The SDA 9401 is a new component of the Micronas MEGAVISION® IC set in a 0.35 µm embedded
DRAM technology (field memory embedded). The SDA 9401 is pin compatible to the SDA 9400
(frame memory embedded). The SDA 9401 comprises all main functionalities of a digital featurebox
in one monolithic IC.
The SDA 9401 does a simple 100/120 Hz interlaced (50/60 Hz progressive) scan rate conversion.
The scan rate converted picture can be vertically expanded. The SDA 9401 has a freerunning
mode, therefore features like multiple picture display (e.g. tuner scan) are possible.
The noise reduction is field based. Furthermore separate motion detectors for luminance and
chrominance have been implemented. For automatic controlling of the noise reduction parameters a
noise measurement algorithm is included, which measures the noise level in the picture or in the
blanking period. In addition a spatial noise reduction is implemented, which reduces the noise even
in the case of motion. The input signal can be compressed horizontally and vertically with a certain
number of factors. Therefore split screen modes are supported too.
Beside these additional functions like coloured background, windowing and flashing are
implemented.
2Features
•
Two input data formats
- 4:2:2 luminance and chrominance parallel (2 x 8 wires)
- ITU-R 656 data format (8 wires)
•Two different representations of input chrominance data
- 2‘s complement code
- Positive dual code
•Flexible input sync controller
•Flexible compression of the input signal
- Digital vertical compression of the input signal (1.0, 1.25, 1.5, 1.75, 2.0, 3.0, 4.0)
- Digital horizontal compression of the input signal (1.0, 2.0, 4.0)
•Noise reduction
- Motion adaptive spatial and temporal noise reduction (3D-NR)
- Temporal noise reduction for luminance field based
- Temporal noise reduction for chrominance field based
- Separate motion detectors for luminance and chrominance
- Flexible programming of the temporal noise reduction parameters
- Automatic measurement of the noise level (5 bit value, readable by I²C bus)
•TV mode detection by counting line numbers (PAL, NTSC, readable by I²C bus)
•Embedded memory
- 3.2 Mbit embedded DRAM core for field memories
- 128 kbit embedded DRAM core for line memories
Micronas4Preliminary Data Sheet
Page 5
SDA 9401
•Flexible clock and synchronization concept
- Decoupling of the input and output clock system possible
•Flexible digital vertical expansion of the output signal (1.0, ... [1/32] ... , 2.0)
•Flexible output sync controller
- Flexible positioning of the output signal
- Flexible programming of the output sync raster
•Signal manipulations
- Insertion of coloured background
- Vertical and/or horizontal windowing with four different speed factors
- Flash generation
- Still field
- Support of split screen applications
- Multiple picture display - Tuner scan (4 and 16 times for 4:3, 12 times for 16:9 tubes)
- Support of multi picture display with PIP or front-end processor with integrated scaler
(e.g. 9 times display of PIP pictures, picture tracking, random pictures,
still-in-moving picture, moving-in-still picture)
•I²C-bus control (400 kHz)
•P-MQFP-64 package
•3.3 V ± 5% supply voltage
Micronas5Preliminary Data Sheet
Page 6
SDA 9401
3Block diagram
HIN
VIN
SYNCEN
YIN
UVIN
RESET
IFC
Input
format
conversion
I²C
I²C Bus
Interface
SDASCL
ISC
Input sync
controller
LDR
Vertical,
Horizontal
decimation
Noise reduction
and measurement
LM
Line memory
MC
Memory Controller
ED
eDRAM
Interfaces
Data buffer
Voltage control
Test controller
PLL1
Clock doubling
CLK1
OSC
Output sync
controller
HDR
Scan rate
conversion
Vertical
interpolation
LM
Line memory
X1/CLK2X2
OFC
output
format
conversion
PLL2
Clock
doubling
VOUT
HOUT
HREF
INTERLACED
YOUT
UVOUT
CLKOUT
bd9401s
The SDA 9401 contains the blocks, which will be briefly described below:
ISC - Flexible input sync controller
IFC - Input format conversion
LDR - Low data rate processing (noise reduction and measurement, vertical compression,
horizontal compression)
MC - Memory controller
OSC - Flexible output sync controller
OFC - Output format conversion
HDR - High data rate processing (scan rate conversion, vertical expansion)
43,..,50YIN0...7I/TTLData input Y (see input data format)
31,..,34;37,...,40UVIN0...7I/TTLPDData input UV (for 4:2:2 parallel, see input data format)
(for CCIR 656, see input data format)
30RESETI/TTLSystem reset. The RESET input is low active. In order to
ensure correct operation a "Power On Reset" must be
performed. The RESET pulse must have a minimum
duration of two clock periods of the system clock CLK1.
23HINI/TTLPDH-Sync input
= 3.3 V )
DD
= 0 V )
SS
= 3.3 V )
DD
(only for full CCIR 656)
22VINI/TTLPDV-Sync input
(only for full CCIR 656)
29SYNCENI/TTLSynchronization enable input
2
21SDAI/OI
20SCLII
C-Bus data line (5V ability)
2
C-Bus clock line (5V ability)
54CLK1I/TTLSystem clock 1
17,..,10UVOUT0...7O/TTLData output UV (see output data format)
7,..,3;1;64;63YOUT0...7O/TTLData output Y (see output data format)
62HREFO/TTLHorizontal active video output
61VOUTI/TTLV-Sync output
60HOUTI/TTLH-Sync output
18INTERLACED O/TTLInterlace signal for AC coupled vertical deflection
28X1 / CLK2I/TTLCrystal connection / System clock 2
27X2O/ANA Crystal connection
26CLKOUTO/TTLClock output (depends on I²C parameters CLK11EN,
CLK21EN, see also
19TESTI/TTLTest input, connect to V
Clock concept on page 27)
for normal operation
SS
S: supply,I: input, O: output, TTL: digital (TTL)
ANA: analogPD: pull down
Micronas8Preliminary Data Sheet
Page 9
SDA 9401
6System description
6.1Input sync controller (ISC)
Input signals
SignalsPin numberDescription
HIN23horizontal synchronization signal (polarity
programmable, I²C bus parameter 01h
HINPOL, default: high active)
VIN22vertical synchronization signal (polarity
programmable, I²C bus parameter 01h
VINPOL, default: high active)
SYNCEN29enable signal for HIN and VIN signal, low
active (see also chapter Input format con-version (IFC) on page 12)
The input sync controller derives framing signals from the H- and V-Sync for the input data
processing. The framing signals depend on different parameters and mark the active picture area.
Input parameter
HIN
pixels per line
VIN
lines
per
field
(NAPIPDL*4 +
NAPIPPH + PD)*
CLK1
(HORPOS*
32)*CLK1
(APPLIP*32)*CLK1
(HORWIDTH*32)*
CLK1
(VERPOS*2)
(VERWIDTH*2)
inpar01
PD - Processing Delay
NALIP+PD
(ALPFIP*2)
The distance between the incoming H-syncs in system clocks of clk1 must be even.
Micronas9Preliminary Data Sheet
Page 10
SDA 9401
Input write parameter
Parameter
[Default value]
NALIP
[20]
ALPFIP
[144]
NAPLIP
NAPIPDL
[0]
NAPIPPH
[0]
APPLIP
[45]
PIMODE
1: on
0: off
[0]
VERPOS
[0]
SubaddressDescription
02hNot Active Line InPut defines the number of lines from
the V-Sync to the first active line of the field
03hActive Lines Per Field InPut defines the number of active
lines
00h, 04hNot Active Pixels Per Line InPut defines the number of
pixels from the H-Sync to the first active pixel of the line.
The number of pixels is a combination of NAPIPDL and
NAPIPPH.
05hActive Pixels Per Line InPut defines the number of active
pixels
00hPicture Insert MODE allows the insertion of an arbitrary
picture with the horizontal and vertical width defined by
VERWIDTH and HORWIDTH at the position defined by
VERPOS and HORPOS
08hVERtical POSition defines the number of lines from the
first active line to the first active line of an inserted picture
VERWIDTH
[0]
HORPOS
[0]
07hVERtical WIDTH defines the number of lines (vertical
width) of an inserted picture
0AhHORizontal POSition defines the number of pixels from
the first active pixel to the first active pixel of an inserted
picture
HORWIDTH
[0]
Inside the SDA 9401 a field detection block is necessary for the detection of an odd (A) or even (B)
field. Therefore the incoming H-Sync H1 (delayed HIN signal, delay depends on NAPIPDL and
NAPIPPH) is doubled (H2 signal). Depending on the phase position of the rising edge of the VIN
signal an A (rising edge between H1 and H2) or B (rising edge between H2 and H1) field is
detected. For proper operation of the field detection block, the VIN must be delayed depending on
the delay of the HIN signal (H1). The figure below explains the field detection process and the
functionality of the VINDEL parameter (inside the SDA 9401 the delayed VIN signal is called Vd and
the detected field signal is called Ffd).
09hHORizontal WIDTH defines the number of pixels (hori-
zontal width) of an inserted picture
Micronas10Preliminary Data Sheet
Page 11
SDA 9401
Field detection and VIN delay
CLK1
H1
H2
VIN
Vd
Ffd
VIN
Vd
Input write parameter
(VINDEL * 128 + 1) * Tclk1
x
(VINDEL * 128 + 1) * Tclk1
x
Field 1(A)
fielddet
Field 2(B)Ffd
Parameter
[Default value]
VINDEL
[0]
FIEINV
SubaddressDescription
01hDelay of the incoming V-Sync VIN (must be adjusted
depending on the delay of the HIN signal)
00hInversion of the internal field polarity
1: Field A=1
0: Field A=0
[0]
VCRMODE
1: on
0: off
00hIn case of non standard interlaced signals (VCR, Play-
Stations) a filtering of the internal field signal can be
done (can also be used for normal TV signals)
[1]
In case of non-standard signals the field order is indeterminate (e.g. AAA... , BBB... , AAABAAAB...,
etc.). Therefore a special filtering algorithm is implemented, which can be switched on by the
parameter VCRMODE.
The OPDEL parameter is used to adjust the outgoing V-Sync VOUT in relation to the incoming
delayed V-Sync VIN. In case of 50 Hz to 100 Hz interlaced scan rate conversion the OPDEL
parameter should be greater than half the number of lines of a field plus the internal processing
delay (8 lines).
