Page 1
SGP30N60
SGW30N60
Fast IGBT in NPT-technology
• 75% lower E
compared to previous generation
off
combined with low conduction losses
• Short circuit withstand time – 10 µs
• Designed for:
- Motor controls
- Inverter
• NPT-Technology for 600V applications offers:
- very tight parameter distribution
- high ruggedness, temperature stable behaviour
- parallel switching capability
• Qualified according to JEDEC
1
for target applications
PG-TO-220-3-1
• Pb-free lead plating; RoHS compliant
• Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type
I
V
CE
V
C
T j Marking Package
CE(sat)
C
G
E
PG-TO-247-3-21
SGP30N60 600V 30A 2.5V
SGW30N60 600V 30A 2.5V
150° C
150° C
G15N60 PG-TO-220-3-1
G15N60 PG-TO-247-3-21
Maximum Ratings
Parameter Symbol Value Unit
Collector-emitter voltage
DC collector current
= 25°C
T
C
T
= 100°C
C
Pulsed collector current, t p limited by T
I
jmax
Turn off safe operating area
≤ 600V, Tj ≤ 150 ° C
V
CE
Gate-emitter voltage
Avalanche energy, single pulse
= 30 A, V CC = 50 V, R
I
C
start at T
= 25°C
j
= 25 Ω,
GE
Short circuit withstand time2
= 15V, V
V
GE
≤ 600V, T j ≤ 150 ° C
CC
Power dissipation
= 25°C
T
C
Operating junction and storage temperature
Soldering temperature,
V
CE
I
C
Cpuls
-
V
GE
E
AS
t
SC
P
tot
T
j
T
s
, T
stg
600 V
41
A
30
112
112
± 20
V
165 mJ
10
µ s
250 W
-55...+150
° C
260
wavesoldering, 1.6mm (0.063 in.) from case for 10s
1
J-STD-020 and JESD-022
2
Allowed number of short circuits: <1000; time between short circuits: >1s.
1 Rev. 2.1 June 06
Page 2
SGP30N60
SGW30N60
Thermal Resistance
Parameter Symbol Conditions Max. Value Unit
Characteristic
R
R
thJC
thJA
PG-TO-220-3-1
0.5 K/W
PG-TO-247-3-21
V
(BR)CES
V
CE(sat)
V
GE(th)
I
CES
I
GES
V CE=20V, I C=30A
g
fs
C
iss
C
oss
C
rss
Q
Gate
L
E
VGE=0V, I
=500µA
C
V GE = 15V, I C=30A
=25°C
T
j
T
=150°C
j
=700µ A,V
I
C
V CE=600V,V GE=0V
T
=25° C
j
T
=150°C
j
V CE=0V,V GE=20V
V
=25V,
CE
V
=0V,
GE
f =1MHz
V CC=480V, I C=30A
V
=15V
GE
PG-TO-220-3-1
PG-TO-247-3-21
I
C(SC)
=15V,t
V
GE
≤ 600V,
V
CC
≤ 150° C
T
j
SC
CE=V GE
≤ 10µ s
62
40
Value
Unit
min. Typ. max.
600 - -
1.7
-
2.1
2.5
2.4
3.0
V
3 4 5
-
-
-
-
40
3000
µ A
- - 100 nA
- 20 - S
- 1600 1920
pF
- 150 180
- 92 110
- 140 182 nC
-
-
7
13
- nH
- 300 - A
IGBT thermal resistance,
junction – case
Thermal resistance,
junction – ambient
Electrical Characteristic, at T
= 25 ° C, unless otherwise specified
j
Parameter Symbol Conditions
Static Characteristic
Collector-emitter breakdown voltage
Collector-emitter saturation voltage
Gate-emitter threshold voltage
Zero gate voltage collector current
Gate-emitter leakage current
Transconductance
Dynamic Characteristic
Input capacitance
Output capacitance
Reverse transfer capacitance
Gate charge
Internal emitter inductance
measured 5mm (0.197 in.) from case
Short circuit collector current2)
2)
Allowed number of short circuits: <1000; time between short circuits: >1s.
