Datasheet SGP10N60A, SGB10N60A, SGW10N60A Datasheet (INFINEON)

Page 1
Fast IGBT in NPT-technology
SGP10N60A, SGB10N60A
SGW10N60A
75% lower E combined with low conduction losses
compared to previous generation
off
C
Designed for:
- Motor controls
- Inverter
G
E
NPT-Technology for 600V applications offers:
- very tight parameter distribution
- high ruggedness, temperature stable behaviour
- parallel switching capability
P-TO-220-3-1 (TO-220AB)
P-TO-263-3-2 (D²-PAK) (TO-263AB)
P-TO-247-3-1 (TO-247AC)
Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type
SGP10N60A 600V 10A 2.3V
V
CE
I
C
V
CE(sat)
T
j
150°C
Package Ordering Code
TO-220AB Q67040-S4457 SGB10N60A TO-263AB Q67040-S4507 SGW10N60A TO-247AC Q67040-S4510
Maximum Ratings Parameter Symbol Value Unit
Collector-emitter voltage DC collector current
= 25°C
T
C
= 100°C
T
C
Pulsed collector current, tp limited by T
jmax
Turn off safe operating area
V
600V, Tj 150°C
CE
Gate-emitter voltage Avalanche energy, single pulse
= 10 A, VCC = 50 V, R
I
C
start at T
= 25°C
j
Short circuit withstand tim e
VGE = 15V, V
600V, Tj 150°C
CC
= 25 Ω,
GE
1)
Power dissipation
T
= 25°C
C
Operating junction and storage temperature
V
CE
I
C
I
Cpuls
-
V
GE
E
AS
t
SC
P
tot
T
j
, T
stg
600 V
20
10.6 40
40
±20
70 mJ
10
92 W
-55...+150
A
V
µs
°C
1)
Allowed number of short circuits: <1000; time between short circuits: >1s.
1Jul-02
Page 2
SGP10N60A, SGB10N60A
SGW10N60A
Thermal Resistance Parameter Symbol Conditions Max. Value Unit Characteristic
IGBT thermal resistance,
R
thJC
junction – case Thermal resistance, junction – ambient SMD version, device on PCB
1)
R
R
thJA
thJA
TO-220AB TO-247AC TO-263AB 40
Electrical Characteristic, at Tj = 25 °C, unless otherwise spec ified
Parameter Symbol Conditions
Static Characteristic
Collector-emitter breakdown voltage Collector-emitter saturation voltage
Gate-emitter threshold voltage Zero gate voltage collector current
Gate-emitter leakage current Transconductance
V
(BR)CES
V
CE(sat)VGE
V
GE(th)
I
CES
I
GES
g
fs
VGE=0V, IC=500µA
= 15V, IC=10A
=25°C
T
j
T
=150°C
j
IC=300µA,VCE=V VCE=600V,VGE=0V
=25°C
T
j
T
=150°C
j
VCE=0V,VGE=20V VCE=20V, IC=10A
Dynamic Characteristic
Input capacitance Output capacitance Reverse transfer capacitance Gate charge
Internal emitter inductance measured 5mm (0.197 in.) from case Short circuit collector current
2)
C
iss
C
oss
C
rss
Q
Gate
L
E
I
C(SC)
VCE=25V, V
=0V,
GE
f=1MHz VCC=480V, IC=10A
V
=15V
GE
TO-220AB TO-247AC
VGE=15V,tSC≤10µs V
600V,
CC
T
150°C
j
min. Typ. max.
600 - -
1.7
-
GE
345
-
-
- - 100 nA
-6.7-S
- 550 660
-6275
-4251
-5268nC
-
-
- 100 - A
1.35
62 40
Value
2
2.3
-
-
7
13
2.4
2.8
40
1500
-
-
K/W
Unit
V
µA
pF
nH
1)
Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70µm thick) copper area for collector connection. PCB is vertical without blown air.
2)
Allowed number of short circuits: <1000; time between short circuits: >1s.
