Datasheet SFH 7741 Datasheet (OSRAM)

Page 1
Näherungssensor Proximity Sensor
Lead (Pb) Free Product - RoHS Compliant
SFH 7741

Wesentliche Merkmale

Typ. Arbeitsabstand: 30 mm
Optohybrid mit Schmitt-Trigger Ausgang, open drain
Extrem niedriger Stromverbrauch
Sehr kleines SMD Gehäuse
Hohe Umgebungslicht Unterdrückung
Ohne externe Linse ist der SFH 7741 augensicher entsprechend der IEC 62471 Norm

Anwendungen

Näherungssensor für kurze Entfernungen
Typ Type
SFH 7741 Q65110A7073

Features

Typ. Working distance: 30 mm
Opto hybrid with Schmitt trigger output, open drain
Extremly low power consumption
Very small SMD package
High ambient light suppression
Without external lenses the SFH 7741 is Eye Safe according to the IEC 62471 standard

Applications

Short range proximity sensor
Bestellnummer Ordering Code
An application note is available for this product. Please contact your appropriate OSRAM sales partner
2010-02-04 1
Page 2

Grenzwerte Maximum Ratings

SFH 7741
Bezeichnung Parameter
Lagertemperatur Storage temperature
Versorgungsspannung Supply voltage
Externe Spannung an Pin External voltage at pin Out Prog Test Anode LED
Sink current durch den Ausgangstransistor Sink current through output transistor (please see figure 1)
Vorwärtsstrom
1)
Forward current (please see figure 1)
Elektrostatische Entladung Electrostatic discharge
- Human Body Model (according to: JESD22-A114E; Class2)
- Machine Model (according to: JESD22-A115A; Class B)
Symbol Symbol
T
stg
V
dd
V
out
I
sink
I
f
ESD
Wert Value
min: – 40
Einheit Unit
°C
max: + 85
0 - 6 V
V
0 - 4.5 0 - 4.5 0 - 4.5 0 - 1.5
10 mA
60 mA
2
200
kV
V
latch up protection latch up protection (according to: EIA/JESD78 Class 1)
1)
Der Vorwärtsstrom If durch die LED ist abhängig von Vdd und R
* The forward current If depends on Vdd and R
2010-02-04 2
as in the following formula:
prog
wie folgt:
prog
20 mA
V
dd
⎛⎞
------------------
If10mA
+=
⎝⎠
R
prog
6×
Page 3

