Datasheet SED1330FBA, SED1330FBB, SED1335F0B, SED1335FOA, SED1336F0A Datasheet (SMOS)

Page 1
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 1
SED1330F/1335F/1336F
LCD Controller ICs
Technical Manual
S-MOS Systems, Inc.
September, 1995
Version 0.4
Page 2
2 268-0.4
THIS PAGE INTENTIONALLY BLANK
Page 3
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 3
Table of Contents SED1330F/1335F/1336F
CONTENTS
1.0 Overview .............................................................................................................9
1.1 Description .................................................................................................................................. 11
1.2 Features ...................................................................................................................................... 11
1.3 Block Diagram ............................................................................................................................. 12
1.4 Pinouts ........................................................................................................................................14
1.4.1 SED1330FBA, 1335FBB and SED1336F0A Pinouts ............................................. 14
1.4.2 SED1330FBA and SED1335F0A Pinouts .............................................................. 14
1.5 Package Dimensions................................................................................................................... 15
2.0 Pin Description.................................................................................................17
2.1 SED1330FBA/BB Pin Summary.................................................................................................. 18
2.2 SED1330F/1335F0A/0B Pin Summary .......................................................................................19
2.3 SED1336F0A Pin Summary........................................................................................................ 20
2.4 Pin Functions...............................................................................................................................21
2.4.1 Power Supply..........................................................................................................21
2.4.2 Oscillator................................................................................................................. 21
2.4.3 Microprocessor Interface ........................................................................................21
2.4.4 Display Memory Control ......................................................................................... 23
2.4.5 LCD Drive Signals .................................................................................................. 23
3.0 Command Description.....................................................................................25
3.1 The Command Set ......................................................................................................................27
3.2 System Control Commands ........................................................................................................ 28
3.2.1 SYSTEM SET......................................................................................................... 28
3.2.1.1 C ........................................................................................................ 29
3.2.1.2 M0 ...................................................................................................... 29
3.2.1.3 M1 ...................................................................................................... 29
3.2.1.4 M2 ...................................................................................................... 29
3.2.1.5 W/S .................................................................................................... 29
3.2.1.6 IV........................................................................................................ 32
3.2.1.7 T/L...................................................................................................... 32
3.2.1.8 DR...................................................................................................... 32
3.2.1.9 FX ...................................................................................................... 32
3.2.1.10 WF ...................................................................................................33
3.2.1.11 FY..................................................................................................... 33
3.2.1.12 C/R....................................................................................................34
3.2.1.13 TC/R.................................................................................................34
3.2.1.14 L/F....................................................................................................35
3.2.1.15 AP ....................................................................................................35
3.2.2 SLEEP IN................................................................................................................36
Page 4
4 268-0.4
SED1330F/1335F/1336F Table of Contents
3.3 Display Control Commands......................................................................................................... 36
3.3.1 DISP ON/OFF......................................................................................................... 36
3.3.1.1 D ........................................................................................................ 37
3.3.1.2 FC ...................................................................................................... 37
3.3.1.3 FP ...................................................................................................... 37
3.3.2 SCROLL ................................................................................................................. 37
3.3.2.1 C ........................................................................................................ 37
3.3.2.2 SL1, SL2 ............................................................................................ 38
3.3.3 CSRFORM..............................................................................................................42
3.3.3.1 CRX ...................................................................................................42
3.3.3.2 CRY .................................................................................................... 42
3.3.3.3 CM ..................................................................................................... 43
3.3.4 CSRDIR.................................................................................................................. 43
3.3.5 OVLAY....................................................................................................................43
3.3.5.1 MX0, MX1 .......................................................................................... 43
3.3.5.2 DM1, DM2..........................................................................................45
3.3.5.3 OV...................................................................................................... 45
3.3.6 CGRAM ADR.......................................................................................................... 45
3.3.7 HDOT SCR ............................................................................................................. 45
3.3.7.1 D0 to D2............................................................................................. 45
3.4 Drawing Control Commands ....................................................................................................... 46
3.4.1 CSRW..................................................................................................................... 46
3.4.2 CSRR......................................................................................................................46
3.5 Memory Control Commands ....................................................................................................... 47
3.5.1 MWRITE ................................................................................................................. 47
3.5.2 MREAD................................................................................................................... 47
4.0 Specifications...................................................................................................49
4.1 Absolute Maximum Ratings......................................................................................................... 51
4.1.1 SED1330 ................................................................................................................ 51
4.1.2 SED1335/SED1336................................................................................................ 51
4.2 SED 1330 Electrical Characteristics............................................................................................ 52
4.3 SED1335/1336 Electrical Characteristics.................................................................................... 53
4.4 SED1330 Timing Diagrams .........................................................................................................54
4.4.1 System bus READ/WRITE timing I (8080) ............................................................. 54
4.4.1.1 SED1330F .........................................................................................54
4.4.2 System bus READ/WRITE timing II (6800) ............................................................ 55
4.4.2.1 SED1330F .........................................................................................55
4.4.3 Display memory READ timing ................................................................................ 56
4.4.3.1 SED1330F .........................................................................................56
4.4.4 Display memory WRITE timing............................................................................... 57
4.4.4.1 SED1330F .........................................................................................57
4.4.5 LCD control timing ..................................................................................................58
4.4.5.1 SED1330F .........................................................................................59
Page 5
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 5
4.4.6 Oscillator timing ...................................................................................................... 60
4.4.6.1 SED1330F .........................................................................................60
4.4.7 Measurement circuit ............................................................................................... 61
4.5 SED1335/SED1336 AC Timing Diagrams...................................................................................62
4.5.1 8080 family Interface Timing................................................................................... 62
4.5.1.1 SED1335F .........................................................................................62
4.5.1.2 SED1336F .........................................................................................63
4.5.2 6800 family Interface Timing................................................................................... 64
4.5.2.1 SED1335F .........................................................................................65
4.5.2.2 SED1336F .........................................................................................65
4.5.3 Display Memory Read Timing ................................................................................. 66
4.5.3.1 SED1335F .........................................................................................66
4.5.3.2 SED1336F .........................................................................................67
4.5.4 Display Memory Write Timing................................................................................. 68
4.5.4.1 SED1335F .........................................................................................69
4.5.4.2 SED1336F .........................................................................................70
4.5.5 SLEEP IN Command Timing ..................................................................................71
4.5.5.1 SED1335F .........................................................................................71
4.5.5.2 SED1336F .........................................................................................71
4.5.6 External Oscillator Signal Timing............................................................................ 72
4.5.6.1 SED1335F .........................................................................................72
4.5.6.2 SED1336F .........................................................................................72
4.5.7 E-1330 LCD Controller IC ........................................................................................................ 73
4.5.7.1 SED1335F .........................................................................................75
4.5.7.2 SED1336F .........................................................................................75
5.0 Display Control Functions .............................................................................. 77
5.1 Character Configuration .............................................................................................................. 79
5.2 Screen Configuration................................................................................................................... 81
5.2.1 Screen Configuration.............................................................................................. 81
5.2.2 Display Address Scanning...................................................................................... 81
5.2.3 Display Scan Timing ............................................................................................... 84
5.3 Cursor Control ............................................................................................................................. 85
5.3.1 Cursor Register Function........................................................................................ 85
5.3.2 Cursor Movement ...................................................................................................85
5.3.3 Cursor Display Layers ............................................................................................ 85
5.4 Memory to Display Relationship..................................................................................................87
5.5 Scrolling.......................................................................................................................................90
5.5.1 On-page Scrolling ................................................................................................... 90
5.5.2 Inter-page Scrolling.................................................................................................91
5.5.3 Horizontal Scrolling................................................................................................. 92
5.5.4 Bidirectional Scrolling ............................................................................................. 93
5.5.5 Scroll Units..............................................................................................................93
Table of Contents SED1330F/1335F/1336F
Page 6
6 268-0.4
6.0 Character Generator ........................................................................................ 95
6.1 CG Characteristics ......................................................................................................................97
6.1.1 Internal Character Generator.................................................................................. 97
6.1.2 External Character Generator ROM .......................................................................97
6.1.3 Character Generator RAM...................................................................................... 97
6.2 CG Memory Allocation................................................................................................................. 98
6.3 Setting the Character Generator Address ................................................................................... 99
6.3.1 M1 = 1...................................................................................................................100
6.3.2 CG RAM Addressing Example..............................................................................100
6.4 Character Codes .......................................................................................................................101
7.0 TV Mode (SED1336F only).............................................................................103
7.1 Sync Generator Circuit Timing ..................................................................................................105
8.0 Description of Circuit Blocks........................................................................109
8.1 Microprocessor Interface........................................................................................................... 111
8.1.1 System Bus Interface............................................................................................ 111
8.1.1.1 8080 series ...................................................................................... 111
8.1.1.2 6800 series ...................................................................................... 111
8.1.2 Microprocessor Synchronization........................................................................... 111
8.1.2.1 Display Status Indication Output For SED1336F only...................... 111
8.1.2.2 Internal Register Access .................................................................. 111
8.1.2.3 Display Memory Access................................................................... 111
8.1.3 Interface Examples............................................................................................... 113
8.1.3.1 Z80® to SED1330F/1335F/1336F Interface .................................... 113
8.1.3.2 6802 to SED1330F/1335F/1336F Interface ..................................... 114
8.2 Display Memory Interface.......................................................................................................... 115
8.2.1 Static RAM............................................................................................................ 115
8.2.2 Supply Current during Display Memory Access.................................................... 115
8.3 Oscillator Circuit ........................................................................................................................ 116
8.4 Status Flag ................................................................................................................................ 116
8.5 Reset ......................................................................................................................................... 117
9.0 Application Notes........................................................................................... 119
9.1 Initialization Parameters............................................................................................................121
9.1.1 SYSTEM SET Instruction and Parameters........................................................... 121
9.1.2 Initialization Example............................................................................................122
9.1.3 Display Mode Setting Example 1: Combining Text and Graphics ......................... 128
9.1.4 Display Mode Setting Example 2: Combining Graphics and Graphics................. 129
9.1.5 Display Mode Setting Example 3: Combining Three Graphics Layers .................130
9.2 System Overview ...................................................................................................................... 132
SED1330F/1335F/1336F Table of Contents
Page 7
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 7
Table of Contents SED1330F/1335F/1336F
9.3 System Interconnection............................................................................................................. 133
9.3.1 SED1330F/1335F .................................................................................................133
9.3.2 SED1336F ............................................................................................................ 134
9.4 Smooth Horizontal Scrolling ......................................................................................................135
9.5 Layered Display Attributes......................................................................................................... 137
9.5.1 Inverse Display ..................................................................................................... 137
9.5.2 Half-tone Display ..................................................................................................137
9.5.2.1 Menu Pad Display............................................................................137
9.5.2.2 Graph Display ..................................................................................138
9.5.3 Flashing Areas......................................................................................................138
9.5.3.1 Small Area........................................................................................138
9.5.3.2 Large Area .......................................................................................138
9.6 16 × 16-dot Graphic Display...................................................................................................... 139
9.6.1 Command Usage.................................................................................................. 139
9.6.2 Kanji Character Display ........................................................................................139
10.0 Internal Character Generator Font ............................................................. 141
11.0 Glossary of Terms ........................................................................................ 145
Page 8
8 268-0.4
SED1330F/1335F/1336F Table of Contents
THIS PAGE INTENTIONALLY BLANK
Page 9
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 9
1.0
Overview
Page 10
10 268-0.4
THIS PAGE INTENTIONALLY BLANK
Page 11
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 11
1.0 – 1.2 1.0 Overview
1.0 Overview
1.1 Description
The SED1330/1335F/1336F is a family of versatile LCD controller ICs that can display text and graphics on a medium size LCD panel. The software is compatible among all three chips. S-MOS recom­mends new designs use the SED1335 since the SED1330 will gradually be replaced by the SED1335.
The SED1336F incorporates a TV sync generator circuit that is compatible with both NTSC and PAL systems. The 256 × 200 pixel TV display comprises three superimposed layers, and is identical to the simultaneous LCD panel display. When driving an LCD only, up to 3 overlapping layers can be displayed on LCD panels up to 640 × 256 pixels in size. The SED1330/1335F does not incorporate a TV controller.
The SED1330/1335F/1336F can display layered text and graphics, scroll the display in any direction and partition the display into multiple screens.
The SED1330/1335F/1336F stores text, character codes and bit-mapped graphics data in external frame buffer memory. Display controller functions include transferring data from the controlling microprocessor to the buffer memory, reading memory data, convert­ing data to display pixels and generating timing sig­nals for the buffer memory, TV monitor and LCD panel.
The SED1330/1335F/1336F has an internal charac­ter generator with 160, 5 × 7 pixel characters in internal mask ROM. The character generators sup­port up to 64, 8 × 16 pixel characters in external character generator RAM and up to 256, 8 × 16 pixel characters in external character generator ROM.
