Datasheet SGA-9289 Datasheet (Stanford Microdevices)

Page 1
DESIGN APPLICATION NOTE --- AN022
Abstract
Stanford Microdevices’ SGA-9289 is a high performance SiGe amplifier designed for operation from DC to 3500 MHz. The amplifier is manufactured using the latest Silicon Germanium Heterostructure Bipolar Transistor (SiGe HBT) process. The process has a V
=8V and an fT=25 GHz. The SiGe HBT
BCEO
process makes the SGA-9289 a very cost-effective solution for applications requiring high linearity at moderate biasing levels. This application note illustrates several application circuits for key frequency bands in the 800-2500 MHz spectrum.
Introduction
The application circuits were designed to achieve the optimum combination of P
and OIP3 while
1dB
maintaining flat gain and reasonable return losses. Special consideration was given to insure amplifier stability at low frequencies where the device exhibits high gain. These designs were created to illustrate the general performance capabilities of the device under CW conditions. Users may wish to modify these designs to achieve optimum performance under specific input conditions and system requirements.
SGA-9289
Silicon Germanium HBT Amplifier
Product Features
• DC-3500 MHz Operation
• High Output IP3, +41.5 dBm Typical at 1.96 GHz
• 11.0 dB Gain Typical at 1.96 GHz
• 28.6 dBm P1dB Typical at 1.96 GHz
• Cost Effective
Applications
• Wireless Infrastructure Driver Amplifiers
• CA TV Amplifiers
• Wireless Data, WLL Amplifiers
The circuits contain only surface mountable devices and were designed with automated manufacturing requirements in mind. All recommended components are standard values available from multiple manufacturers. The components specified in the bill of materials (BOM) have known parasitics, which in some cases are critical to the circuit’s performance. Deviating from the recommended BOM may result in a performance shift due to varying parasitics – primarily in the inductors and capacitors.
Biasing Techniques
These SiGe HBT amplifiers exhibit a “soft” breakdown effect (V
=7.5V minimum) which allows for large
BCEO
signal operation at VCE=5V. The user should insure that under large signal conditions the source and load impedances presented to the device don’t result in excessive collector currents near breakdown. Small signal operation with VCE<7V is acceptable.
Absolute Maximum Ratings
retemaraPlobmySeulaVtinU
tnerruCesaBI
tnerruCrotcelloCI
egatloVrettimE-rotcelloCV
egatloVesaB-rotcelloCV
egatloVesaB-rettimEV
erutarepmeTgnitarepOT
egnaRerutarepmeTegarotST
erutarepmeTnoitcnuJgnitarepOT
B
C
OEC
OBC
OBE
PO
rots
J
02Am
004Am
0.7V
81V
8.4V 58+ot04-C
051+ot04-C
051+C
The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user’s own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved.
1
http://www.stanfordmicro.comPhone: (800) SMI-MMIC522 Almanor Ave., Sunnyvale, CA 94085
EAN-101535 Rev A
Page 2
DESIGN APPLICATION NOTE --- AN022
SGA-9289 Amplifier Application Circuits
All HBT amplifiers are subject to device current variation due to the decreasing nature of the internal VBE with increasing temperature. In the absence of an active bias circuit or resistive feedback, the decreasing V
will result in increased base and collector
BE
currents. As the collector current continues to increase under constant VCE conditions the device may eventually exceed its maximum dissipated power limit resulting in permanent device damage. The designs included in this application note contain passive bias circuits that stabilize the device current over temperature and desensitize the circuit to device process variation.
The passive bias circuits used in these designs include a dropping resistor in the collector bias line and a voltage divider from collector-to-base. Using this scheme the amplifier can be biased from a single supply voltage. The collector-dropping resistor is sized to drop 2-3V depending on the desired VCE . The voltage divider from collector-to-base, in conjunction with the dropping resistor, will stabilize the device current over temperature. Configuring the voltage divider such that the shunt current is 5-10 times larger than the desired base current desensitizes the circuit to device process variation. These two feedback mechanisms are sufficient to insure consistent performance over temperature and device process variations. Note that the voltage drop is clearly dependent on the nominal collector current and can be adjusted to generate the desired VCE from a fixed supply rail. The user should test the circuit over the operational extremes to guarantee adequate performance if the feedback mechanisms are reduced.