Empfohlene Betriebsbedingungen Recommended Operating Conditions

SFH 7741
Bezeichnung Parameter
Betriebstemperatur Operating temperature
Versorgungsspannung Supply voltage
Ausgangsspannung Output voltage (please see figure 1)
Rauschen der Versorgungsspannung Supply voltage ripple frequency range 0...20kHz
Pull-up Widerstand Pull-up resistor (please see figure 1)
Abblock Kondensatoren Bypass capacitors (please see figure 1)
Symbol Symbol
Wert
Value
Einheit Unit
min. typ. max.
T
op
V
dd
DV
dd
1)
dV
dd
R
pull-up
C
bypass
- stabilisation
- HF
– 20 + 85 °C
2.4 3.6 V
1.7 3.6 V
200 mV
10 1000 kΩ
>1 10 - 100
µF nF
Max. Umgebungslicht Max. ambient light Normlicht / Standard light A
1)
Der Emitter wird mit 10mA bis 60mA gepulst betrieben; das bedeutet, dass jeder Widerstand in Serie zu V Spannungsabfall in der Versorgungsleitung verursacht. Es wird empfohlen, diesen Serienwiderstand so klein zu halten, dass max dV Labor ist vom Einsatz geregelter Spannungsversorgungen abzusehen. Durch das Einschalten der IRED wird die Quelle kurzzeitig belastet. Diese Belastung kann zu Spannungsschwankungen der Quelle führen, die wiederum die Funktion des SFH 7741 beeinträchtigen können. Im Normalbetrieb (Akku, Batterie, stabilisierte Netzteile) tritt dieser Effekt nicht auf.
The emitter is driven with 10 mA to 60 mA in pulsed mode; this means, that any series resistance on the Vdd line
causes a voltage drop at the power pin. It is recommended to keep the series resistance low, so that max dV exceeded. When testing the SFH 7741 sensor in the lab, please do not use regulated voltage supplies. The IR emitter pulse is a high, short load for the power supply. This load can influence the stability of the output voltage; this instability will influence the operation of the SFH 7741. This effect does not occur during normal operation of the sensor with batteries, storage batteries, or stabilized voltage supplies.
nicht überschritten und min Vdd nicht unterschritten wird. Beim Betrieb des SFH 7741 im
dd
E
V
Vdd < 3V Vdd > 3V
1000 2000
lux
einen
dd
is not
dd
2010-02-04 3
Page 4
Kennwerte (Ta = 25°C) Characteristics
SFH 7741
Bezeichnung Parameter
Minimale Betriebsspannung für Startphase Minimum required supply voltage for start-up (please see figure 2)
Länge der Startphase Start-up time (please see figure 2)
Mess-Wiederholzeit Measurement refresh time (please see figure 3)
LED „An“ Zeit LED „ON“ Time (please see figure 3)
Schaltabstand Operating distance (R
= 470 Ω, Vdd = 3V,
Prog
KODAK White Paper R=90%)
Symbol Symbol
Wert
Value
Einheit Unit
min. typ. max.
V
dd, start
t
start
t
refresh
t
pulse
0.8 2.0 V
60 90 120 ms
60 90 120 ms
30 45 60 µs
d 30 mm
Durchschnittliche Stromaufnahme1) Mean current consumption (R
= h, Vdd = 3V)
Prog
1)
Maximale Stromaufnahme Maximum current consumption (R
= h, Vdd = 3V)
Prog
Durchschnittliche Stromaufnahme Mean current consumption (R
= 470 Ω, Vdd = 3V)
Prog
1)
1)
Maximale Stromaufnahme Maximum current consumption (R
= 470 Ω, Vdd = 3V)
Prog
Ausgangsleckstrom „high“ Output leakage current „high“ DVdd = 2.2V
Ausgangsspannung „low“ Output voltage „low“ DVdd = 2.2V; R
pullup
= 270 Ω
I
dd, mean
I
dd, max
I
dd, mean
I
dd, max
I
out, H
V
out, L
25 50 μA
10 20 mA
45 75 μA
50 65 mA
5 400 nA
0.1 0.5 V
2010-02-04 4
Page 5
Kennwerte (Ta = 25°C) Characteristics
SFH 7741
Bezeichnung Parameter
Symbol Symbol
min. typ. max.
Wellenlänge der max. Fotoempfindlichkeit
λ
S, max
Wavelength of max. sensitivity Spektraler Bereich der Fotoempfindlichkeit
S = 10% von S
max
λ 730 1080 nm
Spectral range of sensitivity
S = 10% of S
Wellenlänge der Strahlung des Emitters
max
λ
peak
Wavelength at peak emission
I
= 10 mA
F
Spektrale Bandbreite des Emitters bei 50% von
I
max
Spectral bandwidth of the emitter at 50% of I
Δλ 30 nm
max
IF = 10 mA
1)
gepulster Betrieb: Dauer LED an: ~44µs / Dauer LED aus: ~90ms
pulsed operating mode: LED on time: ~44µs / LED off time: ~90ms
Wert
Value
Einheit Unit
880 nm
850 nm
2010-02-04 5
Page 6
Blockdiagramm (empfohlener Pull-Up-Widerstand Rpull up = 10kOhm...1MOhm)
Block diagram (recommended Pull up resistance Rpull up = 10kOhm...1MOhm)
Figure 1 Blockdiagramm
Block diagram
C
HF
R
Prog
SFH 7741
LED Anode (must not be connected)
Prog
LED
I
F
C
stabilisation
ASIC
GNDGND
V
dd
Photo­transistor
I
sink
GND
Test
GND
DV
Out
Device boundaries
dd
R
pull up
OHF03409
V
Out
2010-02-04 6
Page 7
Figure 2 Startverhalten Start-up sequence
V
dd
V
dd_start max
V
dd_start min
Out
High
Low
t
1
Default Low
120 ms +
60 ms -
t
1
SFH 7741
t
For reflector
For absorber or no reflector
t
t
1
Undefined high or low output impedance
Der Ausgang ist immer hochohmig, wenn an Vdd keine Spannung angeschlossen ist. Wenn die
Versorgungsspannung V findet etwa alle 90ms eine Messung des reflektierten Signals statt und der Ausgang wird entprechend geschalten (Figure 3).
If the supply voltage at V
V signal is measured and the output is set accordingly (Figure 3).
, the sensor output stays low for 60ms < t
dd, start
erreicht, bleibt der Ausgang für 60ms < t
dd, start
is not connected, the output is always high ohmic. When supply voltage reaches
dd
<120ms. Subsequently approx. every 90ms the reflected
start
<120ms auf „low“. Anschließend
start
OHF03836
Figure 3 Timing diagram
Ι
f
t
Out
High
Low
t
pulse
t
refresh
For reflector
For absorber or no reflector
t
OHF03835
2010-02-04 7
Page 8
SFH 7741
LED: Relative Spectral Emission
I
= f (λ); TA = 25°C
rel
100
%
I
rel
80
60
40
20
0
700