Input write parameter
Parameter
[Default value]
OPDEL
[170]
The internal line counter is used to determine the information about the standard of the incoming
SubaddressDescription
06hDelay (in number of lines) of the internal V-Sync
(delayed VIN) to the outgoing V-Sync (VOUT)
Micronas11Preliminary Data Sheet
Page 12
SDA 9401
signal.
Input read parameter
ParameterSubaddressDescription
TVMODE33hTV standard of the incoming signal:
1: NTSC
0: PAL
The figure below shows applications of the picture insert mode. For this feature an additional PIP
circuit (e.g. SDA 9388, SDA 9488/89) is necessary. Together with the PIP IV circuit (SDA 9488/89)
also split screen applications like double window are possible. The compression of the inserted
picture has also be done by the external PIP or front-end processor.
Picture insert mode: application examples picture tracking, random pictures
The SDA 9401 accepts at the input side the sample frequency relations of Y : (B-Y) : (R-Y): 4:2:2
and CCIR 656. In case of CCIR 656 three modes are supported (FORMAT=11 means full CCIR 656
support, including H-, V-Sync and Field signal, FORMAT=01 means only data processing, H- and
V-Sync have to be added separately according PAL/NTSC norm, FORMAT=10 means only data
processing, H- and V-sync have to be added separately according CCIR656-PAL/NTSC norm). The
representation of the samples of the chrominance signal is programmable as positive dual code
(unsigned, parameter TWOIN=0) or two's complement code (TWOIN=1, see also
chapter I²C bus
format on page 45, I²C bus parameter 00h). Inside the SDA 9401 all algorithms assume positive
dual code.
Micronas12Preliminary Data Sheet
Page 13
SDA 9401
Input data formats
Data
Pin
CCIR 656
FORMAT = 1X
FORMAT = 01
YIN7U
YIN6U
YIN5U
YIN4U
YIN3U
YIN2U
YIN1U
YIN0U
07
06
05
04
03
02
01
00
Y
Y
Y
Y
Y
Y
Y
Y
07
06
05
04
03
02
01
00
V
V
V
V
V
V
V
V
07
06
05
04
03
02
01
00
Y
17
Y
16
Y
15
Y
14
Y
13
Y
12
Y
11
Y
10
UVIN7U
UVIN6U
UVIN5U
UVIN4U
UVIN3U
UVIN2U
UVIN1U
UVIN0U
4:2:2 Parallel
FORMAT = 00
Y
07
Y
06
Y
05
Y
04
Y
03
Y
02
Y
01
Y
00
07
06
05
04
03
02
01
00
Y
17
Y
16
Y
15
Y
14
Y
13
Y
12
Y
11
Y
10
V
07
V
06
V
05
V
04
V
03
V
02
V
01
V
00
X
: X: signal component a: sample number b: bit number
ab
Input sync formats
FORMATHINVINYINUVIN
00PAL/NTSCPAL/NTSC4:2:24:2:2
01 (CCIR 656 only
PAL /N TS CPAL /N TS CC CI R 6 56x
data)
10CCIR 656CCIR 656CCIR 656x
11 (full CCIR 656)xxCCIR 656x
The amplitude resolution for each input signal component is 8 bit, the maximum clock frequency is
27 MHz. Consequently the SDA 9401 is dedicated for application in high quality digital video
systems.
The figure below shows the generation of the internal H- and V-syncs in case of full CCIR 656
mode. The H656 sync is generated after the EAV. The V656 and F656 signals change
synchronously with the EAV timing reference code.
Micronas13Preliminary Data Sheet
Page 14
SDA 9401
Explanation of 656 format
CLK1 (27 MHz)
CCIR 656 interface
YIN
CLK1 (27 MHz)
YIN
H656
V656
(e.g.)
F656
(e.g.)
288 Tclk1(PAL)
276 Tclk1(NTSC)
1728 Tclk1(PAL)
1716 Tclk1(NTSC)
x
MSBLSB
EAVxxEAVxxSAVx
EAV
1111111100000000000000001FV1P3P2P1P
SAV
1111111100000000000000001FV0P3P2P1P
SAVEAV
u0 y0 v0y1 u2y3
F = 0 during field 1(A)
F = 1 during field 2(B)
0
V = 0 elsewhere
V = 1 during field blanking
0
EAV
The figure below explains the functionality of the SYNCEN signal. The SDA 9401 needs the
SYNCEN (synchronization enable) signal, which is used to gate the YIN, UVIN as well as the HIN
and the VIN signal. This is implemented for front-ends which are working with 13.5 MHz and a large
output delay time for YIN, UVIN, HIN and VIN (e.g. Micronas VPC32XX, output delay: 35 ns). For
this application the half system clock CLK1 (13.5 MHz) from the front-end should be provided at this
pin. In case the front-end is working at 27.0 MHz with sync signals having delay times smaller than
25 ns, this input can be set to low level (SYNCEN=V
) (e.g. Micronas SDA 9206, output delay: 25
SS
ns). Thus the signals YIN, UVIN, HIN and VIN are sampled with the CLK1 system clock when the
SYNCEN input is low.
SYNCEN signal
CLK1
SYNCEN
y0y1y2y3
YIN
UVIN
YINen
UVINen
HIN/VIN
HINen/VINen
x
u0v0u2v2
x
x
x
y0y1y2y3
u0v0u2v2
syncen
Micronas14Preliminary Data Sheet
Page 15
SDA 9401
The figure below shows the input timing and the functionality of the NAPIPDL and NAPIPPH
parameter in case of CCIR 656 and 4:2:2 parallel data input format for one example. The signals
HINint, YINint and UVint are the internal available sampled input signals.
Input timing
CLK1
HIN
HINint
CCIR 656 interface
YIN
YINint
UVINint
4:2:2 interface
YIN
UVIN
YINint
UVINint
(NAPIPDL* 4 + NAPIPPH + 7) * Tclk1
=(0 * 4 + 2 + 7) * Tclk1 = 9 Tclk1 (e.g.)
(NAPIPDL* 4 + NAPIPPH + 7) * Tclk1
=(0 * 4 + 3 + 7) * Tclk1 = 10 Tclk1 (e.g.)
u0 y0 v0 y1 u2 y2 v2 y3xxx
y0y1y2y3xxx
u0v0u2v2xxx
u0v0
y0
u0v0u2v2
y0y1y3y4
u0v0u2v2
u2
y1
y2
u4 y4
v2y3u4
y4
u4
ifc01
Micronas15Preliminary Data Sheet
Page 16
SDA 9401
6.3Low data rate processing
The next figure shows the block diagram of the low data rate processing block. The input signal can
be vertically and horizontally compressed by a limited number of factors. In case of multipicture
mode the internal Multipicture controller will use both compression blocks to control the different
modes. Furthermore the input signal can be processed by different noise reduction algorithms to
reduce the noise in the signal. The noise measurement block determines the noise level of the input
signal.
Block diagram of low data rate processing
MULTIPIC, PICPOS, YBORDER,
NMLINE, NMALG NOISEME
UBORDER, VBORDER
YIN
UVIN
Noise
measurement
Line
memories
Vertical
compression
VDECON,
VCSNRON
Multipicture
controller
Horizontal
compression
HDECON,
HCSNRON
Spatial noise
reduction
SNRONNRON
Temporal
noise
reduction
bdldr01
Y from Memory
Y to Memory
UV to Memory
UV from Memory
The different blocks and the corresponding parameters will be described now in more detail.
6.3.1Vertical compression
The vertical compression compresses the incoming signal vertically by a constant factor given by
the parameter VDECON. For the Y and UV signal different filter characteristics are used. The
vertical compression can be switched off. For the multipicture modes the factors VDECON 2, 3 and
4 are necessary. Different filter characteristics are used for the factors 3 and 4. High quality vertical
compression for double window applications is possible, because the filter characteristic is
optimized for the factor 1.5.
The table below shows the relation between the parameter VDECON and the compression factor.
Input write parameter: VDECON
VDECON (1Ch)
0
1
2
3
4
5
6
7
Vertical compression off
Factor 1.25
Factor 1.5
Factor 1.75
Factor 2.0
Factor 3.0
Factor 4.0
not defined
Inside the SDA 9401 the number of active lines per field depends on the chosen vertical
compression factor VDECON (see also
chapter Output sync controller (OSC) on page 29).
Micronas16Preliminary Data Sheet
Page 17
SDA 9401
6.3.2Horizontal compression
The horizontal compression compresses the incoming signal horizontally by a constant factor. For
the Y and UV signal the same filter characteristics are used. The horizontal compression can be
switched off.
The table below shows the relation between the parameter HDECON and the compression factor.
Input write parameter: HDECON
HDECON (1Ch)
00no horizontal compression
01factor 2
10factor 4
11not defined
The APPLIP (Active Pixels Per Line Input, see also chapter Input sync controller (ISC) on page 9)
value defines the length of an active line. Inside the SDA 9401 the number of active pixels per line is
APPL (Active Pixels Per Line) and its value depends on the chosen horizontal compression factor
HDECON. The table below explains the connection between APPL and APPLIP (see also
The figures below show the different “multi picture modes” as they are represented on the display.
Fourfold multi picture
PICPOS=0PICPOS=1
PICPOS=3PICPOS=2
Twelvefold multi picture
PICPOS=0
PICPOS=4
PICPOS=8PICPOS=9PICPOS=10PICPOS=11
Sixteenfold multi picture
PICPOS=1PICPOS=2PICPOS=3
PICPOS=7PICPOS=6PICPOS=5
PICPOS =0PICPOS =1PICPOS=2PI CPOS =3
PIC P O S= 6PI CP OS = 5PICPOS=4
PI C P OS = 7
PICPOS =8PICPOS =9PIC POS=10
PI C P OS = 11
PI C P OS = 15PI C PO S =14PIC P OS = 13PICPOS=12
Micronas18Preliminary Data Sheet
Page 19
SDA 9401
The three different “multi picture modes” can be selected by the parameter MULTIPIC. MULTIPIC=0
defines normal operation without compression. The table below explains the performed
compressions depending on the “multi picture mode” and the corresponding aspect ratio of the
display.