1.2 Features
• Text, graphics and combined text/graphics dis­play modes
• Three overlapping screens in graphics mode
• 640 × 256 pixel LCD panel display resolution
• Programmable cursor control
• Smooth horizontal and vertical scrolling of all or part of the display
• 1/2-duty to 1/256-duty LCD drive
• Up to 64 Kbytes of external static RAM frame buffer memory
• Internal character generator
• 160, 5 × 7 pixel characters in internal mask­programmed character generator ROM
• Up to 64, 8 × 16 pixel characters in external character generator RAM
• Up to 256, 8 × 16 pixel characters in external character generator ROM
• 6800 and 8080 family microprocessor inter­faces
• NTSC and PAL systems compatible (SED1336F only)
• 256 × 200 pixel TV monitor display resolution (SED1336F only)
• Low power consumption—3.5 mA operating current (VDD = 3.5V), 0.05 µA standby current
• 4.5 to 5.5V (SED1330F)
• 2.7 to 5.5V (SED1330F/1335F)
• 3.0 to 5.5V (SED1336F)
• Available in 60-pin QFPs
Page 12
12 268-0.4
1.0 Overview 1.3
1.3 Block Diagram
Figure 1. SED1330F block diagram
Video RAM
Character
Generator RAM
Character
Generator ROM
LCD
LCD Controller
Input/Output
Register
Video RAM Interface
Display
Address
Controller
Cursor
Address
Controller
Refresh Counter
Dot Counter
Layered
Controller
Character Generator
ROM
OscillatorMicroprocessor Interface
YSCL,YD,YDIS
LP, WF
XSCL, XECL
XD0 to XD3
VD0 to VD7
VA0 to VA15
VCE
VR/W
SEL1
SEL0
RES
RD, WR
A0, CS
D0 to D7
OSC1 OSC2
Page 13
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 13
1.3 Block Diagram
Figure 2. SED1335F/1336F block diagram
1.3 1.0 Overview
Video RAM
Character
Generator RAM
Character
Generator ROM
LCD ControllerVideo RAM Interface
Display
Address
Controller
Cursor
Address
Controller
Refresh Counter
Dot Counter
Character Generator
ROM
Layered
Controller
OscillatorMicroprocessor Interface
YSCL, YD, YDIS
LP, WF
XSCL, XECL
XD0 to XD3
VD0 to VD7
VA0 to VA15
VCE,
VRD,
VWR
VRD
VWR
SEL1
SEL0
RES
RD, WR
A0, CS
D0 to D7
XG
XD
TV
Controller*
Input/Output
Register
TV LCD
VSD
SNC
*SED1336F only
Page 14
14 268-0.4
1.0 Overview 1.4 – 1.4.2
1.4 Pinouts
Index
115
3145
46
60
SED1330FBB
16
30
XD3 D7 D6 D5 D4 D3 D2 D1 D0 V
DD
A0 CS OSC2 OSC1 SEL 1
VD3 VD2 VD1
VD0 VA15 VA14 VA13 VA12 VA11 VA10
VA9
VA8
VA7
VA6
NC
VD4
VD5
VD6
VD7
YSCL
YD
YDIS
WF
LP
V
SS
XSCL
XECL
XD0
XD1
XD2
VA5
VA4
VA3
VA2
VA1
VA0
VR/W
VCE
NC
RES
NC
NC
RD
WR
SEL 2
Index
55
1
30
60
5
29
404550
201510
SED1330F
BA
VA8 VA9 VA10 VA11 VA12 VA13
NC VA14 VA15 VD0 VD1 VD2
XD CS
A0
V
DD
D0 D1
D2 D3 D4 D5 D6
D7
XD3
XD2
XD1
XD0
XECL
XSCL
V
SS
LP
WF
YDIS
YD
YSCL
VD7
VD6
VD5
VD4
VD3
XG
SEL1
SEL2WRRDNCNC
RESNCVCE
VWR
VA0
VA1
VA2
VA3
VA4
VA5
VA6
VA7
6
Figure 3. SED1330F and SED1335F pinouts
Index
115
3145
46
60
SED1335F0B
(SED1336F0A)
16
30
XD3 D7 D6 D5 D4 D3 D2 D1 D0 V
DD
A0 CS XD XG SEL1
VD3 VD2 VD1
VD0 VA15 VA14 VA13 VA12 VA11 VA10
VA9
VA8
VA7
VA6
NC
VD4
VD5
VD6
VD7
YSCL(SNC)
YD
YDIS
WF
LP
V
SS
XSCL
XECL(VSD)
XD0
XD1
XD2
VA5
VA4
VA3
VA2
VA1
VA0
VWR
VCE
VRD
RES
NC
NC(CLO)
RD
WR
SEL 2(NT/PL)
Index
55
1
30
60
5
29
404550
201510
SED1335F
OA
VA8 VA9 VA10 VA11 VA12 VA13  NC VA14 VA15 VD0 VD1 VD2
XD CS
A0
V
DD
D0 D1
 D2 D3 D4 D5 D6
D7
XD3
XD2
XD1
XD0
XECL
XSCL
V
SS
LP
WF
YDIS
YD
YSCL
VD7
VD6
VD5
VD4
VD3
XG
SEL1
SEL2
WR
RD
NC
NC
RES
VRD
VCE
VWR
VA0
VA1
VA2
VA3
VA4
VA5
VA6
VA7
6
Page 15
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 15
1.5 Package Dimensions
QFP5 Unit: mm
Figure 5. SED1330F
BB
, 1335F0B and SED1336F
0A
QFP6 Unit: mm
Index
115
31
16
45
46
60
30
0 ~ 12°
1.8
2.7
±
0.1
0.8 ±
0.3
0.15
±
0.05
0.35 ±
0.15
0.8 ±
0.15
17.6
±
0.4
14.0
±
0.2
17.6 ±
0.4
14.0 ±
0.2
0 ~ 12°
2.8
2.7
±
0.1
1.5 ±
0.3
0.15
±
0.05
Index
623
36
24
54
55
1
30
0.35 ±
0.1
19.6
±
0.4
14.0
±
0.1
25.6 ±
0.4
20.0 ±
0.1
60
5
29
35
1.0 ±
0.1
Figure 4. SED1330F
BA
and 1335F0A package dimensions
1.4 – 1.4.2 1.0 Overview
Page 16
16 268-0.4
THIS PAGE INTENTIONALLY BLANK
Page 17
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 17
2.0
Pin Description
Page 18
18 268-0.4
2.0 Pin Description
2.1 SED1330F
BA/BB
Pin Summary
2.0 Pin Description 2.0 – 2.1
Name
Number
Type Description
SED1330F
0A SED1330FBB
VA0 to VA15
27 to 28 50 to 59
Output VRAM address bus
30 to 43 1 to 6 VR/W 44 7 Output VRAM write signal VCE 45 8 Output Memory control signal RES 47 10 Input Reset NC 29, 46, 48, 49 9, 11, 12, 60 No connection
RD 50 13 Input
8080 family: Read signal 6800 family: Enable clock (E)
WR 51 14 Input
8080 family: Write signal 6800 family: R/W signal
SEL2 52 15 Input
8080 or 6800 family interface select
SEL1 53 16 Input
8080 or 6800 family interface
select OSC1 54 17 Input Oscillator connection OSC2 55 18 Output Oscillator connection CS 56 19 Input Chip select A0 57 20 Input Data type select V
DD 58 21 Supply 4.5 to 5.5V supply
D0 to D7
59 to 60
22 to 29 Input/output Data bus
1 to 6 XD0 to XD3 10 to 7 33 to 30 Output X-driver data XECL 11 34 Output X-driver enable chain clock XSCL 12 35 Output X-driver data shift clock V
SS 13 36 Supply Ground
LP 14 37 Output Latch pulse WF 15 38 Output Frame signal
YDIS 16 39 Output
Power-down signal when display is
blanked YD 17 40 Output Scan start pulse YSCL 18 41 Output Y-driver shift clock VD0 to VD7 26 to 19 49 to 42 Input/output VRAM data bus
Page 19
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 19
2.0 – 2.2 2.0 Pin Description
2.0 Pin Description
2.2 SED1330F/1335F
0A/0B
Pin Summary
Name
Number
Type Description
SED1335F
0A SED1335F0B
VA0 to VA15
27 to 28 50 to 59
Output VRAM address bus
30 to 43 1 to 6 VWR 44 7 Output VRAM write signal VCE 45 8 Output Memory control signal VRD 46 9 Output VRAM read signal RES 47 10 Input Reset NC 29, 48, 49 11, 12, 60 No connection
RD 50 13 Input
8080 family: Read signal 6800 family: Enable clock (E)
WR 51 14 Input
8080 family: Write signal 6800 family: R/W signal
SEL2 52 15 Input
8080 or 6800 family interface select
SEL1 53 16 Input
8080 or 6800 family interface
select XG 54 17 Input Oscillator connection XD 55 18 Output Oscillator connection CS 56 19 Input Chip select A0 57 20 Input Data type select V
DD 58 21 Supply 2.7 to 5.5V supply
D0 to D7
59 to 60
22 to 29 Input/output Data bus
1 to 6 XD0 to XD3 10 to 7 33 to 30 Output X-driver data XECL 11 34 Output X-driver enable chain clock XSCL 12 35 Output X-driver data shift clock V
SS 13 36 Supply Ground
LP 14 37 Output Latch pulse WF 15 38 Output Frame signal
YDIS 16 39 Output
Power-down signal when display is
blanked YD 17 40 Output Scan start pulse YSCL 18 41 Output Y-driver shift clock VD0 to VD7 26 to 19 49 to 42 Input/output VRAM data bus
Page 20
20 268-0.4
2.0 Pin Description 2.3
2.3 SED1336F0A Pin Summary
Name Number Type Description
VA0 to VA15
1 to 6
Output VRAM address bus
50 to 59 VWR 7 Output VRAM write signal VCE 8 Output Memory control signal VRD 9 Output VRAM read signal RES 10 Input Reset NC 11, 60 No connection CLO 12 Output Clock output
RD 13 Input
8080 family: Read signal 6800 family: Enable clock (E)
WR 14 Input
8080 family: Write signal
6800 family: R/W signal NT/PL 15 Input NTSC or PAL TV mode select SEL1 16 Input 8080 or 6800 family interface select OSC1 17 Input Oscillator connection OSC2 18 Output Oscillator connection CS 19 Input Chip select A0 20 Input Data type select V
DD 21 Supply 3.0 to 5.5V supply
D0 to D7 22 to 29 Input/output Data bus XD0 to XD3 30 to 33 Output X-driver data VSD 34 Output Video data XSCL 35 Output Data shift clock VSS 36 Supply Ground LP 37 Output Latch pulse WF 38 Output Frame signal
YDIS 39 Output
Power-down signal when display is
blanked YD 40 Output Scan start pulse SNC 41 Output TV sync signal VD0 to VD7 42 to 49 Input/output VRAM data bus
Page 21
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 21
2.4 – 2.4.3 2.0 Pin Description
2.4 Pin Functions
2.4.1 Power Supply
Pin Name Function
V
DD
4.5 to 5.5V (SED1330F), 3.0 to 5.5V (SED1336F) or 2.7 to 5.5V (SED1330F/1335F) supply. This may be the same supply as the controlling microprocessor.
V
SS Ground
Note: The peak supply current drawn by the SED1330F/1335F/1336F may be up to ten times the average supply current. The power
supply impedance must be kept as low as possible by ensuring that supply lines are sufficiently wide and by placing 0.47 µF
decoupling capacitors that have good high-frequency response near the device’s supply pins.
2.4.3 Microprocessor Interface
Pin Name Function
D0 to D7 Tristate input/output pins. Connect these pins to an 8- or 16-bit microprocessor bus.
Microprocessor interface select pin. The SED1336F supports both 8080 family processors (such as the 8085 and Z80®) and 6800 family processors (such as the 6802 and 6809).
SEL1* SEL2 Interface A0 RD WR CS
0 0 8080 family A0 RD WR CS 1 0 6800 family A0 E R/W CS
* SED1330F and SED1335F only
Note: SEL1 should be tied directly to VDD or VSS to prevent noise. If noise does appear on SEL1, decouple it to ground using a
capacitor placed as close to the pin as possible.
SEL1, SEL2
2.4.2 Oscillator
Pin Name Function
(OSC) XG
Crystal connection for internal oscillator (see Section 8.3). This pin can be driven by an external clock source that satisfies the timing specifications of the EXT φ0 signal (see Section 4.3.6).
(OSC2) XD
Crystal connection for internal oscillator. Leave this pin open when using an external clock source.
CLO
Clock output (SED1336F only). Same phase as XG. Clock is output when system command P1 is executed. Output stops during system reset.
Page 22
22 268-0.4
2.0 Pin Description 2.4.3
Pin Name Function
A0, in conjunction with the RD and WR or R/W and E signals, controls the type of access to the SED1336F, as shown below.
8080 family interface
A0 RD WR Function
0 0 1 Status flag read 1 0 1 Display data and cursor address read 0 1 0 Display data and parameter write 1 1 0 Command write
6800 family interface
A0 R/W E Function
0 1 1 Status flag read 1 1 1 Display data and cursor address read 0 0 1 Display data and parameter write 1 0 1 Command write
When the 8080 family interface is selected, this signal acts as the active-LOW read strobe. The SED1330F/1335F/1336F’s output buffers are enabled when this signal is active.
When the 6800 family interface is selected, this signal acts as the active-HIGH enable clock. Data is read from or written to the SED1330F/1335F/1336F when this clock goes HIGH.
When the 8080 family interface is selected, this signal acts as the active-LOW write strobe. The bus data is latched on the rising edge of this signal.
When the 6800 family interface is selected, this signal acts as the read/write control signal. Data is read from the SED1330F/1335F/1336F if this signal is HIGH, and written to the SED1330F/ 1335F/1336F if it is LOW.
Chip select. This active-LOW input enables the SED1330F/1335F/1336F. It is usually connected to the output of an address decoder device that maps the SED1330F/1335F/1336F into the memory space of the controlling microprocessor.
This active-LOW input performs a hardware reset on the SED1330F/1335F/1336F. It is a Schmitt-trigger input for enhanced noise immunity; however, care should be taken to ensure that it is not triggered if the supply voltage is lowered.
WR or R/W
CS
RES
RD or E
A0
Page 23
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 23
2.4.4 – 2.4.5 2.0 Pin Description
2.4.4 Display Memory Control
The SED1330F/1335F/1336F can directly access static RAM and PROM. The designer may use a mixture of
these two types of memory to achieve an optimum trade-off between low cost and low power consumption.
Pin Name Function
VA0 to VA15
16-bit display memory address. When accessing character generator RAM or ROM, VA0 to VA3, reflect the lower 4 bits of the row counter.
VD0 to VD7 8-bit tristate display memory data bus. These pins are enabled when VR/W is LOW.
VR/W Active-LOW display memory write control output (SED1330).
VRD Active-LOW display memory read control output (SED1335/6). VCE Active-LOW static memory standby control signal. VCE can be used with CS.
VWR Active-LOW display memory write control output (SED1335/6).
2.4.5 LCD Drive Signals
In order to provide effective low-power drive for LCD matrixes, the SED1330F/1335F/1336F can directly control both the X- and Y-drivers using an enable chain.
Pin Name Function
XD0 to XD3
4-bit X-driver (column drive) data outputs. Connect these outputs to the inputs of the X-driver chips.
The falling edge of XSCL latches the data on XD0 to XD3 into the input shift registers of the X-drivers. To conserve power, this clock halts between LP and the start of the following display line (see Section 4.3.7).
XECL
The falling edge of XECL (SED1330F/1335F only) triggers the enable chain cascade for the X-drivers (SED1600/SED1180). Every 16th clock pulse is output to the next X-driver.
LP latches the signal in the X-driver shift registers into the output data latches. LP is a falling­edge triggered signal, and pulses once every display line.