Switching distance

d=f (TA), Vdd=3V, R=90%

40
mm
d
35
30
OHF04013
330 Ω
470 Ω
OHL01714
nm
λ
Phototransistor Relative Spectral Sensitivity
S
= f (λ); TA = 25°C
rel
100
%
S
rel
80
60
40
20
950750 800 850
0
700
800 900 1000 1100
OHF04011
nm
λ
SFH 7741: Mean current consumption
I
= f (Vdd); R
dd
60
µA
I
dd
50
40
30
20
2.4 V
; TA = 25°C
prog
Ω330 Ω470
2 kΩ
inf.
2.7 3 3.3 3.6
OHF04012
V
dd
Switching distance
I
= f (d), A
f
= 50 x 50mm²;
reflector
TA = 25°C
60
mA
I
F
50
reflectivity = 50%
40
OHF04014
25
20
15
10
-25 ˚C
0 25 50 75 100
2 kΩ
inf.
30
20
reflectivity = 90%
10
0
0mm
10 20 30 40
T
A
Switching Distance
2010-02-04 8
Page 9
Empfangscharakteristik Directional Characteristics
50˚
S
rel
= f (ϕ)
SFH 7741
10˚20˚30˚40˚
ϕ
1.0
0.8
OHF04402
Detector
60˚
70˚
80˚
90˚
100˚
Abstrahlcharakteristik Radiation Characteristics I
50˚
= f (ϕ)
rel
0.6
0.4
0.2
0
20˚ 40˚ 60˚ 80˚ 100˚ 120˚0.40.60.81.0
10˚20˚30˚40˚
ϕ
1.0
OHF04403
Emitter
0.8
60˚
70˚
80˚
90˚
100˚
2010-02-04 9
0.6
0.4
0.2
0
20˚ 40˚ 60˚ 80˚ 100˚ 120˚0.40.60.81.0
Page 10

Maßzeichnung Package Outlines

SFH 7741
Maße in mm (inch) / Dimensions in mm (inch)
2010-02-04 10
Page 11

Anschlußbelegung Pin configuration

Pin # Description
1 Anode LED (must not be connected)
2 GND
3 Out
4 Test (must be connected to GND)
SFH 7741
5 V
6 Prog

Bauteilaufnahme device pickup

Vakuum Pipette sollte das Bauteil am rechteckigen Außenrahmen fassen. Laminar vacuum pickup nozzle should use the rectangular outer wall of the device for handling.

Empfohlene Pipette Recommended pickup nozzle

dd
3.6 (0.142)
13 (0.512)
Maße in mm/ Dimensions in mm
2010-02-04 11
ø1.5 (0.059)
3.8 (0.150)
GPLY7058
Page 12

Empfohlenes Lötpaddesign Recommended Solderpad Design

Maße in mm / Dimensions in mm
SFH 7741

Gurtverpackung Taping

Maße in mm / Dimensions in mm
2010-02-04 12
Page 13
SFH 7741
Maße in mm / Dimensions in mm
2010-02-04 13
Page 14
SFH 7741

Lötbedingungen Vorbehandlung nach JEDEC Level 4 Soldering Conditions Preconditioning acc. to JEDEC Level 4

Reflow Lötprofil für bleifreies Löten (nach J-STD-020C) Reflow Soldering Profile for lead free soldering (acc. to J-STD-020C)
300
˚C
250
T
255 ˚C 240 ˚C
Maximum Solder Profile
Recommended Solder Profile
Minimum Solder Profile
217 ˚C
200
10 s min
OHLA0687
260 ˚C 245 ˚C 235 ˚C
+0 ˚C
-5 ˚C ±5 ˚C +5 ˚C
-0 ˚C
30 s max
150
120 s max
100 s max
Ramp Down 6 K/s (max)
100
Ramp Up
50
3 K/s (max)
25 ˚C
0
0
50 100 150 200 250 300
s
t
Published by OSRAM Opto Semiconductors GmbH
Leibnizstrasse 4, D-93055 Regensburg
www.osram-os.com
© All Rights Reserved.
The information describes the type of component and shall not be considered as assured characteristics. Due to the special conditions of the manufacturing processes of Sensor, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances. For information on the types in question please contact our Sales Organization.
Packing
Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.
Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components 1 , may only be used in life-support devices or systems 2 with the express written approval of OSRAM OS.
1
A critical component is a component usedin a life-support device or system whose failure can reasonably be expected
to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system.
2
Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain
and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered.
2010-02-04 14
Loading...