An active bias circuit can be implemented if the user does not wish to sacrifice the voltage required by the aforementioned passive circuit. There are various active bias schemes suitable for HBTs. The user should choose an active bias circuit that best meets his cost, complexity and performance requirements.
Circuit Details
SMDI will provide the detailed layout (AutoCad format) to users wishing to use the exact same layout and PCB material shown in the following circuits. The circuits recommended within this application note were designed using the following PCB stack up:
Material: GETEKä ML200C Core thickness: 0.031” Copper cladding: 1oz both sides Dielectric constant: 4.1 Dielectric loss tangent: 0.0089 (@ 1 GHz)
Customers not wishing to use the exact material and layouts shown in this application note can design their own PCB using the critical transmission line impedances and phase lengths shown in the BOMs and layouts.
Vcc
+
V
DROP
-
I
c
+
V
CE
-
I
SHUNT
I
B
Passive Bias Circuit Topology
2
http://www.stanfordmicro.comPhone: (800) SMI-MMIC522 Almanor Ave., Sunnyvale, CA 94085
EAN-101535 Rev A
Page 3
DESIGN APPLICATION NOTE --- AN022
870-960 MHz Application Circuit (VCE=3V, Icq=315mA, 25°C)
R4
Vs=+5V
R5
R2
RFin RFout
C3
R1
C4
C1
C2
L1
L2
C5
R3
SGA-9289
L3
C7 C8
C6
C9
C10
SGA-9289, Vce=3V, 870-960 MHz Apps Circuit
STANFORD MICRODEVICES
SOT-89 Ev al Board
ECB-100608-B
.seDfeReulaVrebmuNtraP
01,1CFp86seires81HCMmhoR
2CFp9.3seires81HCMmhoR
7,3CFu1.seires81HCMmhoR
6,4CFp93seires81HCMmhoR 5CFp01seires81HCMmhoR 8CFp0001seires81HCMmhoR 9CFp8.6seires81HCMmhoR
1LHn8.6seires-8061LLOKOT
3,2LHn28seires-8061LLOKOT 1Rsmho01seires81HCMmhoR 2Rsmho65seires81HCMmhoR 3Rsmho051seires81HCMmhoR
5,4Rsmho21TTAW1gkp2152
C1
Z1
.seD.feReulaV
1ZzHM519@.ged91,smhO05 2ZzHM519@.ged6,smhO05 3ZzHM519@.ged3.9,smhO05 4ZzHM519@.ged4.1,smhO05 5ZzHM519@.ged3.5,smhO05 6ZzHM519@.ged1.41,smhO05 7ZzHM519@.ged7.12,smhO05 8ZzHM519@.ged1.22,smhO05
R4
R3
C3
R1
R2
C6
C4
C2
Z2 Z3
L1
L2
Z4
SGA-9289
Z6
Z5
C5
R5
C7
L3
Z7
+5 V
C8
C10
Z8
C9
3
EAN-101535 Rev A
http://www.stanfordmicro.comPhone: (800) SMI-MMIC522 Almanor Ave., Sunnyvale, CA 94085
Page 4
DESIGN APPLICATION NOTE --- AN022
SGA-9289 Amplifier Application Circuits
Typical Performance - 870-960 MHz Application Circuit (VCE=3V, ICQ=315mA, 25°C)
20 18
Gain
16 14
Gain (dB)
12
Isolation
10
0.8 0.85 0.9 0.95 1
Frequency (GHz)