Connect LP to the Y-driver shift clock on modules that use the SED1600 and SED1610 drivers.
WF
LCD panel AC drive output. The WF period is selected to be one of two values with SYSTEM SET command.
The falling edge of YSCL (SED1330F/1335F only) latches the data on YD into the input shift registers of the Y-drivers. YSCL is not used with the SED1600, SED1610 or other driver ICs which use LP as the Y-driver shift clock.
YD is the data pulse output for the Y drivers. It is active during the last line of each frame, and is shifted through the Y drivers one by one (by YSCL), to scan the display’s common connections.
Power-down output signal. YDIS is HIGH while the display drive outputs are active. YDIS goes LOW one or two frames after the sleep command is written to the SED1330F/
1335F/1336F. All Y-driver outputs are forced to an intermediate level (de-selecting the display segments) to blank the display. In order to implement power-down operation in the LCD unit, the LCD power drive supplies must also be disabled when the display is disabled by YDIS.
XSCL
LP
YSCL
YD
YDIS
Page 24
24 268-0.4
1.0 Overview 1.3
THIS PAGE INTENTIONALLY BLANK
Page 25
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 25
1.3 – 1.4 1.0 Overview
3.0
Command Description
Page 26
26 268-0.4
THIS PAGE INTENTIONALLY BLANK
Page 27
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 27
3.0 – 3.1 3.0 Command Description
3.0 Command Description
3.1 The Command Set
Table 1. The Command Set
Command
Code Read
Class Command Hex Command Description
Parameters
RD WR A0 D7 D6 D5 D4 D3 D2 D1 D0
No. of Sec­Bytes tion
SYSTEM SET 1010100000040
Initialize device and dis-
8 3.2.1
play
SLEEP IN 1010101001153Enter standby mode 0 3.2.2 DISP ON/OFF 1010101100D
58, Enable and disable dis-
1 3.3.1
59 play and display flashing
SCROLL 1010100010044
Set display start address
10 3.3.2
and display regions
CSRFORM 101010111015DSet cursor type 2 3.3.3 CGRAM ADR 101010111005C
Set start address of char-
2 3.3.6
acter generator RAM
CD CD
4C
Set direction of cursor
CSRDIR 101010011
10
to
movement
0 3.3.4
4F
HDOT SCR 101010110105A
Set horizontal scroll pos-
1 3.3.7
ition
OVLAY 101010110115B
Set display overlay for-
1 3.3.5
mat CSRW 1010100011046Set cursor address 2 3.4.1 CSRR 1010100011147Read cursor address 2 3.4.2 MWRITE 1010100001042Write to display memory 3.5.1
MREAD 1010100001143
Read from display mem-
3.5.2
ory
Notes:
1. In general, the internal registers of the SED1330F/1335F/1336F are modified as each command parameter is input. However, the microprocessor does not have to set all the parameters of a command and may send a new command before all parameters have been input. The internal registers for the parameters that have been input will have been changed but the remaining parameter registers are unchanged.
2-byte parameters (where two bytes are treated as one data item) are handled as follows:
a. CSRW, CSRR: Each byte is processed individually. The microprocessor may read or write just the low byte of the cursor
address.
b. SYSTEM SET, SCROLL, CGRAM ADR: Both parameter bytes are processed together. If the command is changed after
half of the parameter has been input, the single byte is ignored.
2. APL and APH are 2-byte parameters, but are treated as two 1-byte parameters.
System control
Display control
Drawing control
Memory control
Page 28
28 268-0.4
3.0 Command Description 3.2 – 3.2.1
3.2 System Control Commands
3.2.1 SYSTEM SET
Initializes the device, sets the window sizes, and selects the LCD interface format. Since the command sets the basic operating parameters of the SED1330F/
1335F/1336F, an incorrect SYSTEM SET command may cause other commands to operate incorrectly.
C 01000000 1 0 1
D7 D6 D5 D4 D3 D2 D1 D0 A0 WR RD
P1 DR T/L IV 1 W/S M2 M1 M0 0 0 1
P2 WF0000 FX 0 0 1
P3 0000 FY 0 0 1
P4 C/R 0 0 1
P5 TC/R 0 0 1
P6 L/F 0 0 1
P7 APL 0 0 1
P8 APH 0 0 1
LSBMSB
Figure 7. SYSTEM SET instruction
Page 29
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 29
3.2.1.1 – 3.2.1.5 3.0 Command Description
3.2.1.1 C
This control byte performs the following:
1. Resets the internal timing generator
2. Disables the display
3. Cancels sleep mode
Parameters following P1 are not needed if only can­celing sleep mode.
3.2.1.2 M0
Selects the internal or external character generator ROM. The internal character generator ROM con­tains 160, 5 × 7 pixel characters. These characters are fixed at fabrication by the metalization mask. The external character generator ROM can contain up to 256 user-defined characters.
M0 = 0: Internal CG ROM M0 = 1: External CG ROM
Note that if the CG ROM address space overlaps the display memory address space, that portion of the display memory cannot be written to.
3.2.1.3 M1
Selects the CG RAM area for user-definable charac­ters. The CG RAM codes are selected from the 64 codes shown in Figure 59.
M1 = 0: CG RAM1; 32 char
The CG RAM1 and CG RAM2 address spaces are not contiguous, the CG RAM1 address space is treated
as character generator RAM, and the CG RAM2 address space is treated as character generator ROM.
M1 = 1: 64 char CG RAM + CG RAM2
The CG RAM1 and CG RAM2 address spaces are contiguous and are both treated as character genera­tor RAM.
3.2.1.4 M2
Selects the height of the character defined in external CG ROM and CG RAM. Characters more than 16 pix­els high can be displayed by creating a bitmap for each portion of each character and using the SED1330F/1335F/1336F’s graphics mode to reposi­tion them.
M2 = 0: 8-pixel character height (2716 or
equivalent ROM)
M2 = 1: 16-pixel character height (2732
or equivalent ROM)
3.2.1.5 W/S
Selects the LCD drive method.
W/S = 0: Single-panel drive W/S = 1: Dual-panel drive
Page 30
30 268-0.4
3.0 Command Description 3.2.1.5
Figure 8. Single-panel display
Figure 9. Dual-panel display
EI
X driver X driver
LCD
Y driver
YD
EI
X driver X driver
YD
X driver X driver
Upper Panel
Lower Panel
Y driver
Page 31
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 31
3.2.1.5 3.0 Command Description
EI
YD
Y driver
X driver X driver X driver X driver
Right PanelLeft Panel
Note: There are no Seiko-Epson LCD units in the configuration shown in Figure 10.
Figure 10. Left-and-right two-panel display
Table 3. LCD parameters
Parameter
W/S = 0 W/S = 1
IV = 1 IV = 0 IV = 1 IV = 0
C/R C/R C/R C/R C/R
TC/R TC/R TC/R (see note 1) TC/R TC/R
L/F L/F L/F L/F L/F
SL1 00H to L/F
00H to L/F + 1
(L/F) / 2 (L/F) / 2
(see note 2)
SL2 00H to L/F
00H to L/F + 1
(L/F) / 2 (L/F) / 2
(see note 2) SAD1 First screen block First screen block First screen block First screen block SAD2 Second screen block Second screen block Second screen block Second screen block SAD3 Third screen block Third screen block Third screen block Third screen block SAD4 Invalid Invalid Fourth screen block Fourth screen block
Cursor move-
Continuous movement over whole screen
Above-and-below configuration:
ment range continuousmovement over whole screen
Notes:
1. See table 31 (page 105) for further details on setting the C/R and TC/R parameters when using the HDOT SCR command.
2. The value of SL when IV = 0 is equal to the value of SL when IV = 1, plus one.
Page 32
32 268-0.4
3.0 Command Description 3.2.1.6 – 3.2.1.9
3.2.1.6 IV
Screen origin compensation for inverse display. IV is usually set to 1.
The best way of displaying inverted characters is to Exclusive-OR the text layer with the graphics back­ground layer. However, inverted characters at the top or left of the screen are difficult to read as the charac­ter origin is at the top-left of its bitmap and there are no background pixels either above or to the left of these characters.
The IV flag causes the SED1330F/1335F/1336F to offset the text screen against the graphics back layer by one vertical pixel. Use the horizontal pixel scroll function (HDOT SCR) to shift the text screen 1 to 7 pixels to the right. All characters will then have the necessary surrounding background pixels that en­sure easy reading of the inverted characters.
See Section 5.5 for information on scrolling.
IV = 0: Screen top-line correction IV = 1: No screen top-line correction (no
offset)
3.2.1.7 T/L
Selects TV or LCD mode. When TV mode is selected, the TV sync generator circuit is ON.
T/L = 0: LCD mode T/L = 1: TV mode
3.2.1.9 FX
Sets the width, in pixels, of the character field. The character width in pixels is equal to FX + 1, where FX can range from 00 to 07H inclusive. If data bit 3 is set (FX is in the range 08 to 0FH) and an 8-pixel font is used, a space is inserted between characters. Note that the maximum character width in TV mode is eight pixels.
Table 4. Horizontal character size selection
FX
[FX] character width
HEX D3 D2 D1 D0
(pixels)
00 0000 1 01 0001 2
↓ ↓↓↓↓
07 0111 8
Since the SED1330F/1335F/1336F handles display data in 8-bit units, characters larger than 8 pixels wide must be formed from 8-pixel segments. As Figure 12 shows, the remainder of the second eight bits are not displayed. This also applies to the second screen layer.
In graphics mode, the normal character field is also eight pixels. If a wider character field is used, any remainder in the second eight bits is not displayed.
3.2.1.8 DR
Selects output of an additional shift-clock cycle for every 64 pixels. The extra cycles are required for correct operation of the enable chain when using a two-panel display.
DR = 0: Normal operation DR = 1: Additional shift-clock cycles
IV
1 dot
Dots 1 to 7
Display start point Back layer
HDOT SCR Character
Figure 11. IV and HDOT SCR adjustment
Page 33
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 33
3.2.1.10 – 3.2.1.11 3.0 Command Description
8 bits
FY
FX
8 bits
FY
FX
Non-display areaAddress BAddress A
8 bits
8 bits
Figure 12. FX and FY display addresses
3.2.1.10 WF
Selects the AC frame drive waveform period. WF is usually set to 1.
WF = 0: 16-line AC drive WF = 1: two-frame AC drive
In two-frame AC drive, the WF period is twice the frame period.
In 16-line AC drive, WF inverts every 16 lines. Although 16-line AC drive gives a more readable
display, horizontal lines may appear when using high LCD drive voltages or at high viewing angles.
3.2.1.11 FY
Sets the height, in pixels, of the character. The height in pixels is equal to FY + 1.
FY can range from 00 to 0FH inclusive. Set FY to zero (vertical size equals one) when in
graphics mode.
Table 5. Vertical character size selection
FY
[FY] character
HEX D3 D2 D1 D0
height (pixels)
00 0000 1 01 0001 2
↓ ↓↓↓↓
07 0111 8
↓ ↓↓↓↓
0E1110 15 0F 1111 16
Page 34
34 268-0.4
3.0 Command Description 3.2.1.12 – 3.2.1.13
3.2.1.12 C/R
Sets the address range covered by one display line, that is, the number of characters less one, multiplied by the number of horizontal bytes per character.
C/R can range from 0 to 239. For example, if the character width is 10 pixels, then
the address range is equal to twice the number of
characters, less 2. See Section 9.1.1 for the calcula­tion of C/R.
[C/R] cannot be set to a value greater than the address range. It can, however, be set smaller than the address range, in which case the excess display area is blank. The number of excess pixels must not exceed 64.
Table 6. Display line address range
C/R
[C/R] bytes per display line
HEX D7 D6 D5 D4 D3 D2 D1 D0
00 00000000 1 01 00000001 2
↓ ↓↓↓↓↓↓↓↓
4F 01001111 80
↓ ↓↓↓↓↓↓↓↓
EE11101110 239 EF11101111 240
3.2.1.13 TC/R
Sets the length, including horizontal blanking, of one line. The line length is equal to TC/R + 1, where TC/ R can range from 0 to 255.
TC/R must be greater than or equal to C/R + 4. Provided this condition is satisfied, [TC/R] can be set
according to the equation given in section 9.1.1 in order to hold the frame period constant and minimize jitter for any given main oscillator frequency, f
OSC
.
Table 7. Line length selection
TC/R
[TC/R] line length (bytes)
HEX D7 D6 D5 D4 D3 D2 D1 D0
00 00000000 1 01 00000001 2
↓ ↓↓↓↓↓↓↓↓
52 01010010 83
↓ ↓↓↓↓↓↓↓↓
FE11111110 255 FF 11111111 256
Page 35
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 35
3.2.1.14 – 3.2.1.15 3.0 Command Description
3.2.1.14 L/F
Sets the height, in lines, of a frame. The height in lines is equal to L/F + 1, where L/F can range from 0 to 255.
If W/S is set to 1, selecting two-screen display, the number of lines must be even and L/F must, therefore, be an odd number.
Table 8. Frame height selection
L/F
[L/F] lines per frame
HEX D7 D6 D5 D4 D3 D2 D1 D0
00 00000000 1 01 00000001 2
↓ ↓↓↓↓↓↓↓↓
7F 01111111 128
↓ ↓↓↓↓↓↓↓↓
FE11111110 255 FF 11111111 256
Table 9. Frame heights and compatible LCD units
Number of lines [LF] Panel Duty Cycle
64 1/64
128 1/64
Table 10. Horizontal address range
Hex code
[AP] addresses
APH APL
per line
0000 0 0001 1
↓↓↓↓
0050 80
↓↓↓↓
FFFE 216 – 2 FFFF 216 – 1
3.2.1.15 AP
Defines the horizontal address range of the virtual screen. APL is the least significant byte of the ad­dress.
Figure 13. AP parameters
APL AP7 AP6 AP5 AP4 AP3 AP2 AP1 AP0
APH AP15 AP14 AP13 AP12 AP11 AP10 AP9 AP8
Page 36
36 268-0.4
3.0 Command Description 3.2.1.15 – 3.3.1
Figure 14. AP and C/R relationship
3.2.2 SLEEP IN
Places the system in standby mode. This command has no parameter bytes. At least one blank frame after receiving this command, the SED1330F/1335F/1336F halts all internal operations, including the oscillator, and enters the sleep mode. Blank data is sent to the X-drivers, and the Y-drivers have their bias supplies turned off by the YDIS signal. Using the YDIS signal to disable the Y-drivers guards against any spurious displays.