Input write parameter: MULTIPIC
MULTIPIC (1Bh)Horizontal compressionVertical compressionAspect ratio of the display
00 (Multi Picture Off)normal operation, no compression
01 (fourfold)2 : 1
10 (twelvefold)4 : 13 : 1
11 (sixteenfold)4 : 14 : 1
To get a “multi picture display” the following executions must be performed:
Entering a “multi picture mode” is defined by transmitting a value MULTIPIC>0. This value of
MULTIPIC must not be equal to the previous value of MULTIPIC. During the following two fields the
memory will be completely filled with a constant colour defined by the parameters YBORDER,
UBORDER, VBORDER. This colour is identical to the background and the borders of the multi
picture display. The same procedure is performed when the “multi picture mode” changes from a
value MULTIPIC>0 to another value MULTIPIC>0. Beginning with the following field the
compressed input picture is written at the position PICPOS addressed via I²C-bus. The user has to
address all possible positions PICPOS one after the other to build a complete multi picture display.
In sequence, the background colour is replaced by the small pictures. The not overwritten areas of
the background colour form the borders of the multi picture display.
The pictures can be taken from the same source (’Shots of a Sequence’) or from different sources
(’Tuner Scanning’). The actual addressed picture is moving until “Freeze mode” is activated.
Before entering “multi picture mode” the “H-and-V-freerunning mode” (see also
2 : 14 : 3
16 : 9
4 : 3
chapter Output sync
controller (OSC) on page 29) should be activated via the I²C bus bits HOUTFR and VOUTFR,
especially when “Tuner Scanning” will be performed. The “H-and-V-freerunning mode” avoids
synchronization problems of the display during changing the tuner channel.
The values of ALPFIP (Active Lines Per Field Input, see also
page 9), and ALPFOP (Active Lines Per Field Output, see also
on page 29) must be set to 144 or 121, respectively. Only these standard signals
(OSC)
corresponding to PAL and NTSC systems are supported. A mixture of PAL and NTSC signals is
also possible.
Input write parameter
ParameterSubaddressDescription
chapter Input sync controller (ISC) on
chapter Output sync controller
MULTIPIC1BhDefines the multi picture modes
PICPOS1BhPosition of the picture in the multi picture mode (only
valid for MULTIPIC>0)
YBORDER17hY background value
UBORDER18hU background value
VBORDER18hV background value
Micronas19Preliminary Data Sheet
Page 20
SDA 9401
ParameterSubaddressDescription
FREEZE
1BhFreeze mode (frozen picture)
1: on
0: off
Interlaced conversion in multi picture mode
STOPMODERMODERaster SequenceComment
0110 (AAAA mode)0∼∼∼∼ (100/120 Hz)
The borders are fixed to a width of 16 pixels in horizontal direction. In vertical direction the border
widths are also fixed, the number of lines, however, depends on the TV standard of the input and
the display.
fixed
Micronas20Preliminary Data Sheet
Page 21
SDA 9401
6.3.4 Noise reduction
The figure below shows a block diagram of the spatial and temporal motion adaptive noise
reduction (first order IIR filter). The spatial noise reduction of the luminance differs from the spatial
noise reduction of the chrominance. The structure of the temporal motion adaptive noise reduction
is the same for the luminance as for the chrominance signal.
Block diagram of noise reduction
SNRON
YR
YIN
TNRCLY,
TNRHOY,
TNRKOY,
TNRVAY,
TNRFIY,
NRON
TNRCLC,
TNRHOC,
TNRKOC,
TNRVAC,
TNRFIC,
NRON
UVIN
Spatial
noise
reduction
Spatial
noise
reduction
VCSNRON,
HCSNRON
YSNR
DUV
UVSNR
DY
Motion
detector
Motion
detector
UV1
KY
KUV
01
TNRSEL
Field
delay
Field
delay
nr01
6.3.4.1Spatial noise reduction
Normally a spatial noise reduction reduces the resolution due to the low pass characteristic of the
used filter. Therefore the spatial noise reduction of the SDA 9401 works adaptive on the picture
content. The low pass filter process is only executed on a homogeneous area. That’s why an edge
detection controls the low pass filter process and depending on the result of the edge detection the
pixels for the low pass filter are chosen. The next figure shows a block diagram of the spatial noise
reduction. For the UV signal only a simple spatial noise reduction algorithm (vertical and/or
horizontal low pass filtering) is implemented.
Micronas21Preliminary Data Sheet
Page 22
SDA 9401
Block diagram of spatial noise reduction
SNRON
YIN
UVIN
Input write parameter
ParameterSubaddressDescription
SNRON
1: on
0: off
LP
0
1
1
0
HCSNRON
LM
LM
LM
LM
LP
Edge
detection
1
LP
0
VCSNRON
1DhSpatial noise reduction of luminance signal
YSNR
nr02
UVSNR
VCSNRON
1DhVertical spatial noise reduction of chrominance
1: on
0: off
HCSNRON
1DhHorizontal spatial noise reduction of chrominance
1: on
0: off
In case of VDECON>0 or HDECON>0 or MULTIPIC>0 (see also
page 16, see also
chapter Horizontal compression on page 17, see also chapter Multipicture
chapter Vertical compression on
display on page 18) spatial noise reduction is not possible.
6.3.4.2Motion adaptive temporal noise reduction
The equation below describes the behaviour of the temporal adaptive noise reduction filter. The
same equation is valid for the chrominance signal. Depending on the motion in the input signal, the
K-factor Ky (Kuv) can be adjusted between 0 (no motion) and 15 (motion) by the motion detector.
The K-factor for the chrominance filter can be either Ky (output of the luminance motion detector,
TNRSEL=0) or Kuv (output of the chrominance motion detector, TNRSEL=1).
Micronas22Preliminary Data Sheet
Page 23
SDA 9401
Equation for temporal noise reduction (luminance signal)
1Ky+
YOUT
Equation for temporal noise reduction (chrominance signal)
1K+
UVOUT
The next figure shows the motion detector in more detail. Temporal noise reduction can be switched
off by NRON (NRON=0). The parameter TNRFIY/C switches between a fixed noise reduction Kfactor TNRVAY/C (TNRFIY/C=0) or a motion adaptive noise reduction K-factor (TNRFIY/C=1).
Block diagram of motion detector
-------------
16
----------------
16
YSNRYR–ΘΡYR+=
UVSNRUV1–ΘΡUV1 K;+Ky Kuv;ΘΡ==
TNRCLY/C+1
TNRKOY/C+1
TNRFIY/C
NRON
Motion
LUT
TNRHOY/C
0
TNRVAY/C
1
MUX
0
1
Ky/uv
MUX
0
15
nr01
DY/UV
Motion
detection
In case of adaptive noise reduction the K-factor depends on the detected “Motion” (see figure
above). The “Motion”-Ky/Kuv characteristic curve (LUT) is fixed inside the SDA 9401, but the
characteristic curve can be changed by two parameters: TNRHOY/C and TNRKOY/C. TNRHOY/C
shifts the curve horizontally and TNRKOY/C shifts the curve vertically. For a fixed characteristic
curve, the sensitivity of the motion detector is adjustable by TNRCLY/C.
1DhSwitch for motion detection of temporal noise reduction
of chrominance signal
0: luminance
motion detector
Micronas24Preliminary Data Sheet
Page 25
SDA 9401
ParameterSubaddressDescription
TNRFIY/C
21h/22hSwitch for fixed K-factor value defined by TNRVAY/C
1: off
0: on
TNRVAY/C20hFixed K-factor for temporal noise reduction of lumi-
nance/chrominance
TNRHOY/C21h/22hHorizontal shift of the motion detector characteristic
TNRKOY/C1FhVertical shift of the motion detector characteristic
TNRCLY/C1EhClassification of temporal noise reduction
6.3.5Noise measurement
The noise measurement algorithm can be used to change the parameters of the temporal noise
reduction processing depending on the actual noise level of the input signal. This is done by the I²Cbus controller which reads the NOISEME value, and sends depending on this value different
parameter sets to the temporal noise reduction registers of the SDA 9401. The NOISEME value can
be interpreted as a linear curve from no noise (0) to strong noise (30). Value 31 indicates an
overflow status and can be handled in different ways: strong noise or measurement failed.
Two measurement algorithms are included, which can be chosen by the parameter NMALG. In case
NMALG=1 the noise is measured during the vertical blanking period in the line defined by NMLINE.
For NMALG=0 the noise is measured during the first active line. In both cases the value is
determined by averaging over several fields.
The figure below shows an example for the noise measurement. The NMLINE parameter
determines the line, which is used in the SDA 9401 for the measurement. In case of VINDEL=0 and
NMLINE=0 line 3 of the field A and line 316 of the field B is chosen. In case of VINDEL=0 and
NMLINE=3 line 6 of the field A and line 319 of the field B is chosen.
Micronas25Preliminary Data Sheet
Page 26
SDA 9401
Example of noise measurement
H-sync
V-sync
Field1 (A)
123456 7625624623
VINDEL=0
NMLINE=0
:
NMLINE=3
Measure
:
Field2 (B)
H-sync
V-sync
VINDEL=0
NMLINE=0
:
NMLINE=3
313-1314-2315-3316-4317-5318-6319-7312311310
Measure
:
PAL
Input write parameter
ParameterSubaddressDescription
NMALG1DhNoise measurement algorithm
1: measurement during vertical blanking period (measure
line can be defined by NMLINE)
0: measurement in the first active line
Measure
NM01
Measure
NMLINE28hLine for noise measurement (only valid for NMALG=1)
Input read parameter
ParameterSubaddressDescription
NOISEME32hNoise level of the input signal: 0 (no noise), ... , 30
(strong noise) [31 (strong noise or measurement failed)]
NMSTATUS33hSignals a new value for NOISEME
1: a new value can be read
0: current noise measurement not finalized
(see also chapter I²C bus format on page 45)
Micronas26Preliminary Data Sheet
Page 27
SDA 9401
6.4Clock concept
Input signals
SignalsPin numberDescription
CLK154System clock 1 input
X1/CLK228System clock 2 input
Output signals
SignalsPin numberDescription
CLKOUT26Clock output
The SDA 9401 supports different clock concepts. In chapter 10 (see also
chapter Application
information on page 65) a typical application of the circuit is shown. The front-end clock is
connected to CLK1 input. The CLKOUT pin is connected to the back-end and the X1/CLK2 input is
connected to a crystal oscillator. The next figure explains the different clock switches, which may be
used for the separate modes (see also page 31, “Ingenious configurations of the HOUT and VOUT
generator”).