S-Parameters vs Frequency
S-Parameters vs Frequency
0
-5
-10
ORL
-15
-20
-25
IRL, ORL (dB)
IRL
-30
-35
0.8 0.85 0.9 0.95 1
Frequency (GHz)
0
Isolation (dB)
-6
-12
-18
-24
-30
P1dB, OIP3 vs Frequency
27.5
26.5
25.5
P1dB
24.5
P1dB (dBm)
23.5
OIP3 @ 10 dBm/tone
22.5
0.87 0.90 0.93 0.96
Frequency (GHz)
Pout, Gain, Ic vs Pin
30 25
Pout
20 15
Gain
10
Pout (dBm), Gain (dB)
5
Ic
0 4 8 12 16
Pin (dBm)
42 41
OIP3 (dBm)
40 39 38 37
350 340
Ic (mA)
330 320 310 300
OIP3 vs Tone Level
41 40 39 38
OIP3 (dBm)
37 36
6 8 10 12 14 16
Pout / Tone (dBm)
qerF
)zHG(
088.06.527.833.717.52-9.7-5.2
519.05.526.830.717.92-7.8-5.2
549.04.526.838.610.33-6.9-6.2
Bd1P
)mBd(
Noise Figure vs Frequency
5 4 3 2 1
Noise Figure (dB)
0
0.87 0.90 0.93 0.96
Frequency (GHz)
3PIO
)mBd(
niaG
)Bd(
11S
)Bd(
22S
)Bd(
FN
)Bd(
4
http://www.stanfordmicro.comPhone: (800) SMI-MMIC522 Almanor Ave., Sunnyvale, CA 94085
EAN-101535 Rev A
Page 5
DESIGN APPLICATION NOTE --- AN022
870-960 MHz Application Circuit (VCE=5V, Icq=340mA, 25°C)
R4
Vs=+8V
R5
R2
R3
C7 C8
R6
RFin RFout
C1
C3
R1
C4
L2
C2
L1
C5
SGA-9289
C6
L3
C10
C9
SGA-9289, Vce=5V, 870-960 MHz Apps Circuit
STANFORD MICRODEVICES
SOT-89 Ev al Board
ECB-100608-B
.seDfeReulaVrebmuNtraP
01,1CFp86seires81HCMmhoR 9,2CFp9.3seires81HCMmhoR 7,3CFu1.seires81HCMmhoR 6,4CFp93seires81HCMmhoR
5CFp01seires81HCMmhoR 8CFp0001seires81HCMmhoR
1LHn01TN28HF-8061LLOKOT
3,2LHn28TN28HF-8061LLOKOT 1Rsmho013060ezis 2Rsmho633060ezis 3Rsmho0223060ezis 4Rsmho61TTAW1gkp2152 5Rsmho81TTAW1gkp2152
C1
Z1
L1
.seD.feReulaV
1ZzHM519@.ged6.31,smhO05 2ZzHM519@.ged5.3,smhO05 3ZzHM519@.ged4.3,smhO05 4ZzHM519@.ged7.6,smhO05 5ZzHM519@.ged6.6,smhO05 6ZzHM519@.ged5.32,smhO05 7ZzHM519@.ged5.4,smhO05
R4
R2
R1
C3
C4
C2
Z2
Z3
R6
L2
Z4
C5
R3
C6
SGA-9289
Z5
R5
L3
Z6
Z7
C9
+ 8 V
C8C7
C10
5
EAN-101535 Rev A
http://www.stanfordmicro.comPhone: (800) SMI-MMIC522 Almanor Ave., Sunnyvale, CA 94085
Page 6
DESIGN APPLICATION NOTE --- AN022
SGA-9289 Amplifier Application Circuits
Typical Performance - 870-960 MHz Application Circuit (VCE=5V, ICQ=340mA, 25°C)
20
Gain
18 16 14
Gain (dB)
Isolation
12 10
0.8 0.85 0.9 0.95 1
Frequency (GHz)
S-Parameters vs Frequency
S-Parameters vs Frequency
0
-5
-10
ORL
-15
-20
-25
IRL, ORL (dB)
-30
-35
0.8 0.85 0.9 0.95 1
Frequency (GHz)
IRL
0
-6
Isolation (dB)
-12
-18
-24
-30
P1dB, OIP3 vs Frequency
30 29
P1dB
28 27
P1dB (dBm)
26
OIP3 @ 13 dBm/tone