The internal registers of the SED1330F/1335/1336F maintain their values during the sleep mode. The display memory control pins maintain their logic levels to ensure that the display memory is not corrupted.
The SED1330F/1335F/1336F can be removed from the sleep state by sending the SYSTEM SET com­mand with only the P1 parameter. The DISP ON command should be sent next to enable the display.
Figure 15. SLEEP IN instruction
1. The YDIS signal goes LOW between one and two frames after the SLEEP IN com­mand is received. Since YDIS forces all display driver outputs to go to the dese­lected output voltage, YDIS can be used as a power-down signal for the LCD unit. This can be done by having YDIS turn off the relatively high-power LCD drive supplies at the same time as it blanks the display.
2. Since all internal clocks in the SED1330F/ 1335F/1336F are halted while in the sleep state, a DC voltage will be applied to the LCD panel if the LCD drive supplies remain on.
If reliability is a prime consideration, turn off the LCD drive supplies before issuing the SLEEP IN command.
3. Note that, although the bus lines become high impedance in the sleep state, pull-up or pull-down resistors on the bus line will force these lines to a known state.
3.3 Display Control Commands
3.3.1 DISP ON/OFF
Turns the whole display on or off. The single-byte parameter enables and disables the cursor and lay­ered screens, and sets the cursor and screen flash rates. The cursor can be set to flash over one charac­ter or over a whole line.
MSB LSB
C01010011
Figure 16. DISP ON/OFF parameters
MSB LSB
C01011000
P1 FP5 FP4 FP3 FP2 FP1 FP0 FC1 FC0
Display area
C/R
Display memory limit
AP
Page 37
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 37
3.3.1.1 – 3.3.2.1 3.0 Command Description
3.3.1.1 D
Turns the display ON or OFF. The D bit takes prece­dence over the FP bits in the parameter.
D = 0: Display OFF D = 1: Display ON
3.3.1.2 FC
Enables/disables the cursor and sets the flash rate. The cursor flashes with a 70% duty cycle (ON/OFF).
Table 11. Cursor flash rate selection
FC1 FC0 Cursor display
0 0 OFF (blank) 0 1 No flashing
10
Flash at f
FR/32 Hz
(approx. 2 Hz)
11
Flash at f
FR/64 Hz
(approx. 1 Hz)
Note: As the MWRITE command always enables the cursor,
the cursor position can be checked even when perform­ing consecutive writes to display memory while the cursor is flashing.
3.3.1.3 FP
Each pair of bits in FP sets the attributes of one screen block, as follows.
Table 12. Screen block attribute selection
FP1 FP0 First screen block (SAD1) FP3 FP2
Second screen block (SAD2,
SAD4). See note.
FP5 FP4 Third screen block (SAD3)
0 0 OFF (blank) 0 1 No flashing
10
Flash at f
FR/32 Hz
(approx. 2 Hz)
11
Flash at f
FR/4 Hz
(approx. 16 Hz)
Note: If SAD4 is enabled by setting W/S to 1, FP3 and FP2
control both SAD2 and SAD4. The attributes of SAD2 and SAD4 cannot be set independently.
3.3.2 SCROLL
3.3.2.1 C
Sets the scroll start address and the number of lines per scroll block. Parameters P1 to P10 can be omitted if not required. The parameters must be entered sequentially as shown in Figure 17.
ON
ON
MSB LSB
C01000100
P1 A7 A6 A5 A4 A3 A2 A1 A0 (SAD 1L)
P2 A15 A14 A13 A12 A11 A10 A9 A8 (SAD 1H)
P3 L7 L6 L5 L4 L3 L2 L1 L0 (SL 1)
P4 A7 A6 A5 A4 A3 A2 A1 A0 (SAD 2 L)
P5 A15 A14 A13 A12 A11 A10 A9 A8 (SAD 2H)
P6 L7 L6 L5 L4 L3 L2 L1 L0 (SL 2)
P7 A7 A6 A5 A4 A3 A2 A1 A0 (SAD 3L)
P8 A15 A14 A13 A12 A11 A10 A9 A8 (SAD 3H)
P9 A7 A6 A5 A4 A3 A2 A1 A0 (SAD 4L)
P10 A15 A14 A13 A12 A11 A10 A9 A8 (SAD 4H)
Note: Set parameters P9 and P10 only if both two-screen
drive (W/S = 1) and two-layer configuration are se­lected. SAD4 is the fourth screen block display start address.
Figure 17. SCROLL instruction parameters
Page 38
38 268-0.4
3.0 Command Description 3.3.2.1 – 3.3.2.2
Table 13. Screen block start address selection
SL1, SL2
[SL] screen lines
HEX L7 L6 L5 L4 L3 L2 L1 L0
00 00000000 1 01 00000001 2
↓ ↓↓↓↓↓↓↓↓
7F 01111111 128
↓ ↓↓↓↓↓↓↓↓
FE11111110 255 FF 11111111 256
3.3.2.2 SL1, SL2
SL1 and SL2 set the number of lines per scrolling screen. The number of lines is SL1 or SL2 plus one.
The relationship between SAD, SL and the display mode is described below.
Table 14. Text display mode
W/S Screen First Layer Second Layer
First screen block SAD1 SAD2
Second screen block SL1 SL2
SAD3 (see note 1)
Third screen block (partitioned screen) Set both SL1 and SL2 to L/F + 1
if not using a partitioned screen.
Screen configuration example:
0
(continued)
Character display page 1
Character display page 3
SAD2
SAD1
SAD3
SL1
SL2
Graphics display page 2
Layer 2
La
y
er 1
Page 39
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 39
3.3.2.2 3.0 Command Description
Table 14. Text display mode (continued)
W/S Screen First Layer Second Layer
Upper screen
SAD1 SAD2
SL1 SL2
Lower screen
SAD3 SAD4
(see note 2) (see note 2)
Set both SL1 and SL2 to ((L/F) / 2 + 1)
Screen configuration example:
1
Notes:
1. SAD3 has the same value as either SAD1 or SAD2, whichever has the least number of lines (set by SL1 and SL2).
2. Since the parameters corresponding to SL3 and SL4 are fixed by L/F, they do not have to be set in this mode.
Character display page 1
Character display page 3
SAD2
SAD1
SAD3
SL1
Graphics display page 2
La
y
er 2Layer 1
Graphics display page 4 (SAD4)
Page 40
40 268-0.4
3.0 Command Description 3.3.2.2
Table 15. Graphics display mode
W/S Screen First Layer Second Layer Third Layer
Two-layer composition
SAD1 SAD2
SL1 SL2
SAD3 (see note 3)
Upper screen
Set both SL1 and SL2 to
L/F + 1 if not using a
partitioned screen
Screen configuration example:
0
0
Three-layer configuration
SAD1 SAD2 SAD3
SL1 = L/F + 1 SL2 = L/F + 1
Screen configuration example:
Character display page 1
Character display page 3
SAD2
SAD1
SAD3
SL1
SL2
Graphics display page 2
Layer 1 Layer 2
Graphics display page 1
SAD2
SAD1
SAD3
SL1
SL2
Graphics display page 2
Layer 1
Graphics display page 3
Layer 2
Layer 3
Page 41
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 41
3.3.2.2 3.0 Command Description
Notes:
1. SAD3 has the same value as either SAD1 or SAD2, whichever has the least number of lines (set by SL1 and SL2).
2. Since the parameters corresponding to SL3 and SL4 are fixed by L/F, they do not have to be set.
3. If, and only if, W/S = 1, the differences between SL1 and (L/F + 1) / 2, and between SL2 and (L/F + 1) / 2, are blanked.
Table 15. Graphics display mode (continued)
W/S Screen First Layer Second Layer Third Layer
Upper screen
SAD1 SAD2
SL1 SL2
Lower screen
SAD3 SAD4
(see note 2) (see note 2)
Set both SL1 and SL2 to ((L/F) / 2 + 1)
Screen configuration example (see note 3):
1
Figure 18. Two-panel display height
Graphics display page 1
Graphics display page 3
SAD2
SAD1
SAD3
SL1
Graphics display page 2
Layer 2Layer 1
Graphics display page 4
Upper Panel
Lower Panel
SL1
L/2
L
Graphics
Page 42
42 268-0.4
MSB LSB
C01011101
P10000
X3 X2
CRX
X1 X0
P2 CM 0 0 0
Y3 Y2
CRY
Y1 Y0
3.0 Command Description 3.3.3 – 3.3.3.2
3.3.3 CSRFORM
Sets the cursor size and display mode. Although the cursor is normally only used in text displays, it may also be used in graphics displays when displaying special characters.
3.3.3.2 CRY
Sets the location of an underscored cursor in lines, from the character origin. When using a block cursor, CRY sets the vertical size of the cursor from the character origin. CRY is equal to the number of lines less one.
Table 17. Cursor height selection
CRY
[CRY] cursor
HEX Y3 Y2 Y1 Y0
height (lines)
0 0000 illegal 1 0001 2
↓ ↓↓↓↓
8 1000 9
↓ ↓↓↓↓
E 1110 15 F 1111 16
Figure 20. Cursor size and position
Figure 19. CSRFORM parameter bytes
3.3.3.1 CRX
Sets the horizontal size of the cursor from the charac­ter origin. CRX is equal to the cursor size less one. CRX must be less than or equal to FX.
Table 16. Horizontal cursor size selection
CRX
[CRX] cursor width
HEX X3 X2 X1 X0
(pixels)
0 0000 1 1 0001 2
↓ ↓↓↓↓
8 1000 9
↓ ↓↓↓↓
E 1110 15 F 1111 16
0123456•• •
0 1 2 3 4 5 6 7 8 9
Character start point
CRX = 5 dots CRY = 9 dots
CM = 0
Page 43
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 43
3.3.3.3 – 3.3.5.1 3.0 Command Description
3.3.3.3 CM
Sets the cursor display mode. Always set CM to 1 when in graphics mode.
CM = 0: Underline cursor CM = 1: Block cursor
3.3.4 CSRDIR
Sets the direction of automatic cursor increment. The cursor can move left or right one character, or up or down by the number of bytes specified by the address pitch, AP.
When reading from and writing to display memory, this automatic cursor increment controls the display memory address increment on each read or write.
Table 18. Cursor shift direction
C CD1 CD0 Shift direction
4CH 0 0 Right 4DH 0 1 Left 4EH 1 0 Up 4FH 1 1 Down
Note: Since the cursor moves in address units even if FX 9,
the cursor address increment must be preset for move­ment in character units. See Section 5.3.
3.3.5 OVLAY
Selects layered screen composition and screen text/ graphics mode.
MSB LSB
C010011CD1CD2
Figure 21. CSRDIR parameters
Figure 22. Cursor direction
MSB LSB
C01011011
P1 0 0 0 OV DM2 DM1 MX1 MX0
Figure 23. OVLAY parameter
3.3.5.1 MX0, MX1
MX0 and MX1 set the layered screen composition method, which can be either OR, AND, Exclusive-OR or Priority-OR. Since the screen composition is orga­nized in layers and not by screen blocks, when using a layer divided into two screen blocks, different com­position methods cannot be specified for the indi­vidual screen blocks.
The Priority-OR mode is the same as the OR mode unless flashing of individual screens is used.
10
11
0001
–1 +1
+AP
–AP
Page 44
44 268-0.4
3.0 Command Description 3.3.5.1
Table 19. Composition method selection
MX1 MX0 Function Composition Method Applications
0 0 L1 L2 L3 OR Underlining, rules, mixed text and graphics 0 1 (L1 L2) ∪ L3 Exclusive-OR
Inverted characters, flashing regions, un­derlining
1 0 (L1 ∩ L2) L3 AND
Simple animation, three-dimensional ap-
1 1 L1 > L2 > L3 Priority-OR
pearance
Notes:
L1: First layer (text or graphics). If text is selected, layer L3 cannot be used. L2: Second layer (graphics only) L3: Third layer (graphics only)
Notes:
L1: Not flashing L2: Flashing at 1 Hz L3: Flashing at 2 Hz
Figure 24. Combined layer display
EPSON
Layer 1 Layer 2 Layer 3
EPSON
Visible display
1OR
EPSON EPSON
2 Exclusive OR
EPSON
3 AND
EPSON
4 Prioritized OR
EPSON
SON
Page 45
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 45
3.3.5.2 – 3.3.7.1 3.0 Command Description
3.3.5.2 DM1, DM2
DM1 and DM2 specify the display mode of screen blocks 1 and 3, respectively.
DM1/2 = 0: Text mode DM1/2 = 1: Graphics mode
Note 1: Screen blocks 2 and 4 can only display graphics. Note 2: DM1 and DM2 must be the same, regardless of the
setting of W/S.
3.3.5.3 OV
Specifies two- or three-layer composition in graphics mode.
OV = 0: Two-layer composition OV = 1: Three-layer composition
Set OV to 0 for mixed text and graphics mode.
3.3.6 CGRAM ADR
Specifies the CG RAM start address.
MSB LSB
C01011100
P1 A7 A6 A5 A4 A3 A2 A1 A0 (SAGL)
P2 A15 A14 A13 A12 A11 A10 A9 A8 (SAGH)
Figure 25. CGRAM ADR parameters
Note: See Section 6 for information on the SAG parameters.
3.3.7 HDOT SCR
While the scroll command only allows scrolling by characters, HDOT SCR allows the screen to be scrolled horizontally by pixels. HDOT SCR cannot be used on individual layers.
MSB LSB
C01011010
P1 0 0 0 0 0 D2 D1 D0
3.3.7.1 D0 to D2
Specifies the number of pixels to scroll. The C/R parameter has to be set to one more than the number of horizontal characters before using HDOT SCR. Smooth scrolling can be simulated if the controlling microprocessor repeatedly issues the HDOT SCR command to the SED1330F/1335F/1336F. See Sec­tion 5.5 for more information on scrolling the display.
Table 20. Scroll step selection
P1
Number of pixels
HEX D2 D1 D0
to scroll
00 000 0 01 001 1 02 010 2
↓ ↓↓↓
06 110 6 07 111 7
Figure 26. HDOT SCR parameters
Page 46
46 268-0.4
3.0 Command Description 3.4 – 3.4.2
3.4 Drawing Control Commands
3.4.1 CSRW
The 16-bit cursor address register contains the dis­play memory of the data at the cursor position as shown in Figure 28.