2Jul-02
Page 3
SGP10N60A, SGB10N60A
Switching Characteristic, Inductive Load, at Tj=25 °C
Parameter Symbol Conditions
IGBT Characteristic
Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy
Switching Characteristic, Inductive Load, at Tj=150 °C
Parameter Symbol Conditions
IGBT Characteristic
Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy
t
d(on)
t
r
t
d(off)
t
f
E
on
E
off
E
ts
t
d(on)
t
r
t
d(off)
t
f
E
on
E
off
E
ts
Tj=25°C, V
=400V,IC=10A,
CC
V
=0/15V,
GE
R
=25Ω,
G
1)
L
=180nH,
σ
1)
C
=55pF
σ
Energy losses include “tail” and diode reverse recovery.
Tj=150°C
=400V,IC=10A,
V
CC
V
=0/15V,
GE
R
=25
G
1)
L
=180nH,
σ
1)
C
=55pF
σ
Energy losses include “tail” and diode reverse recovery.
SGW10N60A
Value
min. typ. max.
-2834
-1215
- 178 214
-2429
- 0.15 0.173
- 0.17 0.221
- 0.320 0.394
Value
min. typ. max.
-2834
-1215
- 198 238
-2632
- 0.260 0.299
- 0.280 0.364
- 0.540 0.663
Unit
ns
mJ
Unit
ns
mJ
1)
Leakage inductance L
a n d Stray capacity Cσ due to dynamic test circuit in Figure E.
σ
3Jul-02
Page 4
SGP10N60A, SGB10N60A
SGW10N60A
50A
I
c
TC=80°c
40A
30A
20A
, COLLECTOR CURRENT
C
I
10A
TC=110°c
I
c
0A
10Hz 100Hz 1kHz 10kHz 100kHz
f, SWITCHING FREQUENCY VCE, COLLECTOR-EMITTER VOLTAGE
Figure 1. Collector current as a function of switching frequency
(T
150°C, D = 0.5, VCE = 400V,
j
V
= 0/+15V, RG = 25Ω)
GE
tp=5µs
10A
15µs
50µs
1A
200µs
1ms
, COLLECTOR CURRENT
C
I
DC
0,1A
1V 10V 100V 1000V
Figure 2. Safe operating area
(D = 0, T
= 25°C, Tj 150°C)
C
120W
100W
80W
60W
40W
, POWER DISSIPATION
tot
P
20W
0W
25°C 50°C 75°C 100°C 125°C
TC, CASE TEMPERATURE TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function of case temperature
(T
150°C)
j
25A
20A
15A
10A
, COLLECTOR CURRENT
C
I
5A
0A
25°C 50°C 75°C 100°C 125°C
Figure 4. Collector current as a function of case temperature
(VGE 15V, Tj 150°C)
4Jul-02
Page 5
SGP10N60A, SGB10N60A
SGW10N60A
35A
30A
25A
VGE=20V
20A
15A
10A
, COLLECTOR CURRENT
C
I
5A
0A
0V 1V 2V 3V 4V 5V
15V 13V 11V 9V 7V 5V
VCE, COLLECTOR-EMITTER VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristics
(T
= 25°C)
j
35A
30A
25A
VGE=20V
20A
15A
10A
, COLLECTOR CURRENT
C
I
5A
0A
0V 1V 2V 3V 4V 5V
15V 13V 11V 9V 7V 5V
Figure 6. Typical output characteristics
(Tj = 150°C)
35A
30A
25A
20A
15A
10A
, COLLECTOR CURRENT
C
I
5A
0A
0V 2V 4V 6V 8V 10V
Tj=+25°C
+150°C
VGE, GATE-EMITTER VOLTAGE Tj, JUNCTION TEMPERATURE
Figure 7. Typical transfer characteristics
(V
= 10V)
CE
3,5V
IC=20A
3,0V
2,5V
IC=10A
2,0V
IC=5A
, COLLECTOR-EMITTER SATURATION VOLT AGE
1,5V
CE(sat)
V
0°C 50°C 100°C 150°C
Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature
(V
= 15V)
GE
5Jul-02
Page 6
SGP10N60A, SGB10N60A
SGW10N60A
t
d(off)
100ns
t, SWITCHING TIMES
10ns
0A 5A 10A 15A 20A 25A
IC, COLLECTOR CURRENT RG, GATE RESIST OR
Figure 9. Typical switching times as a function of collector current
(inductive load, T V
= 0/+15V, RG = 25Ω,
GE
= 150°C, VCE = 400V,
j
Dynamic test circuit in Figure E)
t
f
t
d(on)
t
r
t
100ns
t, SWITCHING TIMES
d(off)
t
f
t
d(on)
t
r
10ns
0 20 40 60 80
Figure 10. Typical switching times as a function of gate resistor
(inductive load, T V
= 0/+15V, IC = 10A,
GE
= 150°C, VCE = 400V,
j
Dynamic test circuit in Figure E)
5,5V
t
d(off)
100ns
t
d(on)
t, SWITCHING TIMES
10ns
t
f
t
r
0°C 50°C 100°C 150°C
Tj, JUNCTION TEMPERATURE Tj, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a function of junction temperature
(inductive load, V I
= 10A, RG = 25Ω,
C
= 400V, VGE = 0/+15V,
CE
Dynamic test circuit in Figure E)
5,0V
4,5V
4,0V
3,5V
3,0V
2,5V
2,0V
, GATE-EMITTER THRESHOLD VOLTAGE
1,5V
GE(th)
1,0V
V
-50°C 0°C 50°C 100°C 150°C
Figure 12. Gate-emitter threshold voltage as a function of junction temperature
= 0.3mA)
(I
C
max.