Clock concept
CLK1
X1/CLK2
PLL1
1
PLL2
0
CLK21ENCLK11EN
CLK2_pll2
CLK1_pll1
0
1
cloco
CLKOUT
Clock concept switching matrix
CLK11EN (19h)CLK21EN (19h)CLKOUT
01CLK1
00not allowed
1XCLK2_pll2
Micronas27Preliminary Data Sheet
Page 28
SDA 9401
ClockUsed in block
CLK1_pll1ISC, IFC, LDR, ED, MC, LM, I²C
CLK2_pll2OSC, HDR, ED, MC, LM, OFC
Input write parameter
ParameterSubaddressDescription
PLL1OFF
02hPLL 1 on or off
1: off
0: on
PLL1RA09h,0AhPLL range, only for test purposes
PLL2OFF
16hPLL 2 on or off
1: off
0: on
PLL2RA19hPLL range, only for test purposes
CLKOUTON
16hOutput of system clock
1: enabled
0: disabled
Micronas28Preliminary Data Sheet
Page 29
SDA 9401
6.5Output sync controller (OSC)
Output signals
SignalsPin numberDescription
HOUT60horizontal synchronization signal (polarity
programmable, I²C bus parameter 14h
HOUTPOL, default: high active)
VOUT61vertical synchronization signal (polarity
programmable, I²C bus parameter 14h
VOUTPOL, default: high active)
HREF62horizontal active video output
INTERLACED18interlaced signal (can be used for AC cou-
pled deflection circuits)
The output sync controller generates horizontal and vertical synchronization signals for the scan
rate converted output signal. The figures below show the block diagram of the OSC and the existing
parameters.
Block diagram of OSC
HOUTPOL, HOUTFR,
APPLOP, HOUTDEL,
NAPOP, PPLOP
HIN
VIN
OPERATION
mode
generator
STOPMODE
HOUT
generator
VOUT
generator
VOUTPOL, INTMODE,
NALOP, ALPFOP, LPFOP
WINDOW
generator
WINDVON, WINDVDR,
WINDVSP, WINDVST,
WINDHON, WINDHDR,
WINDHSP, WINDHST
HOUT
HREF
VOUT
INTERLACED
osc01
Micronas29Preliminary Data Sheet
Page 30
SDA 9401
Output parameter
HOUT
(PPLOP*2)*CLK2
VOUT
(NALOP+1)*2
LPFOP*4+1
Output write parameter
Parameter
[Default value]
NALOP
SubaddressDescription
0BhNot Active Line OutPut defines the number of lines from
[22]
ALPFOP
0ChActive Lines Per Field OutPut defines the number of
[144]
(NAPOP*4)*CLK2(APPL*16)*CLK2
(HOUTDEL*4+1)*CLK2
the V-Sync to the first active line of the output frame
active lines per output frame
(ALPFOP*4)
inpar01
(APPLOP*16)*CLK2
LPFOP
[156]
HOUTDEL
[4]
NAPOP
[0]
APPLOP
[45]
0DhLines Per Frame OutPut defines the number of lines per
output frame (only valid for VOUTFR=1)
0FhHOUT DELay defines the number of pixels from the H-
Sync to the first active pixel
0EhNot Active Pixel OutPut defines the number of not active
pixels (e.g. coloured border values)
10hActive Pixels Per Line OutPut defines the number of
pixels per line including border pixels
APPLinternalActive Pixels Per Line defines the number of active
pixels (see also Horizontal compression on page 17,
APPLIP)
PPLOP
[432]
11h, 12hPixel Per Line OutPut defines the number of pixels bet-
ween two consecutive H-Syncs (only valid for
HOUTFR=1)
Micronas30Preliminary Data Sheet
Page 31
SDA 9401
The next paragraphs describe the HOUT and VOUT generator in more detail. Both generators have
a so called “locked-mode” and “freerunning-mode”. Not all combinations of the modi make sense.
The table below shows ingenious configurations.
Ingenious configurations of the HOUT and VOUT generator
ModeHOUTFRVOUTFRCLK11ENCLK21EN
“H-and-V-locked”0011
“H-freerunning-V-locked”1010
“H-and-V-freerunning”1110
6.5.1HOUT generator
The HOUT generator has two operation modes, which can be selected by the parameter HOUTFR.
The HOUT signal is active high (HOUTPOL=0) for 64 clock cycles (X1/CLK2). In the freerunningmode the HOUT signal is generated depending on the PPLOP parameter. In the locked-mode the
HOUT signal is locked on the incoming H-Sync signal HIN. The polarity of the HOUT signal is
programmable by the parameter HOUTPOL.
The HREF signal marks the active part of a line. The figure below shows the timing relation of the
HOUT and the HREF signal. The distance is programmable by the parameter HOUTDEL. PD
means processing delay of the internal data processing (PD=36 X1/CLK2 clocks). The length of the
active part is determined by the parameter APPLOP. If the number of the active pixels (internal
parameter APPL, see also
displayed pixels (e.g. displaying a 4:3 source on a 16:9 screen), a coloured border can be defined
using the NAPOP parameter. The border colour is defined by the parameters YBORDER,
UBORDER and VBORDER. To avoid transition artifacts of digital filters the number of active pixels
per line (parameter APPL) can be symmetrically reduced using the CAPP parameter. The figure
below shows also the internal signal ALOP, which marks the active pixels of the line.
Horizontal compression on page 17) is smaller than the number of the
YBORDER17hY border value (four MSB of the 8 bit colour)
UBORDER18hU border value (four MSB of the 8 bit colour)
VBORDER18hV border value (four MSB of the 8 bit colour)
CAPP
00: k = 0
01: k = 8
10hReducing factor for the Active Pixels Per Line Value
(APPL)
Number of active pixels per line = 16 * APPL - 2*k
10: k = 16
11: k = 24
6.5.2VOUT generator
The VOUT generator has two operation modes, which can be selected by the parameter VOUTFR.
The VOUT signal is active high (VOUTPOL=0) for two output lines. In the freerunning-mode the
VOUT signal is generated depending on the LPFOP parameter.
In the locked-mode the VOUT signal is synchronized by the incoming V-Sync signal VIN (means the
internal VIN delayed by the parameter OPDEL, see also
mode. The figure below shows the two cases. If RMODE=1, then for each incoming V-sync signal
VIN an outgoing V-sync signal VOUT has to be generated (50 Hz interlaced to 50 Hz progressive
scan rate conversion). If RMODE=0, then during one incoming V-Sync signal, two VOUT pulses
have to be generated (50 Hz interlaced to 100 Hz interlaced scan rate conversion).
Examples for VOUT generation depending on parameter RMODE
VIN
RMODE=1
VOUT
RMODE=0
VOUT
The VOUT signal has a delay of two CLKOUT clocks to the HOUT signal or in case of interlaced a
delay of a half line plus two CLKOUT clocks.
Switching from H-and-V-freerunning to H-and-V-locked mode
In H-and-V-freerunning mode, generally, the phase of the generated synchronization raster has no
correlation to the input raster. A hard switch from the H-and-V-freerunning mode to the H-and-Vlocked mode therefore would cause visible synchronization artefacts. To avoid these problems the
SDA 9400 enlarges the line and the field lengths of the output sync signals HOUT and VOUT in a
defined procedure to enable an unvisible synchronization of the freerunning output to the input.
For vertical synchronization the maximum synchronization time is 260 ms for interlaced and 520 ms
for progressive display modes. Horizontal synchronization is performed in a maximum time of 50
ms. To get the best performance it is recommended to change at first the vertical and after the
mentioned delay times the horizontal mode from free running to locked.
Micronas33Preliminary Data Sheet
Page 34
SDA 9401
6.5.3 Operation mode generator
The VOUT generator determines the VOUT signal. For proper operation of the VOUT generator
information about the raster sequence is necessary. The parameter STOPMODE (Static operation
mode) defines the raster sequence and the scan rate conversion algorithm. The figure below
explains the used wording for the following explanations.
Explanations of field and display raster
FRAME/FIELD
FRAME
Content of picture
TV
DISPLAY RASTER
Display raster
odd lines
even lines
Display raster
odd lines
even lines
ϒ
FIELD A
FIELD B
Display raster
∼
fieldras01
Tube, Display raster
The interlaced input signal (e.g. 50 Hz PAL or 60 Hz NTSC) is composed of a field A (odd lines) and
a field B (even lines).
n
A
- Input signal, field A at time n,
n
B
- Input signal, field B at time n
The field information describes the picture content. The output signal, which could contain different
picture contents (e.g. field A, field B ) can be displayed with the display raster ∼ or ϒ.
n
,∼) - Output signal, field A at time n, displayed as raster ∼Ι
(A
Micronas34Preliminary Data Sheet
Page 35
SDA 9401
(An,ϒ) - Output signal, field A at time n, displayed as raster ϒΙ
n
((A*)
,ϒ) - Output signal, field A raster interpolated into field B at time n, displayed as raster ϒ
n Bn-1
(A
The table below describes the different scan rate conversion algorithms and the corresponding
raster sequences. The delay between the input field and the corresponding output fields depends
on the OPDEL parameter and the default value for the delay is an half input field.
The INTERLACED signal can be used for AC-coupled deflections. Depending on the parameter
INTMODE the value of this signal will be generated. The table below shows also the definition of
this signal.