25
0.87 0.9 0.93 0.96
Frequency (GHz)
Pout, Gain, Ic vs Pin
35 30 25
Pout
20 15
Gain
10
Pout (dBm), Gain (dB)
5
-1 2 5 8 11 14
Pin (dBm)
45 44
OIP3 (dBm)
43 42 41 40
370 360
Ic (mA)
350 340
Ic
330 320
OIP3 vs Tone Level
43 42 41 40
OIP3 (dBm)
39 38
6 8 10 12 14 16
Pout / Tone (dBm)
qerF
)zHG(
088.02.924.142.816.71-4.61-8.2
519.02.923.149.718.52-1.51-9.2
549.00.929.047.712.52-3.41-9.2
Bd1P
5 4 3 2 1
Noise Figure (dB)
0
0.87 0.9 0.93 0.96
Frequency (GHz)
Noise Figure vs Frequency
)mBd(
3PIO
)mBd(
niaG
)Bd(
11S
)Bd(
22S
)Bd(
FN
)Bd(
6
http://www.stanfordmicro.comPhone: (800) SMI-MMIC522 Almanor Ave., Sunnyvale, CA 94085
EAN-101535 Rev A
Page 7
DESIGN APPLICATION NOTE --- AN022
1930-1990 MHz Application Circuit (VCE=3V, Icq=315mA, 25°C)
R4
R2
RFin RFout
C1
C2
R1
C3
L1
C4
R3
SGA-9289
L2
C5
Vs=+5V
C7 C8
C6
C9
SGA-9289, Vce=3V, 1930-1990 MHz Apps Circuit
STANFORD MICRODEVICES
SOT-89 Ev al Board
ECB-100608-B
.seDfeReulaVrebmuNtraP
1CFp5.1seires81HCMmhoR
7,2CFu1.0seires81HCMmhoR
9,6,3CFp21seires81HCMmhoR
5,4CFp2.2seires81HCMmhoR
8CFp0001seires81HCMmhoR
2,1LHn22seires-8061LLOKOT 1Rsmho01seires81HCMmhoR 2Rsmho65seires81HCMmhoR 3Rsmho051seires81HCMmhoR
5,4Rsmho21TTAW1gkp2152
C1
C3
Z1
C2 R1
.seD.feReulaV
1ZzHM0691@.ged7.7,smhO05 2ZzHM0691@.ged9.6,smhO05 3ZzHM0691@.ged2.7,smhO05 4ZzHM0691@.ged3.41,smhO05 5ZzHM0691@.ged8.34,smhO05
R4
R3
R2
C6
L1
Z2
C4
SGA-9289
Z4
Z3
R5
C7
L2
Z5
C5
+ 5 V
C8
C9
7
EAN-101535 Rev A
http://www.stanfordmicro.comPhone: (800) SMI-MMIC522 Almanor Ave., Sunnyvale, CA 94085
Page 8
DESIGN APPLICATION NOTE --- AN022
SGA-9289 Amplifier Application Circuits
Typical Performance - 1930-1990 MHz Application Circuit (VCE=3V, ICQ=315mA, 25°C)
15 13 11
9
Gain (dB)
Gain
Isolation
7 5
1.8 1.9 2. 0 2. 1
Frequency (GHz)
S-Parameters vs Frequency
S-Parameters vs Frequency
0
-5
-10
IRL
-15
-20
ORL
-25
IRL, ORL (dB)
-30
-35
1.8 1.9 2.0 2.1
Frequency (GHz)
0
Isolation (dB)
-6
-12
-18
-24
-30
P1dB, OIP3 vs Frequency
26.5
25.5
P1dB
24.5
23.5
OIP3 @ 10 dBm/tone
P1dB (dBm)
22.5
21.5
1.93 1.95 1.97 1.99
Frequency (GHz)
Pout, Gain, Ic vs Pin
30 25
Pout
20
Ic
15 10
Pout (dBm), Gain (dB)
5
Gain
0 5 10 15 20
Pin (dBm)
42 41
OIP3 (dBm)
40 39 38 37
340 330
Ic (mA)
320 310 300 290
OIP3 vs Tone Level
41 40 39 38
OIP3 (dBm)
37 36
6 8 10 12 14 16
Pout / Tone (dBm)
qerF
)zHG(
39.19.523.931.119.61-7.51-8.2
69.10.623.930.115.02-5.51-9.2
