device will operate with refer­ence frequencies that are 1/16th or 1/64th the input data rate (nominally 155 MHz or 622 MHz).
J3 REFRATE I LVTTL
Reference Clock Select.
This input configures the Si5530 to operate with one of two reference clock frequencies. If REF­SEL is held high, the device requires a reference clock that is 1/16 the input data rate. If REFSEL is low, a reference clock at 1/64 the input data rate is required.
K2 RESET
ILVTTL
Device Reset.
Forcing this input low for a at least 1µs will cause a device reset. For normal operation, thi s pin should be held high.
Page 14
Si5530
14 Preliminary Rev. 0.31
A2 REXT
External Bias Resistor.
This resistor is used by onboard circuitr y to establish bias currents within the device. This pin must be connected to GND through a 3.09 k
(
1%) resistor.
C3, E3, F3, H2, K5RSVD_GND
Reserved Tie to Ground.
Must tie directly to GND for proper operation.
G3, J2 RSVD_VDD33
Reserved Tie to VDD33.
Must tie directly to VDD33 for proper operation.
A4–5 RXCLK1+,
RXCLK1–
OLVDS
Differential Clock Output 1.
The clock recovered from the signal present on RXDIN is divided down by 16 and output on CLKOUT. In the absence of data, a stable clock on RXCLK1 can be maintained by asserting LTR
.
B4–5 RXCLK2+,
RXCLK2–
OLVDS
Differential Clock Output 2.
An auxiliary output clock is provided on this pin that may be a divided down version of the high speed clock recovered from the signal pre se nt on RXDIN. The divide factor used in generating RXCLK2 is set via RXCLK2DIV.
K3 RXCLK2DIV I LVTTL
Clock Divider Select.
This input selects the divide factor used to gen­erate the RXCLK2 output. When this input is driven low, RXCLK2 is 1/16th the recovered high-speed clock. When driven high, RXCLK2 is 1/64th the recovered high speed clock rate.
A3 RXCLK2DSBL I LVTTL
RXCLK2 Disable.
Driving this input high will disable the RXCLK2 output. This would be used to save power in applications that do not require an aux iliary clock.
E1, F1 RXDIN+,
RXDIN–
I High Speed
Differential
Differential Data Input.
Clock and data are recovered from the high speed data signal present on these pins.
A6–10, B6–10,
C9–10, D9–10,
E9–10, F9–10,
G9–10, H9–10,
J4–10, K8–10
RXDOUT[15:0]–,
RXDOUT[15:0]+
OLVDS
Differential Parallel Data Output.
The data recovered from the signal present on RXDIN is demultiplexed and output as a 16-bit parallel word via RXDOUT[15:0]. These outputs are updated on the rising edge of RXCLK1.
J1 RXLOL
OLVTTL
Loss-of-Lock.
This output is driven low when the recovered clock frequency deviates from the reference clock by the amount specified in Table 4.
Pin Number(s) Name I/O Signal Level Description
Page 15
Si5530
Preliminary Rev. 0.31 15
K4 RXMSBSEL I LVT TL
Data Bus Receive Order.
This determines the order of the received data bits on the output bus. For RXMSBSEL = 0, the first data bit received is output on RXDOUT[0] and following data bits are output on RDOUT[1] through RXDOUT[15]. For RXMSBSEL = 1, the first data bit is output on RXDOUT[15] and following data bits are out­put on RXDOUT[14] through RXDOUT[0].
D3 RXSQLCH
ILVTTL
Data Squelch.
When this input is low, the data on RXDOUT is forced to 0. Set RXSQLCH
high for normal oper-
ation.
B1 SLICELVL I
Slicing Level Adju s t ment .
Applying an analog voltage to this pin allows adjustment of the slicing level applied to the input data eye. Tieing this input high nominally sets the slicing offset to 0.
D4–7, E4–7, F4–7, G4–7,
VDD VDD 1.8 V
Supply Voltage.
Nominally 1.8 V.
H3 VDD33 VDD33 1.8 V or 3.3 V
Digital Output Su pply.
Must be tied to either 1.8 V or 3.3 V. When tied to 3.3 V, LVTTL compatible output voltage swings on RXLOL
and LOS are supported.
B2 VREF O Voltage Ref
Voltage Reference.
The Si5600 provides an output voltage reference that can be used by an external circuit to set the LOS threshold, slicing le vel, or sa mpl ing phas e adjustment. The equivalent resistance between this pin and GND should not be less than 10 k
Ω.
The reference voltage is nominally 1.2 5 V.
Pin Number(s) Name I/O Signal Level Description
Page 16
Si5530
16 Preliminary Rev. 0.31
Ordering Guide
Table 7. Ordering Guide
Part Number Package Temperature
Si5530-BC 99 BGA –40°C to 85°C
Page 17
Si5530
Preliminary Rev. 0.31 17
Package Ou tlin e
Figure 6 illustrat es the package details for the Si5530. Table 8 lists the v alues for the dimensions shown in the illustration.
Figure 6. 99-Ba l l Gr id Array (BGA)
Table 8. Package Diagram Dim en sions
Symbol Millimeters
Min Nom Max
A 1.30 1.40 1.50 A1 0.31 0.36 0.41 A2 0.65 0.70 0.75
b 0.46
D—11.00—
E—11.00—
e 1.00
D
E
10987654321
A B C D E F G H J K
A
1 Ball P ad
Corner
A1 Ball Pad
Corner
Seating
Plane
A
A1
A2
e
Bottom ViewTop View Side Vie w
1.00 Ref
1.00 Ref
b
e
Page 18
Si5530
18 Preliminary Rev. 0.31
Contact Informatio n
Silicon Laboratori es Inc.
4635 Boston Lane Austin, TX 78735 Tel: 1+(512) 416-8500 Fax: 1+(512) 416-9669 Toll Free: 1+(877) 444-3032
Email: productinfo @ silabs.com Internet : w ww.silabs .com
Silico n Laboratories, Silicon Labs, and S iPHY are trademarks of Silicon Laboratories Inc. Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silico n Laboratori es assumes no responsibility for err ors and omissions, and disclaims responsibil it y f or any consequences resulting from the use of in format ion inclu ded her ein. Addit ionall y, Si licon Labor atories assu mes no respo nsib ility for the func tion ing of undes cribed fea tures or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty , rep­resent ation or gu ara ntee rega rding the suit abilit y of its pro duct s for any particul ar purp ose, nor does Si licon Lab orat ories as sume an y liabili ty arisin g out of the ap plic at ion or use of any prod uct or circ uit , and sp ecif ic ally dis clai ms an y and al l liab i lity , inclu di ng wi thout limitation conse­quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Sil icon Labo r atories p roduct coul d create a s ituation where per­sonal injury or death may occur. Should Buyer purcha se or use Silicon Laborat ories prod ucts for any such unintended or unauthorized ap­plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.
Loading...