Explanation of operation mode timing
,∼+ϒΦ=ϑ=Output signal, frame AB at time n, progressive
Input fields
time
Fields available in
the internal field stores
Output fields
n-1
A
, B
OPDEL lines
A
n-1
n
n-1
, A
n
b
Phase 1
a
Phase
0
B
n
n
B
n
n
c
Phase 2/0
An, B
osc02
n
Phase 3/1
n
d
Static operation modes
STOPMODE
Scan rate conversion
algorithm
Input field
A
Output
n
field a
phase 0
Output
field b
phase 1
n
Input field
B
Output
n
field c
phase 2/0
Output
n
field d
phase 3/1
RMODE
0000not definedxxxx0
0001AA*B*B mode I
interlaced
0010AABB mode I
interlaced
0100Multipicture mode IA
0101Multipicture mode IIB
(A*)n,↑
INTMODE(3)
n
,←
A
INTMODE(0)
n
,↑
INTMODE(0)
n-1
,↑
INTMODE(1)
An,←
INTMODE(0)
An,←
INTMODE(0)
An,←
INTMODE(0)
n-1
B
,←
INTMODE(1)
Bn,↑
INTMODE(1)
Bn,↑
INTMODE(1)
An,↑
INTMODE(0)
Bn,↑
INTMODE(1)
(B*)n,←
INTMODE(2)
Bn,↑
INTMODE(1)
An,←
INTMODE(0)
Bn,←
INTMODE(1)
0
0
0
0
0110AAAA modeAn,←
INTMODE(0)
0111BBBB modeB
n-1
INTMODE(0)
,↑
An,←
INTMODE(0)
n-1
B
,↑
INTMODE(0)
An,←
INTMODE(0)
Bn,↑
INTMODE(0)
An,←
INTMODE(0)
Bn,↑
INTMODE(0)
0
0
1000not definedxxxx0
Micronas35Preliminary Data Sheet
Page 36
SDA 9401
STOPMODE
Scan rate conversion
algorithm
1001AA*B*B mode II
interlaced
1010AABB mode II
interlaced
Input field
A
Output
field a
phase 0
n-1
(B*)
INTMODE(2)
n-1
B
,↑
INTMODE(1)
n
,←
Output
field b
phase 1
n-1
B
,↑
INTMODE(1)
n-1
B
,↑
INTMODE(1)
n
Input field
B
Output
n
field c
phase 2/0
n+1
A
,←
INTMODE(0)
n+1
A
,←
INTMODE(0)
Output
field d
phase 3/1
n+1
(A*)
INTMODE(3)
n+1
A
,←
INTMODE(0)
n
RMODE
,↑
0
0
1011,11xxnot definedxxxx0
0000not definedxxxx1
0001AA* mode I pro-
gressive
(An A*n,
←Τ↑)
(B*n Bn,
←Τ↑)
1
0010not definedxxxx1
0101AA* mode II pro-
gressive
0111B*B mode progres-
sive
(An A*n,
←Τ↑)
n-1
(B
n-1
B*
,
(An A*n,
←Τ↑)
(Bn B*n,
←Τ↑)
1
1
←Τ↑)
0011,0100,
not definedxxxx1
0110
1000Test Mode (motion
adaptive mode
interlaced, DL)
An A*n ΥΙ
←Τ↑ΞΙ
←Τ↑)
B*n Bn,
a+b/
←Τ↑)
1
1xxxnot definedxxxx1
The table below shows all possible display raster sequences for the different static operation modes
and the line per field value between two consecutive output V-Syncs. It is assumed, that in case of
freerunning-mode LPFOP=156 and in the locked mode the number of lines of the incoming field is
INTMODE13h, 14hFree programmable INTERLACED signal for AC-cou-
pled deflection stages
6.5.4Window generator
The figures below show the functionality of the horizontal and/or vertical window function. The
actual TV display can be overwritten with a constant value (defined by YBORDER, UBORDER,
VBORDER), which is called “closing” or the constant value can be overwritten with the actual TV
signal, which is called “opening”. For the generation some parameters exist, which will be explained
in more detail afterwards.
Examples for window feature
WINDOW
Micronas37Preliminary Data Sheet
Page 38
SDA 9401
The feature can be enabled by the parameter WINDHON/WINDVON. The parameter WINDHST/
WINDVST defines the status of the window (opened or closed). Closed means, that only a constant
value is displayed, opened means, that the full TV is displayed. The parameter WINDHDR/
WINDVDR defines, what can be done with the window (open the window, close the window).
Output write parameter: WINDHST/WINDVST and WINDHDR/WINDVDR
WINDHST/
WINDVST
Description
WINDHDR/
WINDVDR
Description
0Window is closed0open the window
0Window is closed1window remains closed
1Window is opened0window remains open
1Window is opened1close the window
With each enabling of the window function by the WINDHON/WINDVON parameter, the status of
the window will be as defined by the table above, that means the WINDHST/WINDVST parameter is
only once interpreted after enabling the window function. To change afterwards the status from
“window is close” to “window is open” or vice versa only the WINDHDR/WINDVDR has to be
toggled. If for example the status WINDHST/WINDVST=0 and the WINDHDR/WINDVDR=0 the
window is closed and will be open after enabling the feature by setting the parameter WINDHON/
WINDVON=1. To close the window only the parameter WINDHDR/WINDVDR has to be set to 1.
Again to open the window WINDHDR/WINDVDR has to be set to 0.
For example:
After switching on the TV set, the customer should see the window closed and afterwards the
window should be opened. Therefore the WINDHST/WINDVST has to be set to “0”, the WINDHDR/
WINDVDR has to be set to “1” and the WINDHON/WINDVON has to be set to “1”. So the customer
will see first a screen with a colour defined by the I²C parameters YBORDER, UBORDER and
VBORDER. Then the WINDHDR/WINDVDR has to be set to “0”, that means the window will be
open and the customer will see the chosen TV channel.
The speed of closing or opening the window can be defined by the parameter WINDHSP/
WINDVSP. The tables below explain the using of these parameters.
Output write parameter: WINDHSP
time to close/
open (e.g. 720
active pixel,
10ms per output
field)
windhsp
freerun
mode
locked
mode
00pplop/256distance/512~4s
01pplop/128distance/256~2s
10pplop/64distance/128~1s
Micronas38Preliminary Data Sheet
Page 39
SDA 9401
time to close/
open (e.g. 720
active pixel,
10ms per output
field)
windhsp
freerun
mode
locked
mode
11pplop/32distance/64~0.5s
Distance: Number of pixels in system clocks X1/CLK2 between two output H-Syncs
time to close = time(field) * number of active pixels / (distance/512)
e.g. time to close = 10 ms * 720 / (864/512) = 4,26 s
time to close = time(field) * number of active pixels / (pplop/128)
Output write parameter: WINDVSP
time to close/
open (e.g. 576
active lines,
10ms per output
field)
windvsp
freerun
mode
locked
mode
00lpfop/128lpfip/256~5s
01lpfop/64lpfip/128~2s
10lpfop/32lpfip/64~1s
11lpfop/16lpfip/32~0.5s
LPFIP: Lines per field of the input signal - amount of lines between two input V-Syncs
time to close = time(field(interlaced)/frame(progressive)) * number of active lines / (lpfip/256)
e.g. time to close = 10 ms * 576 / (312/256) = 4.7 s
time to close = time(field) * number of active lines / (lpfop/128)
Output write parameter
ParameterSubaddressDescription
WINDVON
15hVertical window feature on or off
1: on
0: off
WINDVDR
15hDirection of the vertical window feature
1: close window
0: open window
WINDVST
1: window is opened
15hStatus of the vertical window feature after enabling the
window feature
0: window is closed
WINDVSP15hSpeed of the vertical window feature
Micronas39Preliminary Data Sheet
Page 40
SDA 9401
ParameterSubaddressDescription
WINDHON
16hHorizontal window feature on or off
1: on
0: off
WINDHDR
16hDirection of the horizontal window feature
1: close window
0: open window
WINDHST
1: window is opened
16hStatus of the horizontal window feature after enabling the
window feature
0: window is closed
WINDHSP16hSpeed of the horizontal window feature
FLASHON
1: on
0: off
17hFlash of the TV signal (after each output V-Sync the TV
signal or the constant background value defined by
YBORDER, UBORDER, VBORDER is displayed)
The SDA 9401 supports at the output side only the sample frequency relations of Y : (B-Y) : (R-Y):
4:2:2. The representation of the samples of the chrominance signal is programmable as positive
dual code (unsigned, parameter TWOOUT=0) or two's complement code (TWOOUT=1, see also
I²C bus format on page 45, I²C bus parameter 17h).
Output data format
Data
Pin
YIN7Y
YIN6Y
YIN5Y
YIN4Y
YIN3Y
YIN2Y
YIN1Y
YIN0Y
4:2:2 Parallel
07
06
05
04
03
02
01
00
Y
Y
Y
Y
Y
Y
Y
Y
17
16
15
14
13
12
11
10
Micronas40Preliminary Data Sheet
Page 41
SDA 9401
Data
4:2:2 Parallel
Pin
UVIN7 U
UVIN6 U
UVIN5 U
UVIN4 U
UVIN3 U
UVIN2 U
UVIN1 U
UVIN0 U
07
06
05
04
03
02
01
00
V
07
V
06
V
05
V
04
V
03
V
02
V
01
V
00
X ab: X: signal component a: sample number b: bit number
6.7High data rate processing (HDR)
The output signal can be vertically expanded. The expansion as well as the different scan rate
conversion algorithms are processed in the HDR block. For the vertical expansion line memories
are used. If the operation frequency X1/CLK2 is higher than 27 MHz plus 10%, the line memories
will not work correctly any more. In this case only simple processing will be possible. Simple
processing means, that the vertical expansion must be disabled.
The table below defines the internal expansion factor ZOOM depending on the RMODE and
VERINT parameter.
Output write parameter: VERINT
VERINTRMODEZOOM
I²C-bus
02*(VERINT+1)
parameter
I²C-bus
1(VERINT+1)
parameter
The reachable expansion factors are listed in the table below in case of VDECON=0 and
VDECON=2 (vertical compression of the input signal with factor 1.0 and 1.5).