99.10.624.839.014.72-9.51-9.2
Bd1P
)mBd(
Noise Figure vs Frequency
5 4 3 2 1
Noise Figure (dB)
0
1.93 1.95 1.97 1.99
Frequency (GHz)
3PIO
)mBd(
niaG
)Bd(
11S
)Bd(
22S
)Bd(
FN
)Bd(
8
http://www.stanfordmicro.comPhone: (800) SMI-MMIC522 Almanor Ave., Sunnyvale, CA 94085
EAN-101535 Rev A
Page 9
DESIGN APPLICATION NOTE --- AN022
1930-1990 MHz Application Circuit (VCE=5V, Icq=340mA, 25°C)
C5
C7
Vs=+8V
C8
C9
R5
R3
R2
RFin RFout
C1
C3
R1
L1
C2
SGA-9289
C4
R4
L2
C6
SGA-9289, Vce=5V, 1930-1990 MHz Apps Circuit
STANFORD MICRODEVICES
SOT-89 Ev al Board
ECB-100608-B
.seDfeReulaVrebmuNtraP
9,5,3,1CFp21seires81HCMmhoR
7,2CFu1.0seires81HCMmhoR 4CFp7.2seires81HCMmhoR 6CFp8.1seires81HCMmhoR 8CFp0001seires81HCMmhoR
2,1LHn22seires8061LLOKOT 1Rsmho01seires81HCMmhoR 2Rsmho15seires81HCMmhoR 3Rsmho61seires81HCMmhoR 4Rsmho042seires81HCMmhoR 5Rsmho61TTAW1gkp2152 6Rsmho81TTAW1gkp2152
C1
C3
Z1
C2 R1
.seD.feReulaV
1ZzHM0691@.ged1.74,smhO05 2ZzHM0691@.ged7,smhO05 3ZzHM0691@.ged2.7,smhO05 4ZzHM0691@.ged3.41,smhO05 5ZzHM0691@.ged8.4,smhO05 6ZzHM0691@.ged2.24,smhO05
R3
L1
Z2
C4
R5
R4
R2
C5
SGA-9289
Z4
Z3
R6
C7
L2
Z5
Z6
C6
+ 8 V
C8
C9
9
EAN-101535 Rev A
http://www.stanfordmicro.comPhone: (800) SMI-MMIC522 Almanor Ave., Sunnyvale, CA 94085
Page 10
DESIGN APPLICATION NOTE --- AN022
SGA-9289 Amplifier Application Circuits
Typical Performance - 1930-1990 MHz Application Circuit (VCE=5V, ICQ=340mA, 25°C)
15 13 11
9
Gain (dB)
Gain
Isolation
7 5
1.8 1.85 1.9 1.95 2 2.05 2.1
Frequency (GHz)
S-Parameters vs Frequency
S-Parameters vs Frequency
0
-5
-10
IRL
-15
-20
IRL, ORL (dB)
-25
-30
1.8 1.85 1.9 1.95 2 2.05 2.1
Frequency (GHz)
ORL
0
Isolation (dB)
-6
-12
-18
-24
-30
P1dB, OIP3 vs Frequency
30 29
P1dB
28 27
P1dB (dBm)
26
OIP3 @ 13 dBm/tone
25
1.93 1.95 1.97 1.99
Frequency (GHz)
Pout, Gain, Ic vs Pin
35 29
Pout
23 17
Ic
11
Pout (dBm), Gain (dB)
5
Gain
8 10121416182022
Pin (dBm)
44 43
OIP3 (dBm)
42 41 40 39
370 360
Ic (mA)
350 340 330 320
OIP3 vs Tone Level
45 43 41 39
OIP3 (dBm)
37 35
8 101214161820
Pout / Tone (dBm)
qerF
)zHG(
39.15.823.141.111.41-8.91-0.4
69.15.824.149.011.51-5.91-1.4
99.17.824.147.019.41-1.91-3.4
Bd1P
)mBd(
Noise Figure vs Frequency
6 5 4 3 2
Noise Figure (dB)
1
1.93 1.95 1.97 1.99
Frequency (GHz)
3PIO
)mBd(
niaG
)Bd(
11S
)Bd(
22S
)Bd(
FN
)Bd(
10
http://www.stanfordmicro.comPhone: (800) SMI-MMIC522 Almanor Ave., Sunnyvale, CA 94085
EAN-101535 Rev A
Loading...