Figure 28. CSRW parameters
Note that the microprocessor cannot directly access the display memory.
The MREAD and MWRITE commands use the ad­dress in this register.
The cursor address register can only be modified by the CSRW command, and by the automatic incre­ment after an MREAD or MWRITE command. It is not affected by display scrolling.
If a new address is not set, display memory accesses will be from the last set address or the address after previous automatic increments.
3.4.2 CSRR
Reads from the cursor address register. After issuing the command, the data read address is read twice, for the low byte and then the high byte of the register.
MSB LSB
C01000110
P1 A7 A6 A5 A4 A3 A2 A1 A0 (CSRL)
P2 A15 A14 A13 A12 A11 A10 A9 A8 (CSRH)
Figure 29. CSRR parameters
MSB LSB
C01000111
P1 A7 A6 A5 A4 A3 A2 A1 A0 (CSRL)
P2 A15 A14 A13 A12 A11 A10 A9 A8 (CSRH)
M
A
BXY
AB XYZ
AB XYZ
M = 0 N = 0
Display width N
M/N is the number of bits (dots) that parameter 1 (P1) is incremented/decremented by.
Figure 27. Horizontal scrolling
Page 47
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 47
3.5 – 3.5.2 3.0 Command Description
3.5 Memory Control Commands
3.5.1 MWRITE
The microprocessor may write a sequence of data bytes to display memory by issuing the MREAD command and then writing the bytes to the SED1330F/ 1335F/1336F. There is no need for further MWRITE commands or for the microprocessor to update the cursor address register after each byte as the cursor address is automatically incremented by the amount set with CSRDIR, in preparation for the next data write.
Figure 30. MWRITE parameters
3.5.2 MREAD
Puts the SED1330F/1335F/1336F into the data out­put state. On the MREAD command, the display memory data at the cursor address is read into a buffer in the SED1330F/1335F/1336F.
Each time the microprocessor reads the buffer, the cursor address is incremented by the amount set by CSRDIR and the next data byte fetched from memory, so a sequence of data bytes may be read without further MREAD commands or by updating the cursor address register.
If the cursor is displayed, the read data will be from two positions ahead of the cursor.
Figure 31. MREAD parameters
MSB LSB
C01000010
P1
P2
Pn n 1
Note:
P1, P2, ..., Pn: display data.
MSB LSB
C01000011
P1
P2
Pn n 1
Page 48
48 268-0.4
1.0 Overview 1.3
THIS PAGE INTENTIONALLY BLANK
Page 49
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 49
3.3.2.2 3.0 Command Description
4.0
Specifications
Page 50
50 268-0.4
THIS PAGE INTENTIONALLY BLANK
Page 51
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 51
4.0 – 4.1 4.0 Specifications
4.0 Specifications
4.1 Absolute Maximum Ratings
4.1.1 SED1330
Parameter Symbol Rating Unit
Supply voltage range VDD –0.3 to 7.0 V Input voltage range VIN –0.5 to VDD + 0.5 V Power dissipation PD 300 mW Operating temperature range Topr –20 to 75 °C Storage temperature range Tstg –65 to 150 °C Soldering temperature (10 seconds). See note 1. Tsolder 260 °C
4.1.2 SED1335/SED1336
Parameter Symbol Rating Unit
Supply voltage range VDD –0.3 to 7.0 V Input voltage range VIN –0.3 to VDD + 0.3 V Power dissipation PD 300 mW Operating temperature range Topr –20 to 75 °C Storage temperature range Tstg –65 to 150 °C Soldering temperature (10 seconds). See note 1. Tsolder 260 °C
Notes:
1. The humidity resistance of the flat package may be reduced if the package is immersed in solder. Use a soldering technique that does not heatstress the package.
2. If the power supply has a high impedance, a large voltage differential can occur between the input and supply voltages. Take appropriate care with the power supply and the layout of the supply lines. (See Section 2.3.)
3. All supply voltages are referenced to V
SS
= 0V.
Page 52
52 268-0.4
4.0 Specifications 4.2
VDD = 5V ±10%, VSS = 0V, Ta = –20 to 75°C
Measured at OSC1
4.2 SED 1330 Electrical Characteristics
Parameter Symbol Condition
Rating
Unit
min typ max
Supply voltage V
DD 4.5 5.0 5.5 V
Register data retention voltage VOH 2.0 5.5 V Input leakage current ILI VI = VDD. 0.05 2.0 µA Output leakage current ILO VI = VSS. 0.10 5.0 µA Operating supply current Iopr See note 4. 8 12 mA
Quiescent supply current I
Q V
OSC1
= VCS = VRD = V
DD
0.05 20.0 µA
Oscillator frequency f
OSC 1.0 10.0 MHz
External clock frequency fCL 10.0 MHz Oscillator feedback resistance Rf 0.5 1.0 5.0 M
TTL
HIGH-level input voltage VIHT See note 1. 2.2 VDD + 0.3 V LOW-level input voltage VILT See note 1. –0.3 0.8 V
HIGH-level output voltage V
OHT
IOH = –5.0 mA.
2.4 V
See note 1.
LOW-level output voltage V
OLT IOL = 5.0 mA. See note 1. 0.4 V
CMOS
HIGH-level input voltage VIHC See note 2. 0.8VDD ——V LOW-level input voltage VILC See note 2. 0.2VDD V HIGH-level output voltage VOHC IOH = –1.6 mA. See note 2.VDD – 0.4 V LOW-level output voltage VOLC IOH = 1.6 mA. See note 2. 0.4 V
Schmitt-trigger
Rising-edge threshold voltage VT+ See note 3. 0.5VDD 0.7VDD 0.8VDD V Falling-edge threshold voltage VT– See note 3. 0.2VDD 0.3VDD 0.5VDD V
Notes:
1. D0 to D7, A0, CS, RD, WR, VD0 to VD7, VA0 to VA15, VR/W and VCE are TTL-level inputs.
2. SEL1, SEL2 and OSC1 are CMOS-level inputs. YD, XD0 to XD3, XSCL, YECL, LP, WF, YSCL, YDIS and CLO are CMOS-level outputs.
3. RES is a Schmitt-trigger input. The pulsewidth on RES must be at least 200 µs. Note that pulses of more than a few seconds will cause DC voltages to be applied to the LCD panel.
4. f
OSC = 10 MHz, no load (no display memory), internal
character generator, 256 × 200 pixel display. The operating supply current can be reduced by approxi­mately 1 mA by setting both CLO and the display OFF.
Page 53
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 53
Notes:
1. D0 to D7, A0, CS, RD, WR, VD0 to VD7, VA0 to VA15, VRD, VWR and VCE are TTL-level inputs.
2. SEL1 and NT/PL are CMOS-level inputs. YD, XD0 to XD3, XSCL, XECL, LP, WF, YSCL, YDIS and CLO are CMOS-level outputs.
3. RES is a Schmitt-trigger input. The pulsewidth on RES must be at least 200 µs. Note that pulses of more than a few seconds will cause DC voltages to be applied to the LCD panel.
4. f
OSC = 10 MHz, no load (no display memory), internal
character generator, 256 × 200 pixel display. The operating supply current can be reduced by approxi­mately 1 mA by setting both CLO and the display OFF.
4.3 SED1335/1336 Electrical Characteristics
Parameter Symbol Condition
Rating
Unit
min typ max
Supply voltage V
DD 4.5 5.0 5.5 V
Register data retention voltage VOH 2.0 6.0 V Input leakage current ILI VI = VDD. See note 6. 0.05 2.0 µA Output leakage current ILO VI = VSS. See note 6. 0.10 5.0 µA Operating supply current Iopr See note 4. 11 15 mA
Quiescent supply current I
Q
Sleep mode,
0.05 20.0 µA
V
OSC1 = VCS = VRD = VDD
Oscillator frequency fOSC 1.0 10.0 MHz External clock frequency fCL 1.0 10.0 MHz Oscillator feedback resistance Rf 0.5 1.0 3.0 M
TTL
HIGH-level input voltage VIHT See note 1. 0.5VDD —VDD V LOW-level input voltage VILT See note 1. VSS 0.2VDD V
HIGH-level output voltage V
OHT
IOH = –5.0 mA.
2.4 V
See note 1.
LOW-level output voltage V
OLT IOL = 5.0 mA. See note 1. VSS + 0.4 V
CMOS
HIGH-level input voltage VIHC See note 2. 0.8VDD —VDD V LOW-level input voltage VILC See note 2. VSS 0.2VDD V HIGH-level output voltage VOHC IOH = –2.0 mA. See note 2.VDD – 0.4 V LOW-level output voltage VOLC IOH = 1.6 mA. See note 2. ——VSS + 0.4 V
Open-drain
LOW-level output voltage VOLN IOL = 6.0 mA. See note 5. VSS + 0.4 V
Schmitt-trigger
Rising-edge threshold voltage VT+ See note 3. 0.5VDD 0.7VDD 0.8VDD V Falling-edge threshold voltage VT– See note 3. 0.2VDD 0.3VDD 0.5VDD V
VDD = 4.5 to 5.5V, VSS = 0V, Ta = –20 to 75°C
Measured at crystal,
47.5% duty cycle. See note 7.
4.3 4.0 Specifications
Page 54
54 268-0.4
4.4 SED1330 Timing Diagrams
4.4.1 System bus READ/WRITE timing I (8080)
Figure 32. System bus READ/WRITE timing I (8080)
Ta = –20 to 75°C
4.0 Specifications 4.4 – 4.4.1
t
ACC8
t
OH8
t
AH8
t
AW8
t
DS8
t
DH8
t
CC
t
CYC
A0, CS
WR, RD
D0~D7
(WRITE)
D0~D7
(READ)
4.4.1.1 SED1330F
Signal Symbol Parameter
Rating
Unit Condition
min max
A0, CS
t
AH8 Address hold time 10 ns
tAW8 Address setup time 30 ns
WR, RD
tCYC System cycle time
(1)
—ns
tCC Strobe pulsewidth 220 ns
CL = 100
tDS8 Data setup time 120 ns
pF
D0 to D7
t
DH8 Data hold time 10 ns
tACC8 RD access time 120 ns
tOH8 Output disable time 10 50 ns
Note: t
CYC
=2tC + tCC + t
CEA
+ 75 > t
ACV
+ 245: memory control/movement control commands: = 4t
C
+ tCC + 30:
all other commands:
Page 55
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 55
4.4.2 – 4.4.2.1 4.0 Specifications
4.4 SED1330 Timing Diagrams
4.4.2 System bus READ/WRITE timing II (6800)
Ta = –20 to 75°C
Figure 33. System bus READ/WRITE timing II (6800)
t
DS6
t
EW
t
AW6
t
AH6
t
DH6
t
OH6
t
ACC6
t
CYC6
E
R/W
A0, CS
D0~D7
(WRITE)
D0~D7
(READ)
4.4.2.1 SED1330F
Signal Symbol Parameter
Rating
Unit Condition
min max
A0, CS
t
AH6 Address hold time 10 ns
R/W
tAW6 Address setup time 30 ns
tCYC6 System cycle time
(1)
—ns
CL=100pF+1TTL
tDS6 Data setup time 120 ns
pF
D0 to D7
tDH6 Data hold time 10 ns
tACC6 Access time 120 ns
tOH6 Output disable time 10 50 ns
EtEW Enable pulse width 220 ns
Note: (1) t
CYC6
= 2tC + tEW + t
CEA
+ 75 > t
ACV
+ 245: memory control/movement control commands: = 4t
C
+ tEW + 30:
all other commands:
1. t
CYC6 means a cycle of (CS.E) not E alone.
Page 56
56 268-0.4
4.0 Specifications 4.4.3 – 4.4.3.1
4.4 SED1330 Timing Diagrams
4.4.3 Display memory READ timing
Ta = –20 to 75°C
Figure 34. Display memory READ timing
t
C
t
CE
t
AHC
t
RCH
t
ASC
t
RCS
t
CE3
t
OH2
t
CEA
t
ACY
t
CYR
t
W
t
W
EXTφO
VCE
VA0~VA15
VR/W
VD0~VD7
4.4.3.1 SED1330F
Signal Symbol Parameter
Rating
Unit Condition
min max
EXT
Ø0tC Clock cycle 100 ns
VCE
tW VCE high level pulse width tc–40 ns
tCE VCE low level pulse width 2tc–40 ns
VA0
tCYR Read cycle time
(1)
—ns
to VA15
tASC VCE address setup time (fall) tc–45 ns
CL = 100
pF
t
AHC VCE address hold time (fall) 2tc–40 ns +1TTL
VR/W
tRCS VCE read cycle setup time (fall) tc–45 ns tRCH VCE read cycle hold time (fall) tc/2–35 ns tACV Address access time (2) ns
VD0 tCEA VCE access time (3) ns
to VD7 tOH2 Output data hold time 0 ns
tCE2 VCE data off time 0 ns
Note: 1. t
CYR
= 3t
C
2. t
ACV
= 3tC –120
3. t
CEA
= 2tC –120
Page 57
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 57
4.4 SED1330 Timing Diagrams
4.4.4 Display memory WRITE timing
Ta = –20 to 75°C
Figure 35. Display memory WRITE timing
4.4.4.1 SED1330F
Signal Symbol Parameter
Rating
Unit Condition
min max
EXT
Ø0tC Clock cycle 100 ns
VCE
tW VCE high level pulse width tc–40 ns
tCE VCE low level pulse width 2tc–40 ns
tCYW Write cycle time 3tc ns
tAHC VCE address hold time (fall) 2tc–40 ns
VA0 tASC VCE address setup time (fall) tc–55 ns
CL = 100
pF
to VA15 t
CA VCE address hold time (rise) 5 ns
+1TTL
tAS VR/W address setup time (fall) 0 ns
tAH2 VR/W address hold time (rise) 15 ns
VR/W
tWSC VCE write setup time (fall) tc–55 ns
tWHC VCE write hold time (fall) tc2–40 ns
VD0
tDSC VCE data input setup time (fall) twsc–10 ns
to VD7
tDHC VCE data input hold time (fall) 2tc–30 ns
tDH2 VR/W data hold time (rise) 10* 50 ns
* Lines VD0 to VD7 are latched.