Micronas41Preliminary Data Sheet
Page 42
SDA 9401
Examples of reachable expansion factors
100/120 Hz
interlaced
RMODE=0
VERINTZOOMZOOMVDECON=0VDECON=2
63128641.000.75
62126631.020.76
61124621.030.77
60122611.050.79
59120601.070.80
58118591.080.81
57116581.100.83
56114571.120.84
55112561.140.86
54110551.160.87
53108541.190.89
52106531.210.91
51104521.230.92
50102511.250.94
49100501.280.96
4898491.310.98
4796481.331.00
4694471.361.02
4592461.391.04
4490451.421.07
4388441.451.09
4286431.491.12
4184421.521.14
4082411.561.17
3980401.601.20
3878391.641.23
3776381.681.26
3674371.731.30
3572361.781.33
3470351.831.37
3368341.881.41
3266331.941.45
3164322.001.50
3062312.061.55
2960302.131.60
2858292.211.66
2756282.291.71
50/60 Hz
progressive
RMODE=1
real vertical
expansion
factor
real vertical
expansion
factor
Micronas42Preliminary Data Sheet
Page 43
SDA 9401
100/120 Hz
interlaced
RMODE=0
VERINTZOOMZOOMVDECON=0VDECON=2
2654272.371.78
2552262.461.85
2450252.561.92
2348242.672.00
2246232.782.09
2144222.912.18
2042213.052.29
1940203.202.40
1838193.372.53
1736183.562.67
1634173.762.82
1532164.003.00
1430154.273.20
1328144.573.43
1226134.923.69
1124125.334.00
1022115.824.36
920106.404.80
81897.115.33
71688.006.00
61479.146.86
512610.678.00
410512.809.60
38416.0012.00
26321.3316.00
14232.0024.00
02164.0048.00
50/60 Hz
progressive
RMODE=1
real vertical
expansion
factor
real vertical
expansion
factor
The parameter VPAN can be used to select the start line of the expansion. To expand the upper
part of the incoming signal with the factor 2.0, VPAN should be set to zero. To expand the lower
part, VPAN should be equal to 144. That means in case of VPAN=0 the first used line is line 1 and
in case of VPAN=144 the first used line is line 144.
Dependent on the parameter VERINT a certain number of input lines of the input field is required.
Therefore not all VPAN values are allowed. The formula below can be used to calculate the
maximum allowed VPAN value depending on the chosen VERINT value.
Calculation of maximum VPAN value
VERINT1+ΘΡ
VPANmax2ALPFOP1
=
------------------------------------
–
64
Micronas43Preliminary Data Sheet
Page 44
SDA 9401
Floor symbol means: take only integer part of x
x
Output write parameter
ParameterSubaddressDescription
VERINT13hVertical expansion factor
VPAN1AhVertical adjustment of the output picture
Micronas44Preliminary Data Sheet
Page 45
SDA 9401
6.8I²C bus
6.8.1I²C bus slave address
Write Adress: BCh
10111100
Read Adress: BDh
10111101
6.8.2I²C bus format
The SDA 9401 I²C bus interface acts as a slave receiver and a slave transmitter and provides two
different access modes (write, read). All modes run with a subaddress auto increment. The interface
supports the normal 100 kHz transmission speed as well as the high speed 400 kHz transmission.
The transmitted data are internally stored in registers. The master has to write a don’t care byte to
the subaddress FFh (store command) to make the register values available for the SDA 9401. To
have a defined time step, where the data will be available, the data are made valid with the incoming
V-sync VIN or with the next OPSTART pulse, which is an internal signal and indicates the start of a
new output cycle. The subaddresses, where the data are made valid with the VIN signal are
indicated in the overview of the subaddresses with „VI“, where the data are made valid with the
OPSTART are indicated with „OS“. The I²C parameter VISTATUS and OSSTATUS (subaddress
33h) reflect the state of the register values. If these bits are read as ’0’, then the store command was
sent, but the data aren’t made available yet. If these bits are ’1’ then the data were made valid and a
new write or read cycle can start. The bits VISTATUS and OSSTATUS may be checked before
writing or reading new data, otherwise data can be lost by overwriting.
Furthermore the bit NMSTATUS (status of noise measurement: NOISEME). NMSTATUS signalizes
a new value for NOISEME. So if NMSTATUS is read as ’0’ the current noise measurement has not
Micronas45Preliminary Data Sheet
Page 46
SDA 9401
been finalized. If the NMSTATUS is read as ’1’ a new noise measurement value can be read.
After switching on the IC, all bits of the SDA 9401 are set to defined states. Particularly :
SubaddressDefault valueR/W
Tak e
over
SubaddressDefault valueR/W
0011hWVI1500hWOS
0100hWVI1604hWOS
0250hWVI1714hWOS
0390hWVI1888hWOS
0400hWVI190ChWOS
05B4hWVI1A00hWOS
06AAhWVI1B00hWVI
0700hWVI1C01hWVI
0800hWVI1D03hWVI
0900hWVI1EFFhWVI
0A00hWVI1F00hWVI
0B16hWOS20FFhWVI
0C90hWOS2102hWVI
0D9ChWOS2202hWVI
0E00hWOS23...27not used
Take
over
0F04hWOS2822hWVI
10B4hWOS29...31not used
11B0hWOS32R
1290hWOS33R
133FhWOS34...FEnot used
1400hWOSFFW
R/W: R - Read Register; W - Write Register; R/W - Read and Write Register;
Take over: VI - take over with VIN; OS- take over with OPSTART
Reading the “Read only” register 32h must be followed by reading the “Read only” register 33h.
Micronas46Preliminary Data Sheet
Page 47
SDA 9401
6.8.3 I²C bus commands
Subadd.
(Hex.)
00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
10
11
12
13
14
15
Data Byte
D7D6D5D4D3D2D1D0
FORMAT1
ISC/IFC
VINDEL5
ISC
NALIP5
ISC
ALPFIP7
ISC
NAPIPDL7
ISC
APPLIP5
ISC
OPDEL7
ISC
VERWIDTH7
ISC
VERPOS7
ISC
HORWIDTH5
ISC
HORPOS5
ISC
NALOP7
OSC
ALPFOP7
OSC
LPFOP7
OSC
NAPOP7
OSC
HOUTDEL7
OSC
APPLOP5
OSC
PPLOP7
OSC
PPLOP8
OSC
INTMODE3
OSC
INTMODE1
OSC
WINDVON
OSC
FORMAT0
ISC/IFC
VINDEL4
ISC
NALIP4
ISC
ALPFIP6
ISC
NAPIPDL6
ISC
APPLIP4
ISC
OPDEL6
ISC
VERWIDTH6
ISC
VERPOS6
ISC
HORWIDTH4
ISC
HORPOS4
ISC
NALOP6
OSC
ALPFOP6
OSC
LPFOP6
OSC
NAPOP6
OSC
HOUTDEL6
OSC
APPLOP4
OSC
PPLOP6
OSC
STOPMODE3
OSC
INTMODE2
OSC
INTMODE0
OSC
WINDVDR
OSC
FIEINV
ISC
VINDEL3
ISC
NALIP3
ISC
ALPFIP5
ISC
NAPIPDL5
ISC
APPLIP3
ISC
OPDEL5
ISC
VERWIDTH5
ISC
VERPOS5
ISC
HORWIDTH3
ISC
HORPOS3
ISC
NALOP5
OSC
ALPFOP5
OSC
LPFOP5
OSC
NAPOP5
OSC
HOUTDEL5
OSC
APPLOP3
OSC
PPLOP5
OSC
STOPMODE2
OSC
VERINT5
OSC
0
WINDVST
OSC
VCRMODE
ISC
VINDEL2
ISC
NALIP2
ISC
ALPFIP4
ISC
NAPIPDL4
ISC
APPLIP2
ISC
OPDEL4
ISC
VERWIDT4
ISC
VERPOS4
ISC
HORWIDTH2
ISC
HORPOS2
ISC
NALOP4
OSC
ALPFOP4
OSC
LPFOP4
OSC
NAPOP4
OSC
HOUTDEL4
OSC
APPLOP2
OSC
PPLOP4
OSC
STOPMODE1
OSC
VERINT4
OSC
RMODE
OSC
WINDVSP1
OSC
PIMODE
ISC
VINDEL1
ISC
NALIP1
ISC
ALPFIP3
ISC
NAPIPDL3
ISC
APPLIP1
ISC
OPDEL3
ISC
VERWIDTH3
ISC
VERPOS3
ISC
HORWIDTH1
ISC
HORPOS1
ISC
NALOP3
OSC
ALPFOP3
OSC
LPFOP3
OSC
NAPOP3
OSC
HOUTDEL3
OSC
APPLOP1
OSC
PPLOP3
OSC
STOPMODE0
OSC
VERINT3
OSC
VOUTFR
OSC
WINDVSP0
OSC
NAPIPPH1
ISC
VINDEL0
ISC
NALIP0
ISC
ALPFIP2
ISC
NAPIPDL2
ISC
APPLIP0
ISC
OPDEL2
ISC
VERWIDTH2
ISC
VERPOS2
ISC
HORWIDT0
ISC
HORPOS0
ISC
NALOP2
OSC
ALPFOP2
OSC
LPFOP2
OSC
NAPOP2
OSC
HOUTDEL2
OSC
APPLOP0
OSC
PPLOP2
OSC
000
VERINT2
OSC
HOUTFR
OSC
000
NAPIPPH0
ISC
VINPOL
ISC
PLL1OFF
PLL1
ALPFIP1
ISC
NAPIPDL1
ISC
xx
OPDEL1
ISC
VERWIDTH1
ISC
VERPOS1
ISC
PLL1RA1
PLL1
PLL1RA3
PLL1
NALOP1
OSC
ALPFOP1
OSC
LPFOP1
OSC
NAPOP1
OSC
HOUTDEL1
OSC
CAPP1
OSC
PPLOP1
OSC
VERINT1
OSC
VOUTPOL
OSC
TWOIN
ISC/IFC
HINPOL
ISC
REFRESH
MC
ALPFIP0
ISC
NAPIPDL0
ISC
OPDEL0
ISC
VERWIDTH0
ISC
VERPOS0
ISC
PLL1RA0
PLL1
PLL1RA2
PLL1
NALOP0
OSC
ALPFOP0
OSC
LPFOP0
OSC
NAPOP0
OSC
HOUTDEL0
OSC
CAPP0
OSC
PPLOP0
OSC
VERINT0
OSC
HOUTPOL
OSC
Micronas47Preliminary Data Sheet
Page 48
SDA 9401
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
28
32
33
WINDHON
OSC
YBORDER3
OFC/LDR
UBORDER3
OFC/LDR
PLL2RA3
PLL2
VPAN7
MC
MULTIPIC1
LDR/ISC
VDECON2
LDR
NRON
LDR/MC
TNRCLY3
LDR
TNRKOY3
LDR
TNRVAY3
LDR
TNRHOY5
LDR
TNRHOC5
LDR
NMLINE4
LDR
NOISME4
LDR
xxx
WINDHDR
OSC
YBORDER2
OFC/LDR
UBORDER2
OFC/LDR
PLL2RA2
PLL2
VPAN6
MC
MULTIPIC0
LDR/ISC
VDECON1
LDR
SNRON
LDR
TNRCLY2
LDR
TNRKOY2
LDR
TNRVAY2
LDR
TNRHOY4
LDR
TNRHOC4
LDR
NMLINE3
LDR
NOISME3
LDR
WINDHST
OSC
YBORDER1
OFC/LDR
UBORDER1
OFC/LDR
PLL2RA1
PLL2
VPAN5
MC
PICPOS3
LDR/MC
VDECON0
LDR
VCSNRON
LDR
TNRCLY1
LDR
TNRKOY1
LDR
TNRVAY1
LDR
TNRHOY3
LDR
TNRHOC3
LDR
NMLINE2
LDR
NOISEME2
LDR
WINDHSP1
OSC
YBORDER0
OFC/LDR
UBORDER0
OFC/LDR
PLL2RA0
PLL2
VPAN4
MC
PICPOS2
LDR/MC
HDECON1
LDR/ISC
HCSNRON
LDR
TNRCLY0
LDR
TNRKOY0
LDR
TNRVAY0
LDR
TNRHOY2
LDR
TNRHOC2
LDR
NMLINE1
LDR
NOISEME1
LDR
TVMODE
LDR
WINDHSP0
OSC
FLASHON
OFC
VBORDER3
OFC/LDR
CLK21EN
PLL2
VPAN3
MC
PICPOS1
LDR/MC
HDECON0
LDR/ISC
00
TNRCLC3
LDR
TNRKOC3
LDR
TNRVAC3
LDR
TNRHOY1
LDR
TNRHOC1
LDR
NMLINE0
LDR
NOISEME0
LDR
VISTATUS OSSTATUSxNMSTATUS
CLKOUTON
PLL2
TWOOUT
OFC
VBORDER2
OFC/LDR
CLK11EN
PLL2
VPAN2
MC
PICPOS0
LDR/MC
001
TNRCLC2
LDR
TNRKOC2
LDR
TNRVAC2
LDR
TNRHOY0
LDR
TNRHOC0
LDR
01x
VERSION2VERSION1VERSION0
PLL2OFF
PLL2
00
VBORDER1
OFC/LDR
00
VPAN1
MC
FREEZE
MC
TNRSEL
LDR
TNRCLC1
LDR
TNRKOC1
LDR
TNRVAC1
LDR
TNRFIY
LDR
TNRFIC
LDR
x
VBORDER0
OFC/LDR
VPAN0
MC
0
NMALG
LDR
TNRCLC0
LDR
TNRKOC0
LDR
TNRVAC0
LDR
0
0
FF
xxxxxxxx
x = don’t care
ISC - Input sync controller block
IFC - Input format conversion block
OSC - Output sync controller block
OFC - Output format conversion block
LDR - Low data rate block
HDR - High data rate block
MC - Memory controller
PLL1 - Clock doubling block 1
PLL2 - Clock doubling block 2
Micronas48Preliminary Data Sheet
Page 49
SDA 9401
6.8.4 Detailed description
Default values are underlined.