2 Rev. 2.1 June 06
Page 3
SGP30N60
SGW30N60
Switching Characteristic, Inductive Load, at T
Parameter Symbol Conditions
IGBT Characteristic
Turn-on delay time
Rise time
Turn-off delay time
Fall time
Turn-on energy
Turn-off energy
Total switching energy
t
d(on)
t
r
t
d(off)
t
f
E
on
E
off
E
ts
Switching Characteristic, Inductive Load, at T
Parameter Symbol Conditions
IGBT Characteristic
Turn-on delay time
Rise time
Turn-off delay time
Fall time
Turn-on energy
Turn-off energy
Total switching energy
t
d(on)
t
r
t
d(off)
t
f
E
on
E
off
E
ts
=25 °C
j
=25° C,
T
j
=400V,I C=30A,
V
CC
V
=0/15V,
GE
=11Ω,
R
G
1)
L
=180nH,
σ
1)
C
=900pF
σ
Energy losses include
“tail” and diode
reverse recovery.
=150 °C
j
=150°C
T
j
=400V,I C=30A,
V
CC
V
=0/15V,
GE
= 11Ω,
R
G
1)
L
=180nH,
σ
1)
C
=900pF
σ
Energy losses include
“tail” and diode
reverse recovery.
Value
Unit
min. typ. max.
- 44 53
ns
- 34 40
- 291 349
- 58 70
- 0.64 0.77
mJ
- 0.65 0.85
- 1.29 1.62
Value
Unit
min. typ. max.
- 44 53
ns
- 34 40
- 324 389
- 67 80
- 0.98 1.18
mJ
- 0.92 1.19
- 1.90 2.38
1)
Leakage inductance L
an d Stray capacity C σ due to dynamic test circuit in Figure E.
σ
3 Rev. 2.1 June 06
Page 4
SGP30N60
SGW30N60
160A
t
=4µ s
p
140A
I
c
100A
120A
100A
80A
TC=80°C
60A
, COLLECTOR CURRENT
40A
C
I
20A
0A
10Hz 100Hz 1kHz 10kHz 100kHz
TC=110°C
I
c
f, SWITCHING FREQUENCY
10A
, COLLECTOR CURRENT
C
I
0.1A
Figure 1. Collector current as a function of
switching frequency
(T
≤ 150° C, D = 0.5, V
j
V
= 0/+15V, R
GE
= 11Ω)
G
= 400V,
CE
300W
60A
1A
1V 10V 100V 1000V
VCE, COLLECTOR -EMITTER VOLTAGE
Figure 2. Safe operating area
(D = 0, T
= 25°C, T j ≤ 150° C)
C
15µ s
50µ s
200µ s
1ms
DC
250W
200W
150W
100W
, POWER DISSIPATION
tot
P
50W
0W
25°C 50°C 75°C 100°C 125°C
, CASE TEMPERATURE
T
C
Figure 3. Power dissipation as a function
of case temperature
≤ 150° C)
(T
j
50A
Limited by bond wire
40A
30A
20A
, COLLECTOR CURRENT
C
I
10A
0A
25°C 50°C 75°C 100°C 125°C
TC, CASE TEMPERATURE
Figure 4. Collector current as a function of
case temperature
(V
≤ 15V, T j ≤ 150° C)
GE
4 Rev. 2.1 June 06
Page 5
SGP30N60
SGW30N60
90A
90A
80A
70A
60A
50A
40A
30A
, COLLECTOR CURRENT
C
I
20A
10A
0A
VGE=20V
15V
13V
11V
9V
7V
5V
0V 1V 2V 3V 4V 5V
, COLLECTOR -EMITTER VOLTAGE
V
CE
Figure 5. Typical output characteristics
= 25°C)
(T
j
80A
70A
60A
50A
40A
30A
, COLLECTOR CURRENT
C
I
20A
10A
0A