4.4.4 – 4.4.4.1 4.0 Specifications
t
WSC
t
C
t
CE
t
CYW
t
AH2
t
CA
t
OH2
t
ASC
t
WHC
t
AS
t
OHC
t
OSC
t
AHC
t
W
EXTφO
VCE
VA0~VA15
VWR
VD0~VD7
Page 58
58 268-0.4
4.4 SED1330 Timing Diagrams
4.4.5 LCD control timing
4.0 Specifications 4.4.5
t
WX
t
DS
t
L1
t
LD
t
WY
t
DHY
t
L2
t
WL
t
DH
t
WXE
t
CX
t
r
t
f
1 frame period
1 line period
ROW1 ROW2ROW64
t
S2
t
S1
t
Df
ROW NO
LP
YD
WF
YSCL
WF
YSCL
LP
XSCL
XD0~XD3
XECL
XSCL
XD0~XD3
LP
XECL
WF(B)
YD
YSCL
Figure 36. LCD control timing
Page 59
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 59
4.4 SED1330 Timing Diagrams
4.4.5.1 SED1330F
4.4.5.1 4.0 Specifications
Ta = –20 to 75°C
Signal Symbol Parameter
Rating
Unit Condition
min max
EXT
Ø0tC Clock cycle 100 ns
tr VCE high level pulse width 35 ns tf VCE low level pulse width 35 ns
XSCL
tCX Shift clock cycle time 4tc ns
tWX XSCL clock pulse width tCX2–80 —ns
XD0 tDH X-data hold time tCX2
–100
—ns
V
DD = 5.0V
to XD3 t
DS X-data setup time tCX2
–100
—ns
±10%
LP
tLS Latch data setup time tCX2
–100
ns CL=150F
tWL LP signal pulse width tCX4
–80
—ns
tL1 XECL setup time tCX3
–100
—ns
tL2 XECL data hold time tC
–30
—ns
XECL tS1 Enable setup time tC
–30
—ns
tS1 Enable delay time tC
–30
—ns
tWXE XECL clock pulse width tCX3
–80
—ns
WF tDF Time allowance of WF delay 100 ns
YSCL
tLD LP delay time against YSCL tCX4
–100
—ns
tWY YSCL clock pulse width tCX4
–80
—ns
YD tDHY Y-data hold time tCX6
–100
—ns
Page 60
60 268-0.4
4.4 SED1330 Timing Diagrams
4.4.6 Oscillator timing
Ta = –20 to 75°C
4.0 Specifications 4.4 .6– 4.4.6.1
Figure 37. Oscillator timing
t
CL
t
RCL
t
FCL
Sleep periodPower ON
t
WL
t
OSP
t
WH
t
OSS
V
DD
CLO
YDIS
EXT 0O
4.4.6.1 SED1330F
Signal Symbol Parameter
Rating
Unit Condition
min max
CLO
t
OSP Time to stable CLO output after power ON 3 ms RES = H
tOSS Time to stable CLO output after sleep OFF 1 ms 20 pF
tRCL External clock rise time
15 ns
tFCL External clock fall time 15 ns
EXTø0 tWH External clock high-pulse width Note 1 Note 2 ns
tWL External clock low-pulse width Note 1 Note 2 ns
tCL External clock cycle 100 ns
1. (tC – t
RCL
– t
FCL
) X 475/1000 < tWH, t
WL
2. (tC – t
RCL
– t
FCL
) X 525/1000 > tWH, t
WL
Page 61
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 61
4.4.7 4.0 Specifications
4.4 SED1330 Timing Diagrams
4.4.7 Measurement circuit
Figure 38. Measurement circuit
C = 100 pF 24 K
2.1 K
IN 916 COMPATABLE
Measurement
Terminal
* C includes probe capacitance.
V
SS
V
DD
Page 62
62 268-0.4
4.0 Specifications 4.5 – 4.5.1.1
4.5 SED1335/SED1336 AC Timing Diagrams
4.5.1 8080 family Interface Timing
t
CYC
t
OH8
t
AH8
t
AW8
t
CC
t
DS8
t
DH8
t
ACC8
AO, CS
WR, RD
D0 to D7
(Write)
D0 to D7
(Read)
Figure 39. 8080 family interface timing
4.5.1.1 SED1335F
Signal Symbol Parameter
V
DD = 4.5 to 5.5V VDD = 2.7 to 4.5V
Unit Condition
min max min max
A0, CS
tAH8 Address hold time 10 10 ns
tAW8 Address setup time 0 0 ns
WR, RD
tCYC System cycle time
See note
See note
—ns
tCC Strobe pulsewidth 120 150 ns
CL = 100
tDS8 Data setup time 120 120 ns
pF
D0 to D7
t
DH8 Data hold time 5 5 ns
tACC8 RD access time 50 80 ns
tOH8 Output disable time 10 50 10 55 ns
Note: For memory control and system control commands:
t
CYC8
= 2tC + tCC + t
CEA
+ 75 > t
ACV
+ 245
For all other commands:
t
CYC8
= 4tC + tCC + 30
Ta = –20 to 75°C
Page 63
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 63
4.5.1.2 4.0 Specifications
4.5.1.2 SED1336F
Signal Symbol Parameter
V
DD = 4.5 to 5.5V VDD = 3.0 to 4.5V
Unit Condition
min max min max
A0, CS
tAH8 Address hold time 10 10 ns
tAW8 Address setup time 0 0 ns
WR, RD
tCYC System cycle time
See note
See note
—ns
tCC Strobe pulsewidth 120 140 ns
CL = 100
tDS8 Data setup time 120 120 ns
pF
D0 to D7
tDH8 Data hold time 5 5 ns
tACC8 RD access time 50 70 ns
tOH8 Output disable time 10 50 10 50 ns
Note: For memory control and system control commands:
t
CYC8
= 2tC + tCC + t
CEA
+ 75 > t
ACV
+ 245
For all other commands:
t
CYC8
= 4tC + tCC + 30
Ta = –20 to 75°C
Page 64
64 268-0.4
4.5.2 6800 family Interface Timing
Note: tCYC6 indicates the interval during which CS is LOW and E is HIGH.
Figure 40. 6800 family interface timing
E
R/W
AO, CS
D0 to D7
(Write)
D0 to D7
(Read)
t
CYC
t
AW6
t
EW
t
AH6
t
DH6
t
DS6
t
OH6
t
ACC6
4.0 Specifications 4.5.2
Page 65
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 65
A0, CS,
R/W
4.5.2.1 – 4.5.2.2 4.0 Specifications
4.5.2.1 SED1335F
Signal Symbol Parameter
V
DD = 4.5 to 5.5V VDD = 2.7 to 4.5V
Unit Condition
min max min max
tCYC6 System cycle time See note See note —ns
tAW6 Address setup time 0 10 ns
tAH6 Address hold time 0 0 ns tDS6 Data setup time 100 120 ns
CL =
D0 to D7
tDH6 Data hold time 0 0 ns
100 pF
tOH6 Output disable time 10 50 10 75 ns
tACC6 Access time 85 130 ns
EtEW Enable pulsewidth 120 150 ns
Note: For memory control and system control commands:
t
CYC6
= 2tC + tEW + t
CEA
+ 75 > t
ACV
+ 245
For all other commands:
t
CYC6
= 4t
C
+ tEW + 30
Ta = –20 to 75°C
A0, CS,
R/W
4.5.2.2 SED1336F
Signal Symbol Parameter
V
DD = 4.5 to 5.5V VDD = 3.0 to 4.5V
Unit Condition
min max min max
tCYC6 System cycle time See note See note —ns
tAW6 Address setup time 0 10 ns
tAH6 Address hold time 0 0 ns tDS6 Data setup time 100 120 ns
CL =
D0 to D7
tDH6 Data hold time 0 0 ns
100 pF
tOH6 Output disable time 10 50 10 70 ns
tACC6 Access time 85 120 ns
EtEW Enable pulsewidth 120 140 ns
Note: For memory control and system control commands:
t
CYC6
= 2tC + tEW + t
CEA
+ 75 > t
ACV
+ 245
For all other commands:
t
CYC6
= 4t
C
+ tEW + 30
Ta = –20 to 75°C
Page 66
66 268-0.4
4.5.3.1 SED1335F
Signal Symbol Parameter
V
DD = 4.5 to 5.5V VDD = 2.7 to 4.5V
Unit Condition
min max min max
EXT φ0tC Clock period 100 125 ns
t
W
VCE HIGH-level pulse-
t
C – 50 tC – 50 ns
VCE
width
t
CE
VCE LOW-level pulse-
2t
C
– 30 2tC – 30 ns
width
t
CYR Read cycle time 3tC —3tC —ns
t
ASC
Address setup time to
t
C – 70 tC – 100 ns
falling edge of VCE
t
AHC
Address hold time from
2t
C
– 30 2tC – 40 ns
falling edge of VCE
t
RCS
Read cycle setup time to
t
C – 45 tC – 60 ns
VRD
falling edge of VCE
t
RCH
Read cycle hold time
0.5t
C 0.5tC —ns
from rising edge of VCE
t
ACV Address access time 3tC – 100 3tC – 115 ns
VD0 to
tCEA VCE access time 2tC – 80 2tC – 90 ns
VD7
tOH2 Output data hold time 0 0 ns
tCE3 VCE to data off time 0 0 ns
4.0 Specifications 4.5.3 – 4.5.3.1
4.5.3 Display Memory Read Timing
EXTΦ0
VCE
VA0 to VA15
VRD
VD0 to VD7
(SED1335F)
t
C
t
W
t
CE
t
W
t
AHC
t
ASC
t
CYR
t
RCS
t
CEA
t
RCH
t
CE3
t
OH2t
ACV
Figure 41. Display memory read timing
VA0 to
VA15
CL = 100
pF
Ta = –20 to 75°C
Page 67
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 67
4.5.3.2 4.0 Specifications
4.5.3.2 SED1336F
Signal Symbol Parameter
V
DD = 4.5 to 5.5V VDD = 3.0 to 4.5V
Unit Condition
min max min max
EXT φ0tC Clock period 100 125 ns
t
W
VCE HIGH-level pulse-
t
C – 50 tC – 50 ns
VCE
width
t
CE
VCE LOW-level pulse-
2t
C – 30 2tC – 30 ns
width
t
CYR Read cycle time 3tC —3tC —ns
t
ASC
Address setup time to
t
C – 70 tC – 100 ns
falling edge of VCE
t
AHC
Address hold time from
2t
C
– 30 2tC – 40 ns
falling edge of VCE
t
RCS
Read cycle setup time to
t
C – 45 tC – 55 ns
VRD
falling edge of VCE
t
RCH
Read cycle hold time
0.5t
C 0.5tC —ns
from rising egde of VCE
t
ACV Address access time 3tC – 100 3tC – 110 ns
VD0 to
tCEA VCE access time 2tC – 80 2tC – 85 ns
VD7
tOH2 Output data hold time 0 0 ns
tCE3 VCE to data off time 0 0 ns
VA0 to
VA15
CL = 100
pF
Ta = –20 to 75°C
Page 68
68 268-0.4
4.0 Specifications 4.5.4
4.5.4 Display Memory Write Timing
t
WSC
t
C
t
CE
t
CYW
t
AH2
t
CA
t
OH2
t
ASC
t
WHC
t
AS
t
OHC
t
OSC
t
AHC
t
W
EXTφO
VCE
VA0~VA15
VWR
VD0~VD7
Figure 42. Display memory write timing
Page 69
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 69
4.5.4.1 SED1335F
Signal Symbol Parameter
V
DD = 4.5 to 5.5V VDD = 2.7 to 4.5V
Unit Condition
min max min max
EXT φ0tC Clock period 100 125 ns
t
W
VCE HIGH-level pulse-
t
C – 50 tC – 50 ns
VCE
width
t
CE
VCE LOW-level pulse-
2t
C – 30 2tC – 30 ns
width
t
CYW Write cycle time 3tC —3tC —ns
t
AHC
Address hold time from
2t
C – 30 2tC – 40 ns
falling edge of VCE
t
ASC
Address setup time to
t
C
– 70 tC – 110 ns
falling edge of VCE
VA0 to
t
CA
Address hold time from
0—0—ns
VA15
rising edge of VCE
t
AS
Address setup time to
0—0—ns
falling edge of VWR
t
AH2
Address hold time from
10 10 ns
rising edge of VWR
t
WSC
Write setup time to falling
t
C – 80 tC – 115 ns
VWR
edge of VCE
t
WHC
Write hold time from fall-
2t
C
– 20 2tC – 20 ns
ing edge of VCE
t
DSC
Data input setup time to
t
C – 85 tC – 125 ns
falling edge of VCE
VD0 to
t
DHC
Data input hold time
2t
C
– 30 2tC – 30 ns
VD7 from falling edge of VCE
t
DH2
Data hold time from
550550ns
rising edge of VWR
Note: VD0 to VD7 are latching input/outputs. While the bus is high impedance, VD0 to VD7 retain the write data until the data read
from the memory is placed on the bus.
4.5.4.1 4.0 Specifications
Ta = –20 to 75°C
CL = 100
pF
Page 70
70 268-0.4
4.5.4.2 SED1336F
Signal Symbol Parameter
V
DD = 4.5 to 5.5V VDD = 3.0 to 4.5V
Unit Condition
min max min max
EXT φ0tC Clock period 100 125 ns
t
W
VCE HIGH-level pulse-
t
C – 50 tC – 50 ns
VCE
width
t
CE
VCE LOW-level pulse-
2t
C – 30 2tC – 30 ns
width
t
CYW Write cycle time 3tC —3tC —ns
t
AHC
Address hold time from
2t
C – 30 2tC – 40 ns
falling edge of VCE
t
ASC
Address setup time to
t
C
– 70 tC – 100 ns
falling edge of VCE
VA0 to
t
CA
Address hold time from
0—0—ns
VA15
rising edge of VCE
t
AS
Address setup time to
0—0—ns
falling edge of VWR
t
AH2
Address hold time from
10 10 ns
rising edge of VWR
t
WSC
Write setup time to falling
t
C – 80 tC – 110 ns
VWR
edge of VCE
t
WHC
Write hold time from fall-
2t
C
– 20 2tC – 20 ns
ing edge of VCE
t
DSC
Data input setup time to
t
C – 85 tC – 120 ns
falling edge of VCE
VD0 to
t
DHC
Data input hold time
2t
C
– 30 2tC – 30 ns
VD7 from falling edge of VCE
t
DH2
Data hold time from
550550ns
rising edge of VWR
Note: VD0 to VD7 are latching input/outputs. While the bus is high impedance, VD0 to VD7 retain the write data until the data read
from the memory is placed on the bus.