Subaddress 00
BitNameFunction
Input format:
11: full CCIR 656
D7...D6FORMAT
D5FIEINV
D4VCRMODE
D3PIMODE
NAPIPPH
D2...D1
(LSBs of
NAPLIP)
10: CCIR 656 only data, H- and V-sync according CCIR656
01: CCIR 656 only data, H- and V-sync according PAL/NTSC
00: 4:2:2
Field polarity inversion:
1: Field A=1, Field B=0
0: Field A=0, Field B=1
Input filtering of the incoming field signal:
1: on
0: off
Picture insert mode (see VERWIDTH, VERPOS, HORWIDTH, HORPOS):
1: on
0: off
Number of not active pixels from external HIN to the input data in system
clocks of CLK1:
Number(HIN to input data) = (NAPIPDL*4+NAPIPPH+8) [NAPIPPH = 0
]
Chrominance input format:
D0TWOIN
BitNameFunction
D7...D2VINDEL
D1VINPOL
D0HINPOL
1: 2’s complement input (-128...127)
0: unsigned input (0...255)
inside the SDA 9401 the data are always processed as unsigned data
Number of not active lines per field in the input data stream:
Not active lines = NALIP+3 [NALIP= 20
PLL1 switch:
1: off
0: on
Internal refresh:
1: on
0: off
Subaddress 03
Number of active lines per field in the input data stream:
Active lines = ALPFIP * 2 [ALPFIP=144
Subaddress 04
]
]
NAPIPDL
D7...D0
BitNameFunction
D7...D2APPLIP
D1...D0x
(MSBs of
NAPLIP)
Number of not active pixels from HIN to the input data in system clocks of
CLK1:
Number(HIN to input data) = (4 * NAPIPDL + NAPIPPH + 8) [NAPIPDL=
0]
Subaddress 05
Number of active pixels per line in the input data stream in system clocks
of CLK1:
Active pixels = APPLIP*32 [APPLIP = 45
Inside the SDA 9401 the number of active pixels per line is APPL*32, with
APPL =
APPLIP, MULITPIC = 0 and HDECON = 0
(APPLIP + 1)/2, MULTIPIC = 0 and HDECON = 1
(APPLIP + 3)/4, MULTIPIC = 0 and HDECON = 2
45, MULTIPIC > 0
x
]
Micronas50Preliminary Data Sheet
Page 51
SDA 9401
Subaddress 06
BitNameFunction
D7...D0OPDEL
BitNameFunction
D7...D0VERWIDTH
BitNameFunction
D7...D0VERPOS
Output processing delay (in number of lines):
Delay(VIN to VOUT) = (OPDEL + 1) * Tline [OPDEL = 170
Subaddress 07
Vertical width of inserted picture in input lines:
Vertical width = (2 * VERWIDTH) [VERWIDTH = 0
Subaddress 08
Vertical position of inserted picture in input lines:
Vertical position = (2 * VERPOS) + NALIP + 3 [VERPOS = 0
Subaddress 09
]
]
]
BitNameFunction
D7...D2HORWIDTH
D1...D0PLL1RA(1...0)
BitNameFunction
D7...D2HORPOS
D1...D0PLL1RA(3...2)
Horizontal width of inserted picture in system clocks of CLK1:
Horizontal width = (32 * HORWIDTH) [HORWIDTH = 0
PLL1 range, only for test purposes [PPL1RA=0
Subaddress 0A
Horizontal position of inserted picture in system clocks of CLK1:
Horizontal position = (32 * HORPOS) + (4 * NAPIPDL + NAPIPPH + 8)
[HORPOS = 0
PLL1 range, only for test purposes [PPL1RA=0
]
]
]
]
Micronas51Preliminary Data Sheet
Page 52
SDA 9401
Subaddress 0B
BitNameFunction
D7...D0NALOP
BitNameFunction
D7...D0ALPFOP
BitNameFunction
D7...D0LPFOP
Number of not active lines per frame in the output data stream:
Not active lines = 2 * (NALOP + 1) [NALOP= 22]
Subaddress 0C
Number of active lines per output frame:
Active lines = 4 * ALPFOP [ALPFOP= 144
Subaddress 0D
Number of lines per output frame (only valid for VOUTFR=1):
Number of lines = 4 * LPFOP + 1 [LPFOP = 156
Subaddress 0E
]
]
BitNameFunction
Number of not active pixels (coloured border values) from external HREF
D7...D0NAPOP
BitNameFunction
D7...D0HOUTDEL
to the first active pixel of the output data stream in system clocks of X1/
CLK2:
Distance(HREF to output data) = (4 * NAPOP) [NAPOP = 0
Number of active pixels per line (including coloured border values and
D7...D2APPLOP
D1...D0CAPP
data) in the output data stream in system clocks of X1/CLK2 (length of
HREF):
Active pixels = 16 * APPLOP [APPLOP = 45
Reduces the active pixels per line (APPL) at the output side:
Active pixels per line at the output side in system clocks of X1/CLK2
= 16 * APPL - 2 * k
k =
24: CAPP = 11
16: CAPP = 10
8: CAPP = 01
0: CAPP = 00
]
Subaddress 11
BitNameFunction
Number of pixels between two output H-syncs HOUT (only valid for
D7...D0PPLOP(7...0)
BitNameFunction
D7PPLOP(8)
D6...D3STOPMODE
D2...D0should be set to 000
HOUTFR=1) in system clocks of X1/CLK2 (Bit 7 to 0):
Number of pixels = 2 * PPLOP [PPLOP = 432
Subaddress 12
Number of pixels between two output H-syncs HOUT (only valid for
HOUTFR=1) in system clocks of X1/CLK2 (Bit 8):
Number of pixels = 2 * PPLOP [PPLOP = 432
Static operation modes (see also
34):
0010: AABB mode I interlaced
Operation mode generator on page
]
]
Subaddress 13
BitNameFunction
D7...D6INTMODE(3...2)
Free programmable INTERLACED signal for AC coupled deflection
stages (Bit 3 and Bit 2) [INTMODE3...2 = 0
]
Micronas53Preliminary Data Sheet
Page 54
SDA 9401
Subaddress 13
BitNameFunction
Vertical expansion factor (see also
on page 41):
63: no vertical expansion
D5...D0VERINT
BitNameFunction
D7...D6INTMODE(1...0)
D5
D4RMODE
D3VOUTFR
D2HOUTFR
D1VOUTPOL
D0HOUTPOL
:
47: vertical expansion with factor 1.5
:
31: vertical expansion with factor 2
:
Subaddress 14
Free programmable INTERLACED signal for AC coupled deflection
stages (Bit 1 and Bit 0) [INTMODE1...0 = 0
VOUT (EXSYN=0), VEXT (EXSYN=1) polarity:
1: low active
0: high active
HOUT (EXSYN=0), HEXT (EXSYN=1) polarity:
1: low active
0: high active
High data rate processing (HDR)
]
Subaddress 15
BitNameFunction
Vertical window:
D7WINDVON
D6WINDVDR
1: on
0: off
1: close the vertical window
0: open the vertical window
Micronas54Preliminary Data Sheet
Page 55
SDA 9401
Subaddress 15
BitNameFunction
Status of vertical window after entering vertical window mode:
D5WINDVST
D4...D3WINDVSP
D2...D0
BitNameFunction
1: window is opened
0: window is closed
Speed of vertical window (see also
11: very fast
10: fast
01: medium
00: slow
should be set to 000
Subaddress 16
Window generator on page 37):
D7WINDHON
D6WINDHDR
D5WINDHST
D4...D3WINDHSP
D2CLKOUTON
D1PLL2OFF
D0x
Horizontal window:
1: on
0: off
1: close the horizontal window
0: open the horizontal window
Status of horizontal window after entering horizontal window mode:
1: window is opened
0: window is closed
Speed of horizontal window (see also
11: very fast
10: fast
01: medium
00: slow
Output of system clock CLKOUT:
1: enabled
0: disabled
PLL2 switch:
1: off
0: on
x
Window generator on page 37):
Subaddress 17
BitNameFunction
D7...D4YBORDER
Y border value (Yborder(3) Yborder(2) Yborder(1) Yborder(0) 0 0 0 0 =
00010000 = 16), YBORDER defines the 4 MSB’s of a 8 bit value
Micronas55Preliminary Data Sheet
Page 56
SDA 9401
Subaddress 17
BitNameFunction
Flash of output picture:
D3FLASHON
D2TWOOUT
D1...D0
BitNameFunction
1: on
0: off
Chrominance output format:
1: 2’s complement input (-128...127)
0: unsigned input (0...255)
inside the SDA 9401 the data are always processed as unsigned data
should be set to 00
Subaddress 18
D7...D4UBORDER
D3...D0VBORDER
BitNameFunction
D7...D4PLL2RA
D3CLK21EN
D2CLK11EN
D1...D0
U border value (Uborder(3) Uborder(2) Uborder(1) Uborder(0) 0 0 0 0 =
10000000 = 128), UBORDER defines the 4 MSB’s of a 8 bit value
V border value (Vborder(3) Vborder(2) Vborder(1) Vborder(0) 0 0 0 0 =
10000000 = 128), VBORDER defines the 4 MSB’s of a 8 bit value
Subaddress 19
PLL2 range, only for test purposes [PPL2RA=0
PLL2 input signal (see also
1: external CLK1
0: external X1/CLK2
Internal clock switch for CLKOUT (see also