typ .
min.
6Jul-02
Page 7
SGP10N60A, SGB10N60A
E
E
E
E
τ
τ
SGW10N60A
E, SWITCHING ENERGY LOSSES
1,6mJ
1,4mJ
1,2mJ
1,0mJ
0,8mJ
0,6mJ
0,4mJ
0,2mJ
0,0mJ
*)
and
on
due to diode recovery.
0A 5A 10A 15A 20A 25A
include losses
ts
IC, COLLECTOR CURRENT RG, GATE RESISTOR
Figure 13. Typical switching energy losses as a function of collector current
(inductive load, T V
= 0/+15V, RG = 25Ω,
GE
= 150°C, VCE = 400V,
j
Dynamic test circuit in Figure E)
Ets*
Eon*
E
off
1,0mJ
0,8mJ
0,6mJ
0,4mJ
*)
and
on
due to diode recovery.
include losses
ts
E, SWITCHING ENERGY LOSSES
0,2mJ
0 20 40 60 80
Figure 14. Typical switching energy losses as a function of gate resistor
(inductive load, T V
= 0/+15V, IC = 10A,
GE
= 150°C, VCE = 400V,
j
Dynamic test circuit in Figure E)
Ets*
E
off
Eon*
0,8mJ
0,6mJ
0,4mJ
*) Eon and Ets include losses due to diode recovery.
Ets*
0,2mJ
E, SWITCHING ENERGY LOSSES
0,0mJ
E
off
Eon*
0°C 50°C 100°C 150°C
Tj, JUNCTION TEMPERATURE
Figure 15. Typical switching energy losses as a function of junction temperature
(inductive load, V I
= 10A, RG = 25Ω,
C
= 400V, VGE = 0/+15V,
CE
Dynamic test circuit in Figure E)
0
K/W
10
D=0.5
0.2
, TRANSIENT THERMAL IMPEDANCE
thJC
Z
10
10
10
-1
-2
-3
0.1
K/W
0.05
0.02
0.01
K/W
single pulse
K/W
1µs 10µs 100µs 1ms 10ms 100ms 1s
R,(K/W)
0.4287 0.0358
0.4830 4.3*10
0.4383 3.46*10
R
1
C1=
1/R1
C2=
tp, PULSE WIDTH
Figure 16. IGBT transient thermal impedance as a function of pulse width
/ T)
(D = t
p
τ
, (s)
2/R2
-3
-4
R
2
7Jul-02
Page 8
SGP10N60A, SGB10N60A
V
µ
SGW10N60A
25V
20V
15V
10V
120V
, GATE-EMITTER VOLTAG E
GE
5V
V
0V
0nC 25nC 50nC 75nC
QGE, GATE CHARGE VCE, COLLECTOR-EMITTER VOLTAGE
Figure 17. Typical gate charge
(I
= 10A)
C
480V
1nF
100pF
C, CAPACITANCE
10pF
0V 10V 20V 30V
Figure 18. Typical capacitance as a function of collector-emitter voltage
(V
= 0V, f = 1MHz)
GE
C
iss
C
oss
C
rss
25
s
20
µs
µs
15
µs
10
5µ s
, SHORT CIRCUIT WITHSTAND TIME
sc
t
0µ s
10V 11V 12V 13V 14V 15
VGE, GATE-EMITTER VOLTAGE VGE, GATE-EMITTER VOLTAGE
Figure 19. Short circuit withstand time as a function of gate-emitter voltage
(V
= 600V, start at Tj = 25°C)
CE
200A
150A
100A
50A
, SHORT CIRCUIT COLLECTOR CURRENT
C(sc)
I
0A 10V 12V 14V 16V 18V 20V
Figure 20. Typical short circuit collector current as a function of gate-emitter voltage
(VCE 600V, Tj = 150°C)
8Jul-02
Page 9
SGP10N60A, SGB10N60A
SGW10N60A
TO-220AB
TO-263AB (D2Pak)
dimensions
symbol
A 9.70 10.30 0.3819 0.4055 B 14.88 15.95 0.5858 0.6280 C 0.65 0.86 0.0256 0.0339 D 3.55 3.89 0.1398 0.1531 E 2.60 3.00 0.1024 0.1181 F 6.00 6.80 0.2362 0.2677
G 13.00 14.00 0.5118 0.5512
H 4.35 4.75 0.1713 0.1870 K 0.38 0.65 0.0150 0.0256 L 0.95 1.32 0.0374 0.0520
M 2.54 typ. 0.1 typ.