Ta = –20 to 75°C
CL = 100
pF
4.0 Specifications 4.5.4.2
Page 71
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 71
4.5.5 – 4.5.5.2 4.0 Specifications
4.5.5 SLEEP IN Command Timing
VCE
WR
(command input)
YDIS
t
WRL
t
WRD
SYSTEM SET writeSLEEP IN write
Figure 43. SLEEP IN command timing
4.5.5.1 SED1335F
Signal Symbol Parameter
V
DD = 4.5 to 5.5V VDD = 2.7 to 4.5V
Unit Condition
min max min max
t
WRD
VCE falling-edge delay
See note 1
See note 1
—ns
WR
time
t
WRL
YDIS falling-edge delay
See note 2
See note 2
ns
time
Notes:
1. t
WRD
= 18tC + t
OSS
+ 40 (t
OSS
is the time delay from the sleep state until stable operation)
2. t
WRL
= 36tC × [TC/R] × [L/F] + 70
Ta = –20 to 75°C
CL = 100
pF
4.5.5.2 SED1336F
Signal Symbol Parameter
V
DD = 4.5 to 5.5V VDD = 3.0 to 4.5V
Unit Condition
min max min max
t
WRD
VCE falling-edge delay
See note 1
See note 1
—ns
WR
time
t
WRL
YDIS falling-edge delay
See note 2
See note 2
ns
time
Notes:
1. t
WRD
= 18tC + t
OSS
+ 40 (t
OSS
is the time delay from the sleep state until stable operation)
2. t
WRL
= 36tC × [TC/R] × [L/F] + 70
Ta = –20 to 75°C
CL = 100
pF
Page 72
72 268-0.4
4.0 Specifications 4.5.6 – 4.5.6.2
4.5.6 External Oscillator Signal Timing
EXTφ0
t
WL
t
WH
t
CL
t
RCL
t
FCL
Figure 44. External oscillator signal timing
4.5.6.1 SED1335F
Signal Symbol Parameter
V
DD = 4.5 to 5.5V VDD = 2.7 to 4.5V
Unit Condition
min max min max
tRCL External clock rise time 15 15 ns tFCL External clock fall time 15 15 ns
t
WH
External clock
See note 1 See note 2 See note 1 See note 2
ns
HIGH-level pulsewidth
t
WL
External clock
See note 1 See note 2 See note 1 See note 2
ns
LOW-level pulsewidth
t
C External clock period 100 125 ns
Notes:
1.
(t
C – tRCL – tFCL) ×
475
< tWH, tWL
1000
2. (t
C – tRCL – tFCL) ×
525
> tWH, tWL
1000
Ta = –20 to 75°C
EXT φ0
4.5.6.2 SED1336F
Signal Symbol Parameter
V
DD = 4.5 to 5.5V VDD = 3.0 to 4.5V
Unit Condition
min max min max
tRCL External clock rise time 15 15 ns tFCL External clock fall time 15 15 ns
t
WH
External clock
See note 1 See note 2 See note 1 See note 2
ns
HIGH-level pulsewidth
t
WL
External clock
See note 1 See note 2 See note 1 See note 2
ns
LOW-level pulsewidth
t
C External clock period 100 125 ns
Notes:
1.
(t
C – tRCL – tFCL) ×
475
< tWH, tWL
1000
2. (t
C – tRCL – tFCL) ×
525
> tWH, tWL
1000
Ta = –20 to 75°C
EXT φ0
Page 73
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 73
4.5.7 4.0 Specifications
4.5.7 LCD Output Timing
The following characteristics are for a 1/64 duty cycle.
Figure 45. LCD output timing
t
WX
t
DS
t
LD
t
WY
t
DHY
t
L1
t
L2
t
WL
t
DH
t
CX
t
r
t
f
1 frame period
1 line period
ROW1 ROW2ROW64
t
S2tS1
ROW 
LP
YD
WF
YSCL
6263641234
WF
YSCL
LP
XSCL
XD0~XD3
XECL
XSCL
XD0~XD3
LP
XECL
WF(B)
YD
YSCL
t
WXE
t
Df
60 61 62 63 64
Page 74
74 268-0.4
4.0 Specifications 4.5.7
Signal Symbol Parameter
Rating
Unit Condition
min max
t
r VCE high level pulse width 35 ns
tf VCE low level pulse width 35 ns
XSCL
tCX Shift clock cycle time 4tc–70 —ns
tWX XSCL clock pulse width 2tC–80 —ns
XD0 tDH X-data hold time 2tC
–100
—ns
V
DD = 5.0V
to XD3 t
DS X-data setup time 2tC
–100
—ns
±10%
LP
tLS Latch data setup time 2tC
–100
ns CL=150F
tWL LP signal pulse width 4tC
–80
—ns
tL1 XECL setup time 3tC
–100
—ns
tL2 XECL data hold time tC
–30
—ns
XECL tS1 Enable setup time tC
–30
—ns
tS1 Enable delay time tC
–30
—ns
tWXE XECL clock pulse width 3tC
–80
—ns
WF tDF Time allowance of WF delay 100 ns
YSCL
tLD LP delay time against YSCL 4tC
–100
—ns
tWY YSCL clock pulse width 4tC
–80
—ns
YD tDHY Y-data hold time 6tC
–100
—ns
t
C
ø0
XSCL
5 t
C
4
Notes:
1. The E-1330 reads display memory data from the address of the top left corner of the display screen, then scans horizontally until it reaches the address for the bottom right corner of the display screen. Therefore, each line of X-driver data is sent starting from the left side of the display line.
2. The E-1330 uses nine cycles of ø0 as the basic cycle (t
c
). The XSCL waveform is shown in the following figure.
Ta = –20 to 75°C
4.5.7.1 SED1330F
Page 75
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 75
4.5.7.2 – 4.5.7.3 4.0 Specifications
4.5.7.2 SED1335F
Signal Symbol Parameter
V
DD = 4.5 to 5.5V VDD = 2.7 to 4.5V
Unit Condition
min max min max
tr Rise time 30 40 ns tf Fall time 30 40 ns
XSCL
tCX Shift clock cycle time 4tC —4tC —ns
tWX XSCL clock pulsewidth 2tC – 60 2tC – 60 ns
XD0 to
tDH X data hold time 2tC – 50 2tC – 50 ns
XD3
tDS X data setup time 2tC – 100 2tC – 105 ns
tLS Latch data setup time 2tC – 50 2tC – 50 ns
LP tWL LP pulsewidth 4tC – 80 4tC – 120 ns
tLD LP delay time from XSCL 0 0 ns
WF tDF Permitted WF delay 50 50 ns
YD tDHY Y data hold time 2tC – 20 2tC – 20 ns
Ta = –20 to 75°C
4.5.7.3 SED1336F
Signal Symbol Parameter
V
DD = 4.5 to 5.5V VDD = 3.0 to 4.5V
Unit Condition
min max min max
tr Rise time 30 35 ns tf Fall time 30 35 ns
XSCL
tCX Shift clock cycle time 4tC —4tC —ns
tWX XSCL clock pulsewidth 2tC – 60 2tC – 60 ns
XD0 to
tDH X data hold time 2tC – 50 2tC – 50 ns
XD3
tDS X data setup time 2tC – 100 2tC – 100 ns
tLS Latch data setup time 2tC – 50 2tC – 50 ns
LP tWL LP pulsewidth 4tC – 80 4tC – 100 ns
tLD LP delay time from XSCL 0 0 ns
WF tDF Permitted WF delay 50 50 ns
YD tDHY Y data hold time 2tC – 20 2tC – 20 ns
Note: The SED1335F/1336F reads display memory data from the address of the top left corner of the display screen, then scans
horizontally until it reaches the address for the bottom right corner of the display screen. Therefore, each line of X-driver data is sent starting from the left side of the display line.
Ta = –20 to 75°C
CL =
100 pF
CL =
100 pF
Page 76
76 268-0.4
THIS PAGE INTENTIONALLY BLANK
Page 77
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 77
5.0
Display Control Functions
Page 78
78 268-0.4
THIS PAGE INTENTIONALLY BLANK
Page 79
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 79
5.0 – 5.1 5.0 Display Control Functions
5.0 Display Control Functions
5.1 Character Configuration
The origin of each character bitmap is in the top left corner as shown in Figure 38. Adjacent bits in each byte are horizontally adjacent in the corresponding character image.
Although the size of the bitmap is fixed by the charac­ter generator, the actual displayed size of the charac­ter field can be varied in both dimensions.
If the area outside the character bitmap contains only zeros, the displayed character size can easily be increased by increasing FX and FY, as the zeros ensure that the extra space between displayed char­acters is blank.
The displayed character width can be set to any value up to 16 even if each horizontal row of the bitmap is two bytes wide.
0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15
D7 to D0FX
Character
height
Space
Character width Space
FY
Character starting point
Space
data
Space
data
Figure 46. Example of character display ([FX] 8) and generator bitmap
Page 80
80 268-0.4
5.0 Display Control Functions 5.1
FY
Vertical
non-display
area
Character
Height
Space
16 dots
Horizontal
non-display
area
FX
8 dots 8 dots
SpaceCharacter width
Note: The SED1330F/1335F/1336F does not automatically insert spaces between characters. If the displayed character size is
8 pixels or less and the space between character origins is nine pixels or more, the bitmap must use two bytes per row, even though the character image requires only one.
Figure 47. Character width greater than one byte wide ([FX] = 9)
Page 81
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 81
5.2 – 5.2.2 5.0 Display Control Functions
5.2 Screen Configuration
5.2.1 Screen Configuration
The basic screen configuration of the SED1330F/ 1335F/1336F is as a single text screen or as overlap­ping text and graphics screens. The graphics screen uses eight times as much display memory as the text screen.
A/P
Character  memory area
Graphics  memory area
(XM,YM)
(XM,0)
(0,0)
(0,YM)
(XW,YM)
0800H
0000H
Display  memory  window
07FFH
47FFH
C/R
Y
X
Figure 48. Virtual and physical screen relationship
5.2.2 Display Address Scanning
The SED1330F/1335F/1336F scans the display memory in the same way as a raster scan CRT screen. Each row is scanned from left to right until the address range equals C/R. Rows are scanned from top to bottom.
In graphics mode, at the start of each line, the address counter is set to the address at the start of the previous line plus the address pitch, AP.
In text mode, the address counter is set to the same start address, and the same character data is read, for each row in the character bitmap. However, a new row of the character generator output is used each time. Once all the rows in the character bitmap have been displayed, the address counter is set to the start address plus AP and the next line of text is displayed.
Figure 40 shows the relationship between the virtual screens and the physical screen.
Page 82
82 268-0.4
5.0 Display Control Functions 5.2.2
W/S = 0, FX = 8, FY = 8
C/R
1
•
•
• 8 9
•
•
• 16 17
•
•
• 24
•
•
•
SAD
SAD + AP
SAD + 2AP
SAD + 1
SAD + AP + 1
SAD + 2
SAD + AP + 2
SAD + C/R
SAD + AP + C/R
Note: One byte of display memory corresponds to one character.
Figure 49. Character position parameters
SAD
SAD + AP
SAD + 2AP
SAD +1
SAD + AP + 1
SAD + 2
SAD + AP + 2
SAD + C/R
SAD + AP + C/R
1   2   3 
•
•
•
•
•
•
•
•
W/S = 0, FX = 8
C/R
SAD SAD +1 SAD + 2   SAD + C/R  SAD + AP SAD + AP + 1   SAD + AP + C/R  SAD + 2AP
Line 1
Line 2
Line 3
AP
AP
Note: One bit of display memory corresponds to one pixel.
Figure 50. Character parameters vs. memory
Page 83
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 83
5.2.2 5.0 Display Control Functions
Figure 51. Two-panel display address indexing
Note: In two-panel drive, the SED1330F/1335F/1336F reads line 1 and line β + 1 as one cycle. The upper and lower panels are
thus read alternately, one line at a time.
SAD1 SAD1 + 1 SAD1 + 2 SAD1 + C/R
SAD1 + AP SAD1 + AP 
 + 1
SAD1 + AP + 2
SAD1 + AP + C/R
SAD1 + 2AP
SAD3 + 1 SAD3 + 2 SAD3 + C/R
SAD3 + AP SAD3 + AP 
 + 1
SAD3 + AP + 2
SAD3 + AP + C/R
SAD3 + 2AP
1
•
•
•
8 9
•
•
•
16 17
•
•
•
24 25
•
•
•
(L/F)/2 = β
β + 1
•
•
•
β + 8 β + 9
•
•
•
β + 16 β + 17
•
•
•
β + 24 β + 25
•
•
•
• 
(L/F)
W/S = 1, FX = 8, FY = 8
C/R
Page 84
84 268-0.4
5.0 Display Control Functions 5.2.3
5.2.3 Display Scan Timing
Figure 44 shows the basic timing of the SED1330F/ 1335F/1336F. One display memory read cycle takes nine periods of the system clock, φ0 (f
OSC
). This cycle
repeats (C/R + 1) times per display line. When reading, the display memory pauses at the end
of each line for (TC/R – C/R) display memory read
cycles, though the LCD drive signals are still gener­ated. TC/R may be set to any value within the con­straints imposed by C/R, f
OSC
, fFR, and the size of the LCD panel, and it may be used to fine tune the frame frequency. The microprocessor may also use this pause to access the display memory data.
Frame
period
Display period Divider frequency
period
TC/R
C/R
OR OR OR
•
•
•
•
OR
Line 1
2
3
(L/F)
 
LP
T0 T1 T2
Display read cycle interval
Graphics read intervalCharacter read interval
Graphics generator
read interval
φ0
VCE
VA
Figure 52. Display memory basic read cycle
Note: The divider adjustment interval (R) applies to both the upper and lower screens even if W/S = 1. In this case, LP is active
only at the end of the lower screen’s display interval.
Figure 53. Relationship between TC/R and C/R
Page 85
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 85
5.3 – 5.3.3 5.0 Display Control Functions
5.3 Cursor Control
5.3.1 Cursor Register Function
The SED1330F/1335F/1336F cursor address regis­ter functions as both the displayed cursor position address register and the display memory access address register. When accessing display memory outside the actual screen memory, the address regis­ter must be saved before accessing the memory and restored after memory access is complete.