1: PLL2 output
0: external CLK1
should be set to 00
Clock concept on page 27):
]
Clock concept on page 27):
Subaddress 1A
BitNameFunction
D7...D0VPAN
Vertical adjustment of the output picture [VPAN = 0
01: fourfold
00: off
(In case of MULTIPIC>0, spatial and temporal noise reduction as well as
the motion detection for scan rate conversion are disabled)
Position for the picture in the multipicture mode (only valid for MULTIPIC
> 0, see also
Freeze mode (frozen picture):
1: on
0: off
should be set to 0
Multipicture display on page 18) [PICPOS = 0]
Subaddress 1C
BitNameFunction
Vertical decimation of the input data stream:
111: not used
110: factor 4.0
101: factor 3.0
100: factor 2.0
D7...D5VDECON
D4...D3HDECON
D2...D0
011: factor 1.75
010: factor 1.5
001: factor 1.25
000: off
(In case of VDECON>0, spatial noise reduction as well as the motion
detection for scan rate conversion are disabled)
Horizontal decimation of the input data stream:
11: not used
10: factor 4.0
01: factor 2.0
00: off
(In case of HDECON>0, spatial noise reduction as well as the motion
detection for scan rate conversion are disabled)
should be set to 001
Micronas57Preliminary Data Sheet
Page 58
SDA 9401
Subaddress 1D
BitNameFunction
Temporal noise reduction of luminance and chrominance:
D7NRON
D6SNRON
D5VCSNRON
D4HCSNRON
D3...D2
1: enabled
0: disabled
Spatial noise reduction of luminance:
1: enabled
0: disabled
Vertical spatial noise reduction of chrominance:
1: enabled
0: disabled
Horizontal spatial noise reduction of chrominance:
1: enabled
0: disabled
should be set to 00
Motion detection of temporal noise reduction of chrominance:
D1TNRSEL
D0NMALG
BitNameFunction
D7...D4TNRCLY
D3...D0TNRCLC
1: separate motion detector
0: luminance motion detector
Noise measurement algorithm:
1: measurement during vertical blanking period (line can be defined by
NMLINE)
0: measurement in the active picture (first active line)
Subaddress 1E
Temporal noise reduction of luminance: classification
1111: slig h t n oi s e re d uc t i o n
:
0000: strong noise reduction
Temporal noise reduction of chrominance: classification
1111: slig h t n oi s e re d uc t i o n
:
0000: strong noise reduction
Subaddress 1F
BitNameFunction
D7...D4TNRKOY
Temporal noise reduction of luminance:
Vertical shift of the motion detector characteristic [TNRKOY=0
]
Micronas58Preliminary Data Sheet
Page 59
SDA 9401
Subaddress 1F
BitNameFunction
D3...D0TNRKOC
BitNameFunction
D7...D4TNRVAY
D3...D0TNRVAC
BitNameFunction
D7...D2TNRHOY
D1TNRFIY
D0
Temporal noise reduction of chrominance:
Vertical shift of the motion detector characteristic [TNRKOC=0
Subaddress 20
Fixed K-factor for temporal noise reduction of luminance [TNRVAY = 15
Fixed K-factor for temporal noise reduction of chrominance [TNRVAC =
15]
Subaddress 21
Temporal noise reduction of luminance:
Horizontal shift of the motion detector characteristic [TNRHOY=0
Fixed K-factor switch for temporal noise reduction of luminance:
1: off
0: on
should be set to 0
]
]
]
Subaddress 22
BitNameFunction
D7...D2TNRHOC
D1TNRFIC
D0
BitNameFunction
D7...D3NMLINE
Temporal noise reduction of chrominance:
Horizontal shift of the motion detector characteristic [TNRHOC=0
Fixed K-factor switch for temporal noise reduction of chrominance:
1: off
0: on
should be set to 0
Subaddress 28
Line for noise measurement (only valid for NMALG=1) [NMLINE = 4
]
]
Micronas59Preliminary Data Sheet
Page 60
SDA 9401
Subaddress 28
BitNameFunction
D2...D1
D0x
BitNameFunction
D7...D3NOISEME
D2...D0VERSION
BitNameFunction
D7...D5xxx
should be set to 01
x
Subaddress 32
Noise level of the input signal: 0 (no noise), ..., 30 (strong noise)
[31 (strong noise or measurement failed )]
Version of SDA 94XX family:
000: SDA 9400
001: SDA 9401
010: SDA 9402
Subaddress 33
xxx
TV mode of the input signal
D4TVMODE
D3VISTATUS
D2OSSTATUS
D1x
D0NMSTATUS
BitNameFunction
D7...D0
1: NTSC
0: PAL
Status bit for subaddresses, which will be made valid by VIN
1: New write or read cycle can start
0: No new write or read cycle can start
Status bit for subaddresses, which will be made valid by OPSTART
1: New write or read cycle can start
0: No new write or read cycle can start
x
Status bit for noise measurement parameter:
1: New value of NOISEME available
0: No new value of NOISEME available
Subaddress FF
Store command for all subaddresses
Micronas60Preliminary Data Sheet
Page 61
SDA 9401
7Absolute maximum ratings
ParameterSymbolMinMaxUnitRemark
Operating TemperatureT
Storage Temperature-65125°C
Junction Temperature125°C
Soldering Temperature260°C
Soldering Time10s
Input Voltage-0.3V
Output Voltage-0.3V
Input Voltage-0.35.5VI²C bus pins only
Output Voltage-0.35.5VI²C bus pins only
Supply VoltagesV
Total Power Dissipation 1W
ESD Protection-2,02,0kVMIL STD 883C method
ESD Protection-1,51,5kVEOS/ESD Assn. Standard
Latch-Up Protection -100100mAall inputs/outputs
A
DD
070°C
+0.3Vnot valid for I²C bus pins
DD
+0.3Vnot valid for I²C bus pins
DD
-0.33.8V
3015.6, 100pF, 1500τ
(HBM)
DS 5.3-1993 (CDM)
All voltages listed are referenced to ground (0V, VSS) except where noted.
Absolute Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation under these conditions or at any other condition beyond those indicated in the
operational sections of this specification is not implied.
Micronas61Preliminary Data Sheet
Page 62
SDA 9401
8Recommended operating conditions
ParameterSymbolMinNomMaxUnitRemark
Supply Voltages V
Ambient TemperatureT
DD
A
3.153.33.45V
0 2570°C
All TTL Inputs
High-Level Input VoltageV
Low-Level Input VoltageV
Input CurrentI
IH
IL
IN
2.0V
DD
+0.2
-0.20.8V
+/- 5µA
All TTL Outputs
High-Level Output VoltageV
Low-Level Output VoltageV
OH
OL
2.4VIOH = -2.0 mA
0.4VIOL = 2.0 mA
INPUT/OUTPUT: SDA
Low-Level Output VoltageV
OL
0.5Vat IOL = max
Clock TTL Input CLK1
Clock frequency
Low timet
High timet
Rise timet
Fall timet
1/T
WL
WH
TLH
THL
10ns
10ns
27MHzsee diagr. 11.3
10ns
10ns
Input SYNCEN
Low timet
High timet
Rise timet
Fall timet
WL2
WH2
TLH2
THL2
22nssee diagr. 11.3
22ns
10ns
10ns
Clock TTL Input X1/CLK2
Clock frequency
Low timet
High timet
Rise timet
Fall timet
1/T
WL
WH
TLH
THL
10ns
10ns
27MHzsee diagr. 11.3
5ns
5ns
I²C bus (All Values Are Referred To min(VIH) And max(VIL)), f
All information and data contained in this data sheet are without any
commitment, are not to be considered as an offer for conclusion of a
contract, nor shall they be construed as to create any liability. Any new
issue of this data sheet invalidates previous issues. Product availability
and delivery ar e exclusively subject to our respe ct ive or d er co nf ir mat ion
form; the same applies to orders based on development samples delivered. By this pu bli cat io n, Mi cr on as Gmb H do es no t assu m e r es po n sibi lity for patent infringements or other ri ghts of third parties which m ay
result from its use.
Further , M icro nas G mbH r eserv es th e righ t to revis e thi s pu blicat ion a nd
to make chang es to its cont en t, at any time , wi thout obli gati on t o no tify
any person or entity of such revisions or changes.
No part of this publication may be reproduced, photocopied, stored on a
retrieval system, or transmitted without the express written consent of
Micronas GmbH .
69Micronas
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.