N 4.30 4.50 0.1693 0.1772 P 1.17 1.40 0.0461 0.0551 T 2.30 2.72 0.0906 0.1071
symbol
A 9.80 10.20 0.3858 0.4016 B 0.70 1.30 0.0276 0.0512 C 1.00 1.60 0.0394 0.0630 D 1.03 1.07 0.0406 0.0421 E 2.54 typ. 0.1 typ. F 0.65 0.85 0.0256 0.0335
G 5.08 typ. 0.2 typ.
H 4.30 4.50 0.1693 0.1772 K 1.17 1.37 0.0461 0.0539 L 9.05 9.45 0.3563 0.3720
M 2.30 2.50 0.0906 0.0984
N 15 typ. 0.5906 typ. P 0.00 0.20 0.0000 0.0079
Q 4.20 5.20 0.1654 0.2047
R 8° max 8° max S 2.40 3.00 0.0945 0.1181 T 0.40 0.60 0.0157 0.0236 U 10.80 0.4252 V 1.15 0.0453
W 6.23 0.2453
X 4.60 0.1811 Y 9.40 0.3701 Z 16.15 0.6358
[mm] [inch]
min max min max
dimensions
[mm] [inch]
min max min max
9Jul-02
Page 10
SGP10N60A, SGB10N60A
SGW10N60A
TO-247AC
dimensions
symbol
A 4.78 5.28 0.1882 0.2079 B 2.29 2.51 0.0902 0.0988 C 1.78 2.29 0.0701 0.0902 D 1.09 1.32 0.0429 0.0520 E 1.73 2.06 0.0681 0.0811 F 2.67 3.18 0.1051 0.1252 G 0.76 max 0.0299 max H 20.80 21.16 0.8189 0.8331 K 15.65 16.15 0.6161 0.6358
L 5.21 5.72 0.2051 0.2252 M 19.81 20.68 0.7799 0.8142 N 3.560 4.930 0.1402 0.1941
P
Q 6.12 6.22 0.2409 0.2449
[mm] [inch]
min max min max
3.61 0.1421
10 Jul-02
Page 11
SGP10N60A, SGB10N60A
τ
τ
τ
SGW10N60A
Figure A. Definition of switching times
2 2
p(t)
1
rrrr
1
T(t)
j
12 n
Figure D. Thermal equivalent circuit
n
n
rr
T
C
Figure B. Definition of switching losses
Figure E. Dynamic test circuit
Leakage inductance L and Stray capacity C
=180nH
σ
=55pF.
σ
11 Jul-02
Page 12
SGP10N60A, SGB10N60A
SGW10N60A
Published by Infineon Technologies AG, Bereich Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 2001 All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits,
descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
12 Jul-02
Page 13
WWW.ALLDATASHEET.COM
Copyright © Each Manufacturing Company.
All Datasheets cannot be modified without permission.
This datasheet has been download from :
www.AllDataSheet.com
100% Free DataSheet Search Site.
Free Download.
No Register.
Fast Search System.
www.AllDataSheet.com
Loading...