Cursor display address register
Address pointer
Cursor register
Figure 54. Cursor addressing
Note that the cursor may disappear from the display if the cursor address remains outside the displayed screen memory for more than a few hundred millisec­onds.
5.3.2 Cursor Movement
On each memory access, the cursor address register changes by the amount previously specified with CSRDIR, automatically moving the cursor to the de­sired location.
5.3.3 Cursor Display Layers
Although the SED1330F/1335F/1336F can display up to three layers, the cursor is displayed in only one of these layers:
Two-layer configuration: First layer (L1) Three-layer configuration: Third layer (L3)
The cursor will not be displayed if it is moved outside the memory for its layer. Layers may be swapped or
the cursor layer moved within the display memory if it is necessary to display the cursor on a layer other than the present cursor layer.
Although the cursor is normally displayed for charac­ter data, the SED1330F/1335F/1336F may also dis­play a dummy cursor for graphical characters. This is only possible if the graphics screen is displayed, the text screen is turned off and the microprocessor generates the cursor control address.
D = 1
FC1 = 0 FC0 = 1
FP1 = 0 FP0 = 0
FP3 = 0 FP2 = 1
Cursor ON
Block screen 1 (character screen) OFF
Block screen 2 (graphics screen) ON
Figure 55. Cursor display layers
Consider the example of displaying Chinese charac­ters on a graphics screen. To write the display data, the cursor address is set to the second screen block, but the cursor is not displayed. To display the cursor, the cursor address is set to an address within the blank text screen block.
Since the automatic cursor increment is in address units, not character units, the controlling microproces­sor must set the cursor address register when moving the cursor over the graphical characters.
Page 86
86 268-0.4
5.0 Display Control Functions 5.3.3
18 dots
Auto shift Auto shift
Auto shift
Cursor address preset
8 dots8 dots8 dots8 dots
Block cursor
If no text screen is displayed, only a bar cursor can be displayed at the cursor address.
If the first layer is a mixed text and graphics screen and the cursor shape is set to a block cursor, the
SED1330F/1335F/1336F automatically decides which cursor shape to display. On the text screen it displays a block cursor, and on the graphics screen, a bar cursor.
Figure 56. Cursor movement
Page 87
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 87
5.4 5.0 Display Control Functions
5.4 Memory to Display Relationship
The SED1330F/1335F/1336F supports virtual screens that are larger than the physical size of the LCD panel address range, C/R. A layer of the SED1330F/1335F/1336F can be considered as a window in the larger virtual screen held in display memory. This window can be divided into two
blocks, with each block able to display a different portion of the virtual screen.
This enables, for example, one block to dynamically scroll through a data area while the other acts as a status message display area. See Figure 49 and 50.
Graphics page 3
Display page 3
Display page 2
Display page 1
Character page 1 Character page 3
Display page 1 Display page 3
Layer 1
Layer 1
Display page 2
Character page 2 Character page 2
Display page 2 Display page 4
Layer 2
Layer 2
SAD1 SAD3
SAD2 SAD4
SAD1 SAD3
SAD2 SAD4
AP
C/R
W/S = 0 W/S = 1
C/R
CG RAM
Display page 1
Character page 1
Character page 3
Layer 1
Display page 2
Layer 2
SAD1
Graphics page 2
SAD2
SAD3
SAD3
Display page 3
SAD2
SAD1
C/R
C/R
C/R
Display page 1
Layer 1
Graphics page 2
Graphics page 1
Layer 2
Layer 3
SAD1
SAD2
SAD3
SAD3
SAD2
SAD1
C/R
C/R
C/R
Figure 57. Display layers of memory
Page 88
88 268-0.4
5.0 Display Control Functions 5.4
Figure 58. Display window and memory
AP
CSRA CRX
CRY
FX
SAD1
FY
L/F
Display window
CRX
Virtual display
memory limit
0000H
FFFFH
FX = Horizontal character field 16 dots FY = Vertical character field 16 dots CRX = Horizontal cursor size 16 dots CRY = Vertical cursor size 16 dots C/R = Characters per row 240 bytes L/F = Lines per frame 256 bytes AP = Address pitch 64 Kbytes
Page 89
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 89
5.4 5.0 Display Control Functions
SAD1
SAD2
SAG
0000
SL1
0300
0400

0800
SL2
2000
2800

4440
4800
4A00
F000
Character
code
Back layer
Page 1
Page 2
Page 1
Page 2
Character generator
RAM
Not used
Character generator
ROM
D7 to D0 D7 to D0
A (Code)BC
X
Y
α
β
γ
χ
70
88
88
88
F8
88
88
00
01110000
10001000
10001000
10001000
11111000
10001000
10001000
00000000
HEX D7 D0
Example of character A
#4800
12345
6
#4807
0080

1FFF
0000

02FF
(MSB)
D7
(LSB)(MSB)
D0 D7
Magnified image
(LSB)
D0
βα
Display
XY
ABC
Figure 59. Memory map and magnified characters
Page 90
90 268-0.4
5.0 Display Control Functions 5.5 – 5.5.1
5.5 Scrolling
The controlling microprocessor can set the SED1330F/ 1335F/1336F scrolling modes by overwriting the scroll address registers SAD1 to SAD4, and by directly setting the scrolling mode and scrolling rate.
5.5.1 On-page Scrolling
The normal method of scrolling within a page is to move the whole display up one line and erase the bottom line. Since the SED1330F/1335F/1336F does not automatically erase the bottom line, it must be erased with blanking data when changing the scroll address register.
ABC WXYZ
 789
WXYZ 789
ABC WXYZ
 789
WXYZ 789
Display memory
AP
C/R
Before scrolling
After scrolling
Blank
Blank
SAD1
SAD3
SAD1
Figure 60. On-page scrolling
Page 91
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 91
5.5.2 5.0 Display Control Functions
5.5.2 Inter-page Scrolling
Scrolling between pages and page switching can be performed only if the display memory capacity is greater than one screen.
Figure 61. Inter-page scrolling
ABC WXYZ
 789
WXYZ 789
ABC WXYZ
 789
WXYZ 789
Display memory
AP
C/R
Before scrolling
After scrolling
SAD1
SAD1
ABC
Page 92
92 268-0.4
5.0 Display Control Functions 5.5.3
5.5.3 Horizontal Scrolling
The display can be scrolled horizontally in one­character units, regardless of the display memory capacity.
ABC 123
XYZ
BC 23
XYZ1
Before scrolling
After scrolling
SAD1
SAD1
Display
AP
C/R
Display memory
ABC 123
XYZ
ABC 123
XYZ
Figure 62. Horizontal wraparound scrolling
Refer to Section 9.4 for application notes.
Page 93
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 93
5.5.4 – 5.5.5 5.0 Display Control Functions
5.5.4 Bidirectional Scrolling
Bidirectional scrolling can be performed only if the display memory is larger than the physical screen both horizontally and vertically. Although scrolling is normally done in single-character units, the HDOT
SCR command can be used to scroll horizontally in pixel units. Single-pixel scrolling both horizontally and vertically can be performed by using the SCROLL and HDOT SCR commands. See Section 9.4
BC EFG TUV
12
Before scrolling
After scrolling
Display memory
FG TUV
1234
56
BC EFG TUV
A
34
567
89
12
ABC E FG TUV
56 7 89
1234
AP
C/R
Figure 63. Bidirectional scrolling
5.5.5 Scroll Units
Table 21. Scroll units
Mode Vertical Horizontal
Text Characters
Pixels or characters
Graphics Pixels Pixels
Note that in a divided screen, each block cannot be indepen­dently scrolled horizontally in pixel units.
Page 94
94 268-0.4
THIS PAGE INTENTIONALLY BLANK
Page 95
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 95
6.0
Character Generator
Page 96
96 268-0.4
THIS PAGE INTENTIONALLY BLANK
Page 97
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 97
6.0 – 6.1.3 6.0 Character Generator
6.0 Character Generator
6.1 CG Characteristics
6.1.1 Internal Character Generator
The internal character generator is recommended for minimum system configurations containing a SEDSED1330F/1335F/1336F, display RAM, LCD panel, single-chip microprocessor and power supply. Since the internal character generator uses a CMOS mask ROM, it is also recommended for low-power applications.
•5 × 7-pixel font (See Section 10)
• 160 JIS standard characters
• Can be mixed with character generator RAM (maximum of 64 CG RAM characters)
• Can be automatically spaced out up to 8 × 16 pixels
6.1.2 External Character Generator ROM
The external CG ROM can be used when fonts other than those in the internal ROM are needed. Data is stored in the external ROM in the same format used in the internal ROM. (See Section 6.3.)
• Up to 8 × 8-pixel characters (M2 = 0) or 8 × 16­pixel characters (M2 = 1)
• Up to 256 characters (192 if used together with the internal ROM)
• Mapped into the display memory address space at F000H to F7FFH (M2 = 0) or F000H to FFFFH (M2 = 1)
• Characters can be up to 8 × 16-pixels; how­ever, excess bits must be set to zero.
6.1.3 Character Generator RAM
The user can freely use the character generator RAM for storing graphics characters. The character gen­erator RAM can be mapped by the microprocessor anywhere in display memory, allowing effective use of unused address space.
• Up to 8 × 8-pixel characters (M2 = 0) or 8 × 16 characters (M2 = 1)
• Up to 256 characters if mapped at F000H to FFFFH (64 if used together with character generator ROM)
• Can be mapped anywhere in display memory address space if used with the character gen­erator ROM
• Mapped into the display memory address space at F000H to F7FFH if not used with the charac­ter generator ROM (more than 64 characters are in the CG RAM). Set SAG0 to F000H and M1 to zero when defining characters number 193 upwards.
Page 98
98 268-0.4
6.0 Character Generator 6.2
6.2 CG Memory Allocation
Since the SED1335F/1336F uses 8-bit character codes, it can handle no more than 256 characters at a time. However, if a wider range of characters is
required, character generator memory can be bank­switched using the CGRAM ADR command.
Note that there can be no more than 64 characters per bank.
Figure 64. Internal and external character mapping
Built–in CG ROM
(160 characters,
5 × 7 pixels max.)
CG RAM
CG RAM 1
CG RAM 2
CG RAM n
Built-in CG ROM
(160 characters,
5 × 7 pixels max.)
CG ROM
CG RAM 1
CG RAM 2
CG RAM n
SAG
CG RAM
ADR
CG ROM
CG RAM
(64 characters max, 8 × 16 pixels max)
(64 characters max, 8 × 16 pixels max)
M0 = 1
M0 = 1
Basic CG space
(256 characters,
8 × 16 pixels max.)
256 characters max. M1 = 0
256 characters max. M1 = 0
Page 99
S-MOS Systems, Inc. • 2460 North First Street • San Jose, CA 95131 • Tel: (408) 922-0200 • Fax: (408) 922-0238
268-0.4 99
6.2 – 6.3 6.0 Character Generator
Table 22. Character mapping
Item Parameter Remarks
Internal/external character generator selection M0
1 to 8 pixels M2 = 0
Character field height 9 to 16 pixels M2 = 1
Greater than 16 pixels Graphics mode (8 bits × 1 line)
Internal CG ROM/RAM select
Automatic
Determined by the
External CG ROM/RAM select
character code
CG RAM bit 6 correction M1 CG RAM data storage address
Specified with CG RAM ADR Can be moved anywhere in the command display memory address space
192 characters or less Other than the area of Figure 58 More than 192 characters
Set SAG to F000H and overly SAG and the CG ROM table.
External CG ROM address
6.3 Setting the Character Generator Address
The CG RAM addresses in the VRAM address space are not mapped directly from the address in the SAG register. The data to be displayed is at a CG RAM
address calculated from SAG + character code + ROW select address. This mapping is shown in Tables 23 and 24.
Table 23. Character fonts, number of lines
8 (M2 = 0, M1 = 0)
SAG A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Character code 00000D7D6D5D4D3D2D1D0000 +ROW select address 0000000000000R2R1R0 CG RAM address VA15 VA14 VA13 VA12 VA11 VA10 VA9 VA8 VA7 VA6 VA5 VA4 VA3 VA2 VA1 VA0
Table 24. Character fonts, 9 number of lines ≤ 16 (M2 = 1, M1 = 0)
SAG A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Character code 0000D7D6D5D4D3D2D1D00000 +ROW select address 000000000000R3R2R1R0 CG RAM address VA15 VA14 VA13 VA12 VA11 VA10 VA9 VA8 VA7 VA6 VA5 VA4 VA3 VA2 VA1 VA0
Page 100
100 268-0.4
6.0 Character Generator 6.3 – 6.3.2
Row Row 0 Row 1 Row 2
Row 7 Row 8
Row 14 Row 15
R3
0 0 0
0 1
1 1
R2
0 0 0
1 0
1 1
R1
0 0 1
1 0
1 1
R0
0 1 0
1 0
0 1
Line 1
Line 2
Figure 65. Row select address
6.3.1 M1 = 1
The SED1335F/1336F automatically converts all bits set in bit 6 of character code for CG RAM 2 to zero. Because of this, the CG RAM data areas become contiguous in display memory.
When writing data to CG RAM:
• Calculate the address as for M1 = 0.
• Change bit 6 of the character code from “1” to “0”.
6.3.2 CG RAM Addressing Example
• Define a pattern for the “A” in Figure 38.
• The CG RAM table start address is 4800H.
• The character code for the defined pattern is 80H (the first character code in the CG RAM area).
As the character code table in Figure 58 shows, codes 80H to 9FH and E0H to FFH are allocated to the CG RAM and can be used as desired. 80H is thus the first code for CG RAM. As characters cannot be used if only using graphics mode, there is no need to set the CG RAM data.
Table 25. Character data example
CGRAM ADR 5CH
Reverse the CG RAM ad-
P1 00H dress calculation to cal­P2 40H
culate SAG
CSRDIR 4CH
Set cursor shift direction to right
CSRW 46H
CG RAM start address is
P1 00H
4800H
P2 48H
MWRITE 42H
P 70H Write ROW 0 data P2 88H Write ROW 1 data P3 88H Write ROW 2 data P4 88H Write ROW 3 data P5 F8H Write ROW 4 data P6 88H Write ROW 5 data P7 88H Write ROW 6 data P8 00H Write ROW 7 data P8 00H Write ROW 8 data
↓↓
P16 00H Write ROW 15 data
Note: Lines = 1: lines in the character bitmap 8
Lines = 2: lines in the character bitmap 9
Loading...