Figure 6. Typical output characteristics
(T
100A
4.0V
VGE=20V
15V
13V
11V
9V
7V
5V
0V 1V 2V 3V 4V 5V
VCE, COLLECTOR -EMITTER VOLTAGE
= 150°C)
j
90A
80A
70A
60A
50A
40A
30A
, COLLECTOR CURRENT
C
I
20A
10A
0A
0V 2V 4V 6V 8V 10V
, GATE -EMITTER VOLTAGE
V
GE
Tj=+25°C
-55°C
+150°C
Figure 7. Typical transfer characteristics
(V
= 10V)
CE
3.5V
IC = 60A
3.0V
2.5V
IC = 30A
2.0V
1.5V
, COLLECTOR -EMITTER SATURATION VOLTAGE
CE(sat)
1.0V
V
-50°C 0°C 50°C 100°C 150°C
Tj, JUNCTION TEMPERATURE
Figure 8. Typical collector-emitter
saturation voltage as a function of junction
temperature
(V
= 15V)
GE
5 Rev. 2.1 June 06
Page 6
SGP30N60
SGW30N60
1000ns
t , SWITCHING TIMES
100ns
t
d(off)
t
t
d(on)
f
t
r
1000ns
100ns
t , SWITCHING TIMES
10ns
Figure 9. Typical switching times as a
function of collector current
(inductive load, T
V
Dynamic test circuit in Figure E)
10A 20A 30A 40A 50A 60A
I
, COLLECTOR CURRENT
C
= 150°C, V
= 0/+15V, R
GE
j
= 11Ω,
G
CE
= 400V,
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, T
V
GE
Dynamic test circuit in Figure E)
10ns
0Ω 10Ω 20Ω 30Ω 40Ω
RG, GATE RESISTOR
= 150°C, V
j
= 400V,
CE
= 0/+15V, I C = 30A,
t
t
t
f
d(on)
r
t
d(off)
1000ns
t
d(off)
100ns
t
f
t
t, SWITCHING TIMES
t
r
d(on)
10ns
0°C 50°C 100°C 150°C
, JUNCTION TEMPERATURE
T
j
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, V
I
= 30A, R
C
= 11Ω,
G
= 400V, V GE = 0/+15V,
CE
Dynamic test circuit in Figure E)
5.5V
5.0V
4.5V
4.0V
3.5V
3.0V
, GATE -EMITTER THRESHOLD VOLTAGE
2.5V
GE(th)
V
2.0V
-50°C 0°C 50°C 100°C 150°C
Tj, JUNCTION TEMPERATURE
Figure 12. Gate-emitter threshold voltage
as a function of junction temperature
(I
= 0.7mA)
C
max.
typ.
min.
6 Rev. 2.1 June 06
Page 7
SGP30N60
SGW30N60
5.0mJ
4.5mJ
*) E on and E ts include losses
due to diode recovery.
Ets*
4.0mJ
3.5mJ
4.0mJ
3.0mJ
3.5mJ
3.0mJ
2.5mJ
2.0mJ
Eon*
E
off
2.5mJ
2.0mJ
1.5mJ
1.5mJ
1.0mJ
1.0mJ
E , SWITCHING ENERGY LOSSES
0.5mJ
0.0mJ
10A 20A 30A 40A 50A 60A 70A
I
, COLLECTOR CURRENT
C
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, T
V
= 0/+15V, R
GE
= 150°C, V
j
= 11Ω,
G
= 400V,
CE
Dynamic test circuit in Figure E)
E , SWITCHING ENERGY LOSSES
0.5mJ
0.0mJ
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, T
V
GE
Dynamic test circuit in Figure E)
3.0mJ
2.5mJ
2.0mJ
*) E on and E ts include losses
due to diode recovery.
Ets*
10
10
-1
*) E on and E ts include losses
due to diode recovery.
0Ω 10Ω 20Ω 30Ω 40Ω
RG, GATE RESISTOR
= 150°C, V
j
= 400V,
CE
= 0/+15V, I C = 30A,
0
K/W
D =0.5
0.2
K/W
0.1
0.05
Ets*
E
off
Eon*
1.5mJ
1.0mJ
E , SWITCHING ENERGY LOSSES
0.5mJ
0.0mJ
0°C 50°C 100°C 150°C
, JUNCTION TEMPERATURE
T
j
Figure 15. Typical switching energy losses
as a function of junction temperature
(inductive load, V
= 30A, R
I
C
= 11Ω,
G
= 400V, V GE = 0/+15V,
CE
Dynamic test circuit in Figure E)
Eon*
E
off
0.02
-2
10
K/W
0.01
-3
10
K/W
, TRANSIENT THERMAL IMPEDANCE
thJC
Z
10
single pulse
-4
K/W
1µs 10µs 100µs 1ms 10ms 100ms 1s
R ,(1/W)
0.3681 0.0555
0.0938 1.26*10
0.0380 1.49*10-4
R
1
τ
C1=
1
, PULSE WIDTH
t
p
τ
, (s)
-3
R
2
/ R
τ
C2=
1
/ R
2
2
Figure 16. IGBT transient thermal
impedance as a function of pulse width
(D = t
/ T)
p
7 Rev. 2.1 June 06
Page 8
SGP30N60
SGW30N60
25V
C
20V
15V
120V
1nF
480V
iss
C
oss
10V
100pF
C , CAPACITANCE
, GATE -EMITTER VOLTAGE
GE
5V
V
0V
0nC 50nC 100nC 150nC 200nC
, GATE CHARGE
Q
GE
10pF
Figure 17. Typical gate charge
(I
= 30A)
C
25
20
15
s
µs
µs
500A
450A
400A
350A
300A
250A
C
0V 10V 20V 30V
VCE, COLLECTOR -EMITTER VOLTAGE
Figure 18. Typical capacitance as a
function of collector-emitter voltage
(V
= 0V, f = 1MHz)
GE
rss
µs
10
200A
150A
5
µs
, SHORT CIRCUIT WITHSTAND TIME
sc
t
µs
0
10V 11V 12V 13V 14V 15V
, GATE -EMITTER VOLTAGE
V
GE
Figure 19. Short circuit withstand time as a
function of gate-emitter voltage
= 600V, start at T
(V
CE
= 25° C)
j
100A
, SHORT CIRCUIT COLLECTOR CURRENT
50A
C(sc)
I
0A
10V 12V 14V 16V 18V 20V
VGE, GATE -EMITTER VOLTAGE
Figure 20. Typical short circuit collector
current as a function of gate-emitter voltage
(V
≤ 600V, T j = 150° C)
CE
8 Rev. 2.1 June 06
Page 9
SGP30N60
SGW30N60
TO - 220AB
PG-TO220-3-1
dimensions
symbol
min max min max
A 9.70 10.30 0.3819 0.4055
B 14.88 15.95 0.5858 0.6280
C 0.65 0.86 0.0256 0.0339
D 3.55 3.89 0.1398 0.1531
E 2.60 3.00 0.1024 0.1181
F 6.00 6.80 0.2362 0.2677
G 13.00 14.00 0.5118 0.5512
H 4.35 4.75 0.1713 0.1870
K 0.38 0.65 0.0150 0.0256
L 0.95 1.32 0.0374 0.0520
M 2.54 typ. 0.1 typ.
N 4.30 4.50 0.1693 0.1772
P 1.17 1.40 0.0461 0.0551
T 2.30 2.72 0.0906 0.1071
[mm] [inch]
PG-TO247-3-21
9 Rev. 2.1 June 06
Page 10
SGP30N60
SGW30N60
1
rrrr
1
T(t)
j
2
2
n
n
Figure A. Definition of switching times
p(t)
12 n
r r
T
C
Figure D. Thermal equivalent
circuit
Figure B. Definition of switching losses
Figure E. Dynamic test circuit
Leakage inductance L
=180nH
σ
an d Stray capacity C σ =900pF.
10 Rev. 2.1 June 06
Page 11
SGP30N60
SGW30N60
Edition 2006-01
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 6/8/06.
All Rights Reserved.
Attention please!
The information given in this data sheet shall in no event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical
values stated herein and/or any information regarding the application of the device, Infineon Technologies
hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types
in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or
system. Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.
11 Rev. 2